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Abstract: Global demand for critical raw materials, including phosphorus (P) and rare earth elements
(REEs), is on the rise. The south part of Norway, with a particular focus on the Southern Oslo
Rift region, is a promising reservoir of Fe-Ti-P-REE resources associated with magmatic systems.
Confronting challenges in mineral exploration within these systems, notably the absence of alteration
haloes and distal footprints, we have explored alternative methodologies. In this study, we combine
machine learning with geological expertise, aiming to identify prospective areas for critical metal
prospecting. Our workflow involves processing over 400 rock samples to create training datasets for
mineralization and non-mineralization, employing an intuitive sampling strategy to overcome an
imbalanced sample ratio. Additionally, we convert airborne magnetic, radiometric, and topographic
maps into machine learning-friendly features, with a keen focus on incorporating domain knowledge
into these data preparations. Within a binary classification framework, we evaluate two commonly
used classifiers: a random forest (RF) and support vector machine (SVM). Our analysis shows that
the RF model outperforms the SVM model. The RF model generates a predictive map, identifying
approximately 0.3% of the study area as promising for mineralization. These findings align with
legacy data and field visits, supporting the map’s potential to guide future surveys.

Keywords: Fe-Ti-P-REE; prospectivity map; mineral potential mapping; airborne geophysics;
machine learning; Norway

1. Introduction

The global demand for critical raw materials has been steadily increasing due to their
essential role in high-tech industries [1,2]. Among these materials, rare earth elements
(REEs) and phosphorus (P) are listed as critical raw materials by the European Union [3],
underscoring their significance as strategic resources for the future. The REEs stand towards
the top of the priority list due to their use in various green-energy technologies, whereas P
plays a critical role in the fertilizing industry.

In this context, the geological setting of Norway displays great potential for the dis-
covery and subsequent exploitation of critical raw materials, especially P-REE resources [4].
Notably, significant Fe-Ti-P-REE resources have been identified in Norway that are related
to layered intrusions and alkaline intrusive complexes [5,6], emphasizing the potential for
discoveries in diverse settings. The Southern Oslo Rift region is renowned for hosting mul-
tiple magmatic occurrences that are rich in Fe-Ti-P-REE, with the Kodal deposit being the
largest and most well-known to date [7]. However, as most of these resources are formed
as part of magmatic systems, targeting new discoveries is often hampered by the absence
of extensive alteration haloes or distal footprints, as for example observed in hydrothermal
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systems. Therefore, developing alternative exploration tools is critical for supporting new
future discoveries.

Machine learning has emerged as a powerful tool in the field of mineral potential
mapping, and its successful applications have been reported across the world [8–13]. One
of its primary strengths in this context lies in its capacity to efficiently handle extensive
and intricate multivariate datasets, a substantial improvement over traditional methods.
Furthermore, machine learning allows for objective data integration, reducing the potential
biases that can arise from human expertise. However, there are also potential limitations
associated with this data-driven approach [14,15]. In mineral exploration, it can be chal-
lenging to train models effectively due to limited and biased data. Typically, there are
more negative cases (non-mineralized) than positive cases (mineralized), simply due to
the rarity of mineral resources, and the available data may be incomplete. For instance,
only confirmed positive samples (known mineralization) may be available, and negative
samples (rocks devoid of mineralization) must be randomly selected and/or conform to
specific empirical guidelines from the area of interest. These factors can impact the accuracy
and reliability of the models used in mineral exploration [16–18]. Machine learning models
are often considered as ‘black boxes’, meaning it can be difficult to understand how the
algorithms arrive at their predictions from the multi-variate features or how these features
are associated with the underlying geological processes that control the mineralization. In
this contribution, we address these limitations and combine data science with geological
domain expertise in developing our predictive model.

This study is dedicated to employing a machine learning approach to identify potential
areas for early-stage exploration of Fe-Ti-P-REE resources within the Southern Oslo Rift
region. Existing high-resolution spatial datasets, including airborne magnetic, radiometric,
and topographic maps, were used to generate predictive features, and rock samples with
geochemical analyses were processed into training samples. For the generation of the
predictive model, two widely used classifiers were evaluated: a random forest (RF) [19],
which is splitting-based, and a support vector machine (SVM) [20], which is continuity-
based. Both classifiers were implemented with modifications to handle imbalanced datasets
(i.e., there are significantly more negative samples than positive ones) by adjusting the
class weights based on the class frequencies and adjusting the cost matrix to penalize
assigning samples to the overrepresented class (negative, non-mineralized) more heavily.
The RF classification model was selected due to its superior performance, and the generated
predictive map was compared to the legacy data and verified in the field. This was proven
to be valuable in terms of narrowing down areas that require further investigation for
mineral exploration.

2. Geological Background of the Study Area

The study area is located at the Oslo Rift in the southeastern part of Norway, in the
vicinity of the cities of Skien, Sandefjord, and Larvik, covering about 2000 km2 (Figure 1).

The Oslo Rift hosts some of the youngest magmatic rocks of the Fennoscandian Shield,
formed between 302–256 Ma [21–24]. The magmatic activity in the rift began with the
emplacement of the B1 basalts [25], some of which crop out in the study area, close to
Skien. This was followed by the emplacement of voluminous trachytic and trachyandesitic
lava flows characterized by their rhomb-shaped alkali feldspar phenocrysts (rhomb por-
phyry lava), thereafter intruded by the Larvik Plutonic Complex (LPC) between 296 and
289 Ma [24] and younger monzonitic to quartz-bearing syenitic intrusions (Siljan-Hvarnes
intrusion-SHI, 277–281 Ma) [26]. Several occurrences of Fe-Ti-P-REE-rich rocks (examples
in Figure 2) have been described to be associated with the intermediate to felsic magma-
tism [5,27], including the Kodal Fe-Ti-P-REE ore deposit (Figure 1c).
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based on the 1:250,000 harmonized bedrock map of Norway which is published and maintained by 
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Figure 1. (a) The location of the study area in Norway; (b) simplified geologic map of the study area
based on the 1:250,000 harmonized bedrock map of Norway which is published and maintained by
Geological Survey of Norway; (c) the Kodal deposit.

The Kodal deposit represents the largest known occurrence of Fe-Ti-P-REE mineral-
ization in the LPC, with total indicated resources of 14.6 Mt at 5.18% P2O5 and 24.12%
Fe [7]. Moreover, apatite from the deposit hosts between 0.92 to 1.29 wt.% total rare earth
oxide potential by-products [4]. The western part of the deposit is exposed, where massive
titanomagnetite–apatite–ilmenite-rich rocks (main mineralization) can be observed. The
ore varies from a few centimeter intervals that occur as pockets within the monzonite, dis-
playing sharp contacts, to zones with approximately 2 m of thickness, normally surrounded
by disseminated intervals (Figure 2a,b). Around 40 cores were drilled in the Kodal deposit
in the early 1980s, providing valuable insights into the geometry of the mineralization.
Whole-rock geochemical analyses for the cores yield on average 1.33 wt.% P2O5, 12.3 wt.%
Fe2O3, and 2.4 wt.% TiO2 for the host monzonite, 2.7 wt.% P2O5, 19.1 wt.% Fe2O3, and 4.18
wt.% TiO2 for the disseminated ore, and 7.3 wt.% P2O5, 44.7 wt.% Fe2O3, and 8.63 wt.%
TiO2 for the massive ore. Thus, the limit between the host rock and the ore is mostly based
on Fe2O3, TiO2, and P2O5 concentrations.
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Figure 2. Examples of mineralization in rocks where the training samples were collected and ana-
lyzed. (a,b) Fe-Ti-P-REE mineralization from the Kodal ore deposit; (c,d) Fe-Ti-P-REE mineralization
associated with the Siljan-Hværnes intrusions (SHI); (e) Fe-Ti-P-REE mineralization in Kjose (LPC).

Other Fe-Ti-P-REE mineralization with similar characteristics to the Kodal deposit
have been described in the Oslo Rift region. These include in the Siljan intrusion [28]
(Figures 1 and 2c,d), where the P content reaches up to 5 wt.%, and a locality along
the shore of Lake Farris in Kjose (Figure 2e). The extent of the mineralization in these
occurrences, however, is poorly constrained. Nonetheless, their presence underscores the
possibility of mineralization in intrusions beyond the LPC.

Based on the results from previous regional studies [5,27] and especially known min-
eralization sites such as Kodal [29,30], it is possible to identify the critical parameters that
characterize the Fe-Ti-P-REE mineralization in the area. For instance, due to abundant mag-
netite, the mineralization is characterized by positive magnetic anomalies (1000–3000 nT),
whereas a low content of potassium (K)-rich minerals yields lower K concentrations (gener-
ally below 2%) relative to the host rocks. Moreover, the mineralization seems to be more
promptly eroded relative to the host rocks, thus being present in topographic depressions of
secondary importance. These contrasting petrophysical properties of the ore compared to
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the host rock make this type of mineralization prone to be detected using various classical
geophysical exploration tools such as radiometric and magnetic surveys.

3. Data

This study utilizes high-resolution geospatial datasets, including airborne geophysics
and the digital elevation model (DEM), to create a set of features as the input to our
machine learning model. Based on the domain knowledge described in Section 2, these
features are likely indicative of the target mineralization, enabling us to build a robust
predictive framework for a mineralization prospectivity assessment. To prepare the
geospatial datasets and based on data availability, we extended the coverage beyond
the study area, as shown in Figure 3d. The magnetic and radiometric airborne geophys-
ical datasets are compiled and stitched from multiple surveys conducted at different
times [31]. The compilations are provided by the Geological Survey of Norway (NGU)
(https://geo.ngu.no/geoscienceportalopen/Search accessed on 28 January 2023), which
have a regular grid sampling resolution of 50 m. The magnetic data display the total magnetic
field anomaly (Figure 3a), while the radiometric data indicate the abundance of potassium
(K), thorium (Th), and uranium (U) in rocks and soils. An example of processed K data in
weight percentage is presented in Figure 3b. For the DEM data used in this study (Figure 3c),
we obtained them from the Norwegian Mapping Authority (Kartverket) at a spatial resolu-
tion of 50 m (https://hoydedata.no/LaserInnsyn2/ accessed on 25 January 2023). To ensure
spatial alignment of the features used in developing the predictive model, all datasets were
projected onto a uniform grid with a cell size of 50 m.

Minerals 2024, 14, x FOR PEER REVIEW 6 of 20 
 

 

 
Figure 3. The high-resolution geospatial datasets projected onto a uniform grid with a 50 m cell size: 
(a) the total magnetic field anomaly (nT); (b) potassium (K) concentration (%); (c) topography (DEM) 
(m); (d) geography map to indicate the data coverage which is beyond the study region shown in 
Figure 1. Field sample locations are marked in (a–c) and differentiated using red dots to indicate 
mineralized samples and black dots to indicate non-mineralized samples. 

To ensure a comprehensive training dataset, geologists were advised to collect and 
identify both positive and negative samples across different geological units for good spa-
tial coverage. To be more specific, the rock samples used in this study were collected as 
part of a mineral resource project aimed at understanding the formation and characteriz-
ing the Fe-Ti-P-(REE) occurrences within the region. The geologists sampled various lith-
ological units present in the area, including areas of mineralization, with samples pre-
dominantly sourced from locations along accessible roadsides. In addition, the samples 
are denser close to mineralized areas for petrogenetic purposes. Such datasets are typical 
in geological surveys conducted for regional-scale studies. Geochemical data consisting 
of ICP-MS (inductively coupled plasma mass spectrometry) analyses from these field sam-
ples were used to measure the concentration of elements of interest in the rocks. The meth-
odology for the analyses followed that reported in reference [32]. During the data prepa-
ration stage, mineralogists were consulted to separate the samples into positive and neg-
ative training datasets using geochemical and mineralogical indicators. Specifically, build-
ing upon the analyses of rock compositions in previously examined drilled cores, as dis-
cussed in Section 2, and taking into account the significant abundance of apatite in the 
mineralized samples, we categorized our field samples based on their P2O5 concentrations. 
Samples with P2O5 contents exceeding 4 wt.% were classified as mineralized, whereas 
those with P2O5 contents below 4 wt.% were categorized as non-mineralized. These clas-
sified samples were used as the ground truth to develop a training dataset for our predic-
tive model. Of the collected samples, 23 were classified as mineralized, whereas 406 were 
classified as non-mineralized. The distribution of the classified samples is marked in Fig-
ure 3a–c on top of the geospatial maps. 

4. Methodology and Workflow 
4.1. Training Data Sampling Strategy 

Figure 3a–c illustrate a noteworthy advantage of our collected samples: their spatial 
distribution provides extensive coverage and a substantial proportion of confirmed 

Figure 3. The high-resolution geospatial datasets projected onto a uniform grid with a 50 m cell size:
(a) the total magnetic field anomaly (nT); (b) potassium (K) concentration (%); (c) topography (DEM)
(m); (d) geography map to indicate the data coverage which is beyond the study region shown in
Figure 1. Field sample locations are marked in (a–c) and differentiated using red dots to indicate
mineralized samples and black dots to indicate non-mineralized samples.

To ensure a comprehensive training dataset, geologists were advised to collect and
identify both positive and negative samples across different geological units for good spatial
coverage. To be more specific, the rock samples used in this study were collected as part of
a mineral resource project aimed at understanding the formation and characterizing the
Fe-Ti-P-(REE) occurrences within the region. The geologists sampled various lithological
units present in the area, including areas of mineralization, with samples predominantly

https://geo.ngu.no/geoscienceportalopen/Search
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sourced from locations along accessible roadsides. In addition, the samples are denser
close to mineralized areas for petrogenetic purposes. Such datasets are typical in geological
surveys conducted for regional-scale studies. Geochemical data consisting of ICP-MS
(inductively coupled plasma mass spectrometry) analyses from these field samples were
used to measure the concentration of elements of interest in the rocks. The methodology
for the analyses followed that reported in reference [32]. During the data preparation
stage, mineralogists were consulted to separate the samples into positive and negative
training datasets using geochemical and mineralogical indicators. Specifically, building
upon the analyses of rock compositions in previously examined drilled cores, as discussed
in Section 2, and taking into account the significant abundance of apatite in the mineralized
samples, we categorized our field samples based on their P2O5 concentrations. Samples
with P2O5 contents exceeding 4 wt.% were classified as mineralized, whereas those with
P2O5 contents below 4 wt.% were categorized as non-mineralized. These classified samples
were used as the ground truth to develop a training dataset for our predictive model. Of
the collected samples, 23 were classified as mineralized, whereas 406 were classified as
non-mineralized. The distribution of the classified samples is marked in Figure 3a–c on top
of the geospatial maps.

4. Methodology and Workflow
4.1. Training Data Sampling Strategy

Figure 3a–c illustrate a noteworthy advantage of our collected samples: their spa-
tial distribution provides extensive coverage and a substantial proportion of confirmed
negative samples. This eliminates the need for generating synthetic negative samples
using techniques like SMOTE [18] or blind sampling. However, the field samples present
a notable imbalance, with a ratio of 23:406 (≈1:18) between the mineralized samples
(i.e., positive) and non-mineralized samples (i.e., negative). This imbalance presents a chal-
lenge when training a classification model, as the model tends to learn better at predicting
the majority class [33,34]. However, for mineral prospectivity mapping, correctly identi-
fying the minority class (i.e., mineralized samples) is of greater importance. To address
this issue, we designed a sampling strategy to generate a training dataset that takes into
account the imbalanced data.

We started by assigning class labels (mineralized or non-mineralized) to the surround-
ing grid cells of the field samples from the uniform grid of 50 m resolution mentioned in
Section 3. We chose a 50 m spatial range around the non-mineralized field samples to be
assigned as the negative training data, whereas we chose a larger spatial range of 100 m for
the mineralized field samples to be assigned as the positive samples. An example of this is
illustrated in Figure 4, where Figure 4a shows the grid cells within a 50 m distance from
the non-mineralized samples in green, and Figure 4b shows the grid cells within a 100 m
distance from the mineralized samples in magenta. In cases of overlapping grid cells, the
positive samples overrule the negative samples, as shown in Figure 4c.

Our choice of spatial range sizes is rather conservative because it assigns relatively
small spatial extents to the samples. This approach aims to exploit the full potential of
the high-resolution features to enable a more subtle spatial differentiation between the
mineralized and non-mineralized samples. This sampling scheme is also reasonable in the
context of mineral exploration because if both mineralized and non-mineralized samples
are found close to each other at a given location, the location would still be considered
as having the potential of hosting a larger volume of mineralized rocks (i.e., positive
prospectivity indication).

The final training dataset has a ratio of 174:997 (≈1:5.7) between the positive (min-
eralized) and negative (non-mineralized) samples, which is still imbalanced but much
improved from the initial ratio.
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(i.e., negative) and mineralized (i.e., positive) field samples are indicated by black dots and red circles,
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located within a 50 m distance from at least one non-mineralized field sample (a); whereas all the
magenta pointers are located within a 100 m from at least one mineralized sample (b); in cases of
overlapping grid cells, the positive samples overrule the negative samples, as shown in (c).

4.2. Feature Engineering

Feature engineering is a crucial process in machine learning, involving the extrac-
tion of relevant features from raw data to improve model performance. In this study, a
collaborative effort among geoscientists with expertise in geophysics, geology, and min-
eralogy was undertaken to identify significant features from the three high-resolution
gridded geospatial datasets (shown in Figure 3) that are likely associated with the target
mineralization.

For the magnetic data, we applied several filtering techniques to create features that
are routinely used by human experts to help facilitate map interpretation [35]. For example,
the upward continuation preserves the low-frequency component of the magnetic data and
accentuates deeper sources of magnetism; the analytical signal highlights high-frequency
signals coming from shallow sources; and various derivative-based filters, such as verti-
cal and tilt derivatives, enhance the edges of the magnetic anomalies. When necessary,
histogram equalization or logarithmic transformation was used to adjust the data dis-
tribution with the purpose of improving the features’ discriminatory power. The visual
effect of this is the enhanced global contrast in an image view. For instance, Figure 3a
presents the original magnetic data in a linear color scale, whereas Figure 5a shows the
histogram-equalized version, revealing many more details of the original image. In to-
tal, we generated five features from the original magnetic map as candidate features to
be input into our machine learning models. These features, shown in Figure 5, include:
(a) the histogram-equalized magnetic data (mag_ft), (b) the analytical signal with loga-
rithmic transformation (mag_as_ft), (c) the upward continuation at 500 m (mag_uc500),
(d) the vertical derivative with histogram equalization (mag_vd_ft), and (e) the tilt deriva-
tive (mag_tdr) of the magnetic data.
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the relative data range and strength, but no physical units are provided. This is because the feature
engineering process may have changed the scale or range of the original data, rendering the physical
units no longer meaningful.

For the radiometric data, the downloaded products represent potassium (K) in weight
percentage (%), and uranium (U) and thorium (Th) in their equivalent concentrations of
the parent nuclides, referred to as equivalent U (eU in ppm) and equivalent Th (eTh in
ppm), respectively, as commonly discussed in the literature [36]. We have assessed the
individual radioactive element channels, namely K, eTh, and eU, for their absolute surface
concentrations and ratios, i.e., eTh/K, eU/K, and eU/eTh, which indicate their relative
concentrations. The ratio operation often amplifies channels with low count rates compared
to other channels. As a result, anomalous areas can be highlighted, in contrast to the cases
where individual channels are typically correlated in most rock types [37]. Six features were
generated from the original radiometric data. The three histogram-equalized individual
element channels were K_ft, Th_ft, and U_ft, shown in Figure 6a–c, respectively. The
remaining three features were ratios, labelled Th_K_as_ft, U_K_ft, and U_Th_ft, shown
in Figure 6d–f, respectively. To generate the Th_K_as_ft feature, we applied a logarithmic
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transformation to the analytical signal of the ratio eTh/K. The U_K_ft and U_Th_ft features
were generated by adding a small constant to the denominator to avoid division by zero
and then performing histogram equalization. The decision to use the analytical signal of
the ratio of Th/K was influenced by domain experts who found that it better explained the
spotted mineralization occurrences than the ratio itself.
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feature engineering process may have changed the scale or range of the original data, rendering the
physical units no longer meaningful.

We generated five predictive features from the topographic data. Figure 7a shows the
histogram-equalized DEM (Topo_ft), whereas Figure 7b,c display the histogram-equalized
vertical derivative (Topo_vd_ft) and slope (Topo_slope_ft) of the DEM data, respectively.
The topographic aspect that represents the direction facing the downhill slope was also
calculated. However, the aspect values range from 0◦ and 360◦ and are circular in nature,
meaning that the minimal and maximal aspects of 0◦ and 360◦ are essentially the same (due
north). To obtain a more interpretable representation of the slope direction in the linear axes,
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we split the aspect into two features: the sine and cosine components, shown in Figure 7d,e,
respectively. The sine component ranges from 1 to −1, representing north-south facing
slopes, with 1 indicating due north-facing slopes and −1 indicating due south-facing slopes.
The cosine component represents east-west-facing slopes and has the same interpretation.
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4.3. Feature Selection

We generated a 2D correlation matrix of all the candidate features (16 in total, de-
scribed in Section 4.2) using the Pearson’s correlation coefficient, shown in Figure 8. The
matrix contains values ranging from −1 (perfect negative correlation) to +1 (perfect positive
correlation), with 0 indicating no correlation. To avoid overrepresentation and redundant
predictors, we only selected independent and uncorrelated features for building the classi-
fication models, with the goal of improving model performance [38]. We set a threshold of
0.7 for the correlation coefficient and discarded four features (mag_ft, mag_tdr, Th_ft, and
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U_ft) that showed strong correlations with other features, which could be easily identified
from the matrix in regions with darker red colors. In summary, the 12 chosen features
include 3 magnetic features (mag_as_ft, mag_uc500, and mag_vd_ft), 4 radiometric features
(K_ft, Th_K_as_ft, U_K_ft, and U_Th_ft) and 5 topographic features (Topo_ft, Topo_vd_ft,
Topo_slope_ft, Topo_aspect_sine_ft, and Topo_aspect_cosine_ft).
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4.4. Classification Model

Following the creation of a training dataset consisting of 174 samples labelled as min-
eralized and 997 samples labelled as non-mineralized, each supported by a 12-dimensional
feature vector, a classification model was trained. Twenty percent of the samples (235)
were set aside for testing, and the remaining 80% (936) were used for training and valida-
tion. Spatial stratified sampling was used to ensure that the samples in close proximity
were not split between the training and testing sets. The proportion of mineralized and
non-mineralized samples was preserved in both sets using stratified random sampling.

In principle, all well-established classification methods have the potential to accurately
solve classification problems, but they differ in their assumptions about the data and
modelling hypothesis. For example, decision trees employed in a random forest (RF)
split predictive features into discrete, non-overlapping groups, represented by the tree’s
leaf nodes, while support vector machine (SVM) uses a hyperplane to separate data into
different classes, allowing for flexible modelling of non-linear relationships. Both methods
are powerful for modelling complex data, and their respective approaches are equally
acceptable for our study. Therefore, we tested both RF and SVM on our classification
problem. In practice, we utilized the widely used scikit-learn Python package (version 1.2.2)
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for the implementation of the RF and SVM algorithms. Both classifiers were implemented
with modifications to handle imbalanced datasets by adjusting class weights as inversely
proportional to class frequencies and adjusting the cost matrix to penalize assigning samples
to the overrepresented class (non-mineralization samples) more heavily.

For both models, we conducted successive training tests by tuning the parameter space
over a range of values. For RF, we varied the number of trees and minimum leaf node size,
while for SVM, we tested different kernel functions and tuned the regularization parameter.
The average accuracy and F1 score were used to evaluate the models under a 5-fold cross-
validation scheme. With the optimal model parameter settings, the RF model achieved an
average accuracy of 0.949 and an F1 score of 0.815, while the SVM model gave an average
accuracy of 0.775 and an F1 score of 0.538. Furthermore, we evaluated the performance
of the winning model, the RF model, on unseen data, i.e., the testing set that we set aside,
and it achieved an overall accuracy of 0.962. Specifically, we checked the confusion matrix,
which gave us a classification accuracy of 0.900 for the positive (mineralized) samples and
0.971 for the negative (non-mineralized) samples. In the Supplementary Material, Figure
S1, we also included the receiver operating characteristic (ROC) curve of the RF model to
demonstrate its discriminative performance and highlight its ability to distinguish between
positive and negative instances in our analysis. This graphical representation serves as
an additional visual aid to underscore the effectiveness of the RF model in the context of
this study. This result gave us assurance about the RF model’s performance regarding
over-fitting and handling of the imbalanced dataset. Therefore, we chose the trained RF
model to predict the mineral potential of the entire study region.

5. Results and Discussion

A prospectivity map for the target mineralization (indicated by elevated P2O5 con-
centrations) was generated for the study region using the trained RF model (Section 4.4)
on the 12 feature maps (Sections 4.2 and 4.3) and is shown in Figure 9. The map region
contains 2,668,931 grid cells of size 50 m × 50 m. Each grid cell, referred to as a sample, is
associated with a 12-dimentional feature vector and was classified by the trained RF model.
Instead of using the predicted binary classes (mineralized or non-mineralized) directly for
each sample, we opted to output the predicted probabilities of the sample belonging to
the mineralized class. This probability measures the model’s confidence in its predictions
regarding whether a sample belongs to the mineralized class and therefore reflects the
prospectivity of hosting the target mineralization.

Permutation feature importances [19] are computed to assess the importance of fea-
tures in the trained RF model. These importances are quantified by assessing how much the
model’s prediction error increases when the values of a particular predictor are randomly
shuffled or permuted. In Figure 10, we show the feature importances in descending order,
highlighting the most influential predictors. In general, the magnetic features and potas-
sium (K) are the most important predictors for our model, while the topographic features
are less influential. This is consistent with the domain knowledge described in Section 2.

Several areas are highlighted as highly prospective (yellow to red) for Fe-Ti-P-REE
mineralization in Figure 9, and they make up about 0.3% of the entire region. In the
following sections, we assess the validity of the prediction at three selected areas based on
local geological knowledge and observations in the field.
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5.1. Area 1 of 3: Kodal

As mentioned in Section 2, Kodal constitutes the largest known Fe-Ti-P-REE deposit in
the study region. Our prospectivity map shows a continuation of the deposit between the
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two sampled areas where mineralization has been observed on the ground surface. This
finding is supported by previous work [5,30].

In addition to the main anomaly associated with the Kodal ore deposit, we have
identified a second promising area directly south and roughly parallel to the known deposit,
marked by white dotted enclosures in Figure 11a. Geological mapping conducted by Kodal
Minerals [39] led to the discovery of a showing in this area, as indicated by a black arrow
in Figure 11a. As part of this study, we conducted field validation in the high-prospective
area and found some mineralizations showing at the surface. This alignment between our
high-prospectivity prediction and the geological observation reinforces the value of the
prospectivity map as a reliable tool for narrowing the target areas. This strengthens the
case for conducting more detailed prospection in this area, as it holds the potential for
substantial findings during a thorough exploration.
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Figure 11. Comparison between the prospectivity map (on the left) and the geology map (on the
right) at (a) Kodal and (b) Siljan. The yellow stars mark the locations of the samples considered to be
mineralized, which were used as positive training samples in this study. The green stars mark the
locations where Fe-Ti-P-rich rocks were observed during field validation.

5.2. Area 2 of 3: Siljan

The prospectivity map over the Siljan area shows the identity of three primary regions
of interest, outlined by the white dotted enclosures in Figure 11b. Although there is no
large known mineralization directly associated with the Siljan intrusion, the presence of
several meter-scale excavation sites where massive Fe-Ti-P-REE-rich rocks are outcropping
indicates that the conditions for forming mineralization were once attained in this region.

In the Kåsemyrene area (central circled area in Figure 11b), samples can only be
retrieved from one location due to the outcrop situation. However, the prospectivity map
suggests that the mineralization might extend beyond its currently known extent. This
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finding is significant, as it could potentially lead to the discovery of a larger ore body in
the vicinity.

Regarding Teigen, the high prospectivity is related to the presence of two mineralized
samples in the training dataset. However, the map does not predict the existence of
larger mineralization in the nearby area. This information is crucial for planning future
prospecting campaigns, as it helps us to focus efforts on areas with a higher likelihood of
significant findings.

In the Meisholt area (southwest on the map in Figure 11b), a larger region is classified
as highly prospective. According to the geological map, part of this area lies within basalts.
Previous excavation at the contact between the basalt and syenite confirmed the presence
of mineralized rocks, although they exhibit a low content of P, resulting in their exclusion
from the classification of mineralized samples. Additional mapping is necessary in this
region to accurately assess the location of geological units and determine the nature of
the mineralization.

5.3. Area 3 of 3: Contact between B1-Basalt and Monzonite/Syenites

The areas being predicted with a high prospectivity are, however, not all as promising
as those in Kodal and Siljan. Figure 12 shows the largest predicted prospective area for
Fe-Ti-P-REE mineralization in our prospectivity map, outlined by a black dotted enclosure.
The area is dominated by basalt and not monzonite or syenite. Although basalt was
emplaced during Permian rifting in the region, Fe-Ti-P-REE mineralization is not associated
with this lithology. There are two possible explanations for this area being labelled as
prospective. The first one is that the location of the boundary between the basalt and
monzonite/syenite on the geological map is not accurate. Although geological boundaries
can sometimes be imprecise due to varying mapping quality, it is improbable that the issue
lies solely in the mapping quality in this case. Basalt is a rock type that is depleted in
potassium (K) compared to the surrounding rock types and especially the monzonite and
syenites hosting the targeted mineralization. A regional radiometric survey for potassium
shows that the basalt polygon on the geologic map fits well with the radiometric data, with
the exception of a small area where low K values appear to be located in the syenite. The
second possibility is that basalt is mistaken for the Fe-Ti-P-REE mineralization by the model.
Because basalt has some similar petrophysical (highly magnetic) and geochemical (low K)
properties as the mineralization we are targeting in our study and these parameters play an
important role in the construction of the prospectivity map (the feature importance analysis
in Figure 10), part of the basalt areas were classified as having potential mineralization.
This highlights the importance of using the available geological information to support the
interpretation of predictive maps.

The area with a lower prospectivity, indicated by the white dotted enclosure, is
nonetheless interesting. It is located in the syenite and monzonite rock types. The radiome-
try results show that while potassium does not have a clear signature of the basalt, the area
does not contain as much potassium as the surrounding monzonite and syenite. The strong
magnetic anomaly is related to pegmatitic syenites containing large crystals of magnetite.
These pegmatitic rocks contain little phosphorous but have a relatively high concentration
of REEs, indicating that the prospectivity map also contains information that could high-
light mineralizations that are not exactly the targeted ones but have similar properties. This
is comparable to the case of Meisholt in Siljan, where the P2O5 concentration does not reach
4 wt.% (Section 5.2).

To summarize, a broad evaluation of our resulting prospectivity map and a detailed
investigation of a few selected areas (examples described in Sections 5.1–5.3) support its
merit, despite some acknowledged limitations. The machine learning methods used in
this context heavily rely on measured data, particularly surficial signatures, and their
association with observed mineralization. However, mineralization results from complex
processes, requiring in-depth investigation to gain a detailed understanding. Nevertheless,
applying machine learning methods to the available high-spatial-resolution maps efficiently
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provides valuable insights to guide further investigation. Specifically, mineral exploration
in the study area is challenging due to the extensive vegetation cover, making field visits
difficult. Geophysical data are cost-effective in terms of capturing large-scale spatial
variations in a short time. For this project, we benefited from these already available data
to offer a first-order prediction of the study region’s mineral potential for an effective
initial exploration.
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potassium (K) map, and total magnetic anomaly map.

Looking ahead, we aim to enhance our mineral potential mapping efforts by incorpo-
rating other data types such as soil geochemistry, which are to be acquired as the project
progresses. It is also possible to refine the sampling strategy for field data collection, taking
into account the imbalanced dataset issue highlighted in the study. It is worth noting that the
currently available samples are superior to many other data-driven mineral potential mapping
cases, as they include confirmed negative samples and exhibit a broad spatial distribution
across various geological units rather than being limited to only ‘interesting’ locations.

Additionally, we may consider relaxing the constraints on the training dataset prepa-
ration to allow for more optimistic predictions. Although the 50 m resolution in our spatial
data is relatively high compared to the field sampling resolution typically collected by
geologists, the target size of the mineralization varies significantly, ranging from less than a
meter to a few hundred meters. As part of our future work, we will investigate how these
differences in data resolution and target scale might impact the detectability of the machine
learning models.

Therefore, for successful mineral prospectivity mapping using machine learning, one
must be aware of the data-driven nature of the methods and emphasize a solid geological
understanding. Thoroughly evaluating relevant properties in the available datasets and
expertly interpreting predictive maps are vital. Equally critical is the skillful handling of
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data to create informative features that significantly impact the accuracy of predictions. By
combining these factors, it is possible to make more informed decisions and gain valuable
insights to effectively guide mineral exploration efforts.

6. Conclusions

Our study addresses the rising global demand for critical raw materials, focusing on
the Southern Oslo Rift region in Norway. We successfully generated a prospectivity map
for Fe-Ti-P-REE mineralization by training a machine learning model on high-resolution
geophysical and topographical data. Whole-rock geochemical analyses of field samples
were integrated to construct our training dataset, and our workflow was conducted with
rigor, incorporating domain expertise whenever possible. Our approach contributes to
advancing the field of mineral prospecting, presenting a practical framework for early-stage
exploration efforts. The predictive model effectively narrows down regions for further
investigation, offering valuable guidance for mineral exploration in the Oslo Rift region.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/min14040377/s1, Figure S1: the receiver operating char-
acteristic (ROC) curve of the random forest classification model. The ROC curve illustrates the
performance of the model by presenting the trade-off between its true-positive rate and false-positive
rate across various classification thresholds. It provides valuable insights into the model’s ability to
discriminate between different classes, with a higher area under the curve (AUC) generally indicating
a superior discriminatory performance.
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