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Abstract: The kinetics of the dissolution of Estonian phosphate rock and the governing reaction
mechanisms in hydrochloric acid in technological processes were investigated. The influences of
particle size and acid concentrations of 0.5–1.5 M on the reaction rate and the pH variation during
the process were studied at a dosage of 2.1 moles of HCl per mole of calcium for 60 min. The results
indicated that the solubility of phosphorus reached 94%–100% for the fine samples and 82%–99%
for the coarse samples. The time required to achieve an apparent steady-state pH reduced with
the increasing acid concentrations and decreasing particle sizes. It was determined that the CaF2

precipitation in solutions starting at 1 M was faster at higher concentrations. The SEM surface analysis
of the insoluble particles proved the existence of etch pit formation. The XPS and EDX analyses
affirmed that the dissolution was incongruent. The surface composition of the unreacted particles
gave a stoichiometry of CaF1.8, showing the formation of CaF2 on the surface. The dissolution kinetics
were analyzed using the shrinking core model and showed a combination of chemical reaction,
diffusion or interfacial transfer, and diffusion, sequentially for coarse particles or simultaneously for
fine fractions.

Keywords: dissolution kinetics; phosphate rock; HCl; phosphorites

1. Introduction

Phosphate minerals are the main constituents of phosphate rock (PR) and the main
source of phosphorus in fertilizer production; they are also considered to be a source of rare
earth elements (REEs). Globally, the quantity of available phosphorus is limited, and 90%
of mined phosphorus is used for fertilizer production. In 2020, the European Commission
recognized both phosphorus and REEs as critical raw materials (CRMs) that are essential
to the European economy [1].

Estonian phosphorites are among the largest unmined phosphorite deposits in the
European Union (EU) [2]. Estonian phosphate rock (EPR) resources are estimated to have
more than 800 million tons of P2O5. The content of P2O5 in the Estonian phosphate ore
varies between 6% and 20% [3]. The composition and quantity of rock impurity minerals
(quartz, dolomite, pyrite, alumosilicates, etc.) varies from deposit to deposit.

The oldest industrial process of phosphoric acid production is based on phosphate
concentrate dissolution in sulfuric acid (H2SO4) and is still widely used; this process has
serious economic and environmental drawbacks, such as the formation of large amounts of
phosphogypsum waste (5 tons per ton of P2O5) and the loss of REEs (up to 50% with phos-
phogypsum) [4–6]. In order to fulfill critical environmental requirements, it is necessary
to establish new sustainable and waste-free processing methods for valorizing phosphate
ores [7].

The dissolution of PR or concentrates in acids other than H2SO4 has also been studied,
with different aims. For instance, recent studies have focused on the leaching of REEs from
fluorapatite concentrate using nitric acid [8]. Bandara’s most recent studies of PR treatment
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with mineral acids showed that the PR leaching efficiency decreases in the following order:
HCl > perchloric > nitric > sulfuric > phosphoric [9–11].

PR treatment with hydrochloric acid (HCl) has gained more attention as an envi-
ronmentally friendly process, making this a potential method for industrial setups. This
became a prominent topic under the concept of ‘Moving to Green Economy’ [12], which
urged researchers to find sustainable processing methods.

A process for the preparation of phosphoric acid from phosphate rock using HCl was
first patented in 1959 [13]. Then, the HCl method was further developed by an Israeli
mining engineering company in the 1960s [14] and was patented in 1967 [15]. Due to the
complexity of the process and equipment corrosion, the method received less attention
from the industry [16]. However, research on the use of HCl to recover both phosphorus
and REEs has been continued by different research groups [11,17,18].

According to the literature, the dissolution reaction rate depends on several parame-
ters, such as the particle size, acid dosage, solid-to-liquid ratio, agitation speed, chemical
and mineralogical composition of the PR, and temperature [5,10,11,19–21]. Particle size and
acid dosage have the greatest impacts on the dissolution rate. Additionally, the complex
mineralogical composition affects the reactivity and dissolution behavior of PR in acid
solutions [22].

In the most recent studies on thermodynamic calculations and the experimental study
of fluorapatite (FAp) dissolution in HCl by Tõnsuaadu. K. et al. [23], it was found that the
amount/dosage of HCl needed for FAp dissolution depends on the acid concentration.

There are several possible reactions that take place during the PR dissolution process,
depending on the acid concentration, dosages, temperature, and impurity minerals present.
The overall reaction of calcium fluorapatite (FAp) with HCl leads to phosphoric acid
and water-soluble calcium chloride formation (reaction 1). According to [24], calcium
dihydrogen phosphate will form at low acid concentrations according to reaction 2, and
high acid concentrations will form phosphoric acid (reaction 3). This can react further with
residual PR to form calcium hydrogen phosphate (reaction 4).

Ca5(PO4)3F + 10HCl → 5CaCl2 + 3H3PO4 + HF (1)

Ca5(PO4)3F + 7H+ → 5Ca2+ + 3H2PO4
− + HF (2)

Ca5(PO4)3F + 10H+ → 5Ca2+ + 3H3PO4 + HF (3)

Ca5(PO4)3F + 2 H3PO4 → 5CaHPO4 + HF (4)

Several side reactions can take place, depending on the impurity content and com-
position. The resulting diluted HF may react with silicates when diluted HCl is used,
initially forming silicon tetrafluoride, which is then converted to hexafluorosilicic acid
(reaction 5) [25]. The fluoride ion is involved in reactions 6 and 7, and at higher acid con-
centrations, CaF2 can be formed (reaction 8) [23,26–29]. The effects of these side reactions
in technological processes also depend on their kinetics.

6HF + SiO2 ↔ 2H+ + SiF6
2− + 2H2O (5)

(PO4)3F + 6H+ ↔ CaF+ + 4Ca2+ + 3H2PO4
− (6)

nF− + H+ ↔ HFn
(2n−1)+ (n = 1, 2) (7)

Ca2+ + 2F− ↔ CaF2 (8)

According to the review by Dorozhkin [30], there are eight dissolution models that
involve in the apatite dissolution process under different conditions. Each of the studied
models was found to have limitations and drawbacks. No study has been able to definitively
explain the general dissolution mechanism of apatite, as the obtained results are only valid
within the experimental conditions. Moreover, most of the models explained apatite
dissolution in slightly acidic or nearly neutral (4 < pH < 8) solutions. Therefore, the validity
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of these models for apatite dissolution in strong inorganic acids with a solution pH < 2
has not been entirely revealed. The reason is that in strongly acidic conditions, solution
undersaturation becomes uncertain due to the complexity of solubility determination [31].
However, these apatite dissolution conditions are common in the fertilizer industry [32,33].
Despite the explanation of eight dissolution mechanisms in [30], six unaddressed facts that
may impact the dissolution of apatite were pointed out; it is necessary to consider these
facts when attempting to describe the entire dissolution phenomenon.

When a solid contacts a liquid, the following reactions can occur:
A(fluid) + B(solid) → fluid products(C)

→ solid products (D)
→ fluid and solid products(E)

The kinetics of apatite dissolution in strong acids have been studied/examined using
mathematical models such as pseudo-homogeneous models [34], the shrinking core model
(SCM) [35,36], and the Avrami–Erofeev equation [37,38].

The shrinking core model (SCM) is referred to as an approximation of real-world
scenarios of gas or liquid contacting with a solid [39]. The dissolution of natural and
synthetic apatites in mineral acids has been studied [9,40–46]; for the identification of the
rate-controlling factor(s) in the PR dissolution process, the SCM model is most frequently
used [9,41,43–45].

Bandara et al. [9] studied the dissolution kinetics of the Australian FAp variety in
different acids, and it was concluded that the dissolution process of phosphorus and
calcium was mainly controlled by chemical reaction with HCl, while in H3PO4 (3.25 M),
calcium dissolution was controlled by diffusion [9]. The mathematical treatment of the data
of Zhijin Xinhua phosphorite dissolution [41] in 36 wt% HCl led to the conclusion that PR
dissolution is mainly controlled by a chemical reaction, as well as by diffusion. Similarly,
several other researchers have attempted to incorporate SCM to study the rate-controlling
steps of apatite dissolution in HCl [42–45].

Unfortunately, in most cases, large dosages and high concentrations of HCl were
used in the experiments; this also increases the dissolution of impurity minerals and is not
needed for the dissolution of phosphorites. The most recent study [47] showed that the
optimum HCl dosage depends on the apatite mineral content in the sample.

A fundamental understanding of the kinetics of the phosphate rock dissolution pro-
cess in strong acids and the determination of the reaction mechanisms is essential to
optimize process conditions when designing an industrial-scale reactor. However, the
complex dissolution mechanism of PR with a hydrochloric acid solution has not yet been
completely revealed.

The aim of this study was to investigate the impact of particle size and HCl concentra-
tion on Estonian phosphate rock (Ülgase deposit) dissolution kinetics using phosphorus
and fluorine solubility data and measuring the pH change during the dissolution process
at room temperature. Additional surface studies were performed for initial and insoluble
solid surfaces after the reaction with HCl using scanning electron microscopy (SEM), en-
ergy dispersive X-ray spectrometry (EDX), and X-ray photoelectron spectroscopy (XPS)
techniques. As a preliminary step prior to the identification of a generalized dissolution
model, these data were processed using the shrinking core model.

2. Materials and Methods
2.1. Materials

An Estonian PR sample from the Ülgase deposit with two different particle sizes
(coarse: mean = 1735 µm, median = 1698 µm and fine: mean = 226.6 µm, median = 118.4 µm)
was used in the experiments. The chemical and mineralogical composition of the sample is
given in Table 1.
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Table 1. Chemical and mineralogical composition of Estonian PR sample.

Minerals %

Apatite 67.0
Quartz 32.0
Pyrite 0.7

Orthoclase n.d
Gypsum n.d

Chemical composition %

P2O5 25.4
CaO 38.1

F 2.2
Fe2O3 1.8
MgO 0.3
CO2 1.7

The PR sample is characterized by a low content of acid-soluble impurities and mainly
consists of carbonate apatite and quartz.

Concentrated HCl (Sigma-Aldrich, ACS reagent, St. Louis, MO, USA) was used to
prepare a series of HCl solutions ranging from 0.5 M to 1.5 M. The concentration of the acid
solution was determined by potentiometric titration with a KOH solution.

2.2. Methods
2.2.1. Experiment Setup

The dissolution of PR was performed in a LARA CLR reactor (Radleys, Essex, UK)
with a volume of 1 L, using 500 mL of acid under the optimal conditions described in the
previous publication (47). The acid dose corresponded to the apatite dissolution (reaction 9)
+ 5% excess. The mole ratio of HCl/Ca was 2.1 in all the experiments.

Ca5(PO4)3−x(CO3)xFy + 10H+ + 10Cl− → 5Ca2+ + (3−x)H3PO4 + 10Cl− + yHF + xCO2 (9)

3(3−x) + y = 10

Simultaneously, the pH was measured throughout the reaction duration with a combi-
nation VP (virtual prototyping) pH probe electrode, calibrated with pH buffer solutions at
4.01, 7.00, and 9.00 (Hamilton Bonaduz AG, Bonaduz, Switzerland). All the experiments
were performed at room temperature, 25 ± 1 ◦C, at a mixing rate of 550 rpm. A known
amount of reaction mixture was collected at different time intervals (from 2 to 60 min of
experiment duration) and diluted (~30 times) with distilled water. The suspension obtained
was centrifuged, and the clear solutions were used for the determination of the dissolved
amounts of P and F.

2.2.2. Analysis and Characterization

The element content in each solution fraction was determined as follows: the con-
centration of phosphorus was determined spectrophotometrically (Biochrom Libra S70PC
Cambridge, UK) as a phosphomolybdate yellow complex (λ = 430 nm); Ca was determined
using atomic absorption spectrometry (Spectra AA 55B, Varian BV, Varian Australia Pty
Ltd., Belrose, NSW, Australia); and fluorine was determined using an F-sensitive electrode
(Mettler Toledo GmbH, Schwerzenbach, Switzerland).

The phase composition and changes in the morphology of the PR particles before
and after reaction with HCl were further investigated using XPS and SEM-EDS analyses.
The elemental composition was determined using X-ray photoelectron spectroscopy (XPS)
(Kratos Axis UltraDLD, Kratos Analytical Ltd, Manchester, UK). The O 1s and F peak
positions were used to calibrate the spectral energies of the selected samples. The changes
in the morphology of the PR particles before and after acid treatment were further inves-
tigated using a scanning electron microscope (HR-SEM Zeiss—ULTRA 55, Zeiss Group,
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Oberkochen, Germany). The particle size was determined using PSD analysis (Horiba Laser
Scattering instrument—LA-950V2, Horiba, Kyoto, Japan). For the evaluation of the dissolu-
tion rate-limiting stages, the shrinking core model equations proposed by Levenspiel [39]
were used.

The mineralogical composition of the PR was determined at the Institute of Geology,
TalTech using XRD analysis (X-ray diffractometer, model D8 Advance, Fe-filtered Co radia-
tion, Lynxeye detector, Bruker AXS GmbH, Karlsruhe, Germany). Quantitative analysis
was carried out with TOPAS software V6 (Rietveld refinement method).

3. Results and Discussion
3.1. The pH Changes during the Dissolution Process

For the first time, a thorough investigation of the PR dissolving process in a HCl
solution was conducted with continuous pH monitoring. During PR dissolution in HCl,
the pH of the suspension increases, and the shape of the curve depends on the acid
concentration (Figure 1). The pH increase is fast for the fine sample, especially during the
first minutes, and then slows down significantly. For both particle sizes, the time to reach a
stable pH value decreases with the increase in the acid concentration (Figure 2). The fine
sample tends to reach a stable pH earlier compared to the coarse sample under similar
conditions. After an apparent steady state is achieved, a decrease in pH is followed for acid
concentrations above 1 M in the case of the fine sample (Figure 1b) and 1.5 M for the coarse
sample (Figure 1a).
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Figure 1. The pH variation during the processing time of the reaction: (a) coarse sample; (b) fine
sample at different initial acid concentrations.

3.2. Effect of Particle Size and HCl Concentration on Solubility of P

The leaching efficiency of P from the two particle size fractions of PR as a function
of time was determined. The results are shown in Figure 3. The leaching efficiency of P
from both samples increased with the prolonging of the process time. As assumed, the P
solubility against time indicated that the coarse sample had a slow leaching rate from the
beginning, while the fine samples showed a rapid reaction. The fine particles reacted faster,
reaching slightly higher P recovery compared to the coarse sample under the same reaction
conditions. It is clear that the particle size directly affects the dissolution rate.
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Figure 3. Dissolution of P from fine and coarse samples as a function of time in 1.5 M HCl.

The P solubility in the HCl solution of the coarse sample depended on the acid
concentration (Figure 4). In 2 min, it increased from 0 to 12% (in 0.5 M HCl) and to 22% (in
1.5 M HCl). During the whole reaction duration, the difference in P dissolution between
0.5 M and 1.5 M acid was about 10%–12%, whereas the solubilities for the concentrations
above 0.5 M were remarkably close. The rate of dissolution decreased with time, and the
solubility of P reached 82% in 0.5 M acid and 92%–99% for the other acid concentrations at
60 min. A significant decrease in the reaction rate was observed from 16 to 20 min up to
60 min.

The dissolution of the fine sample was fast in the first 2 min, reaching up to 61%–71%
depending on the acid concentration (Figure 5). The final P solubility for the fine samples
was between 94 and 100% at 60 min. The logarithmic scale of the P solubility of the fine
fraction versus time (Figure 5) shows that the difference in P dissolution between 0.5 M
and 1 M acid was at the level of 3%–4% throughout most of the process. Comparing the
0.5 M and 1.5 M acid solutions, the level was about 7% until 15 min, increasing gradually
to about 8% for the rest of the reaction duration.
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The P solubility was the lowest in 0.5 M HCl. According to reaction 2, calcium
dihydrogen phosphate will be the main form of leached P in the solution. For both samples,
the dissolution rate was strongly reduced with the prolonging of the time. According to the
literature, this slowing down of the dissolution process can be attributed to the development
of a self-inhibiting Ca-rich layer on the apatite surface during the dissolution [34,48].
Further studies showed that the initial surface favored Ca release and that this was due to
the exchange process of the apatite-bound Ca for the hydrogen ion in solution during the
first stages of the dissolution reaction [35,49].

3.3. P Solubility and pH Variation

There are visible differences in the pH and P solubility profiles as time increases
(Figure 6). For the fine sample in 1.5 M HCl, the P solubility exceeded 80% when the pH
increased to 1.47 within 6 min. Thereafter, the P solubility continued to rise throughout the
remaining time of the process. However, the pH increased progressively to 1.58 at 20 min
and then decreased to 1.29 at the end of the process.
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Figure 6. The pH and P solubility profiles versus time of the fine sample in 1.5 M HCl.

Assuming that the H+ ions were mainly used in the apatite dissolution reaction,
the plot of the P solubility that depended on the changing pH value of the solution was
constructed (Figure 7).
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Figure 7. P solubility as a function of pH at different initial HCl concentrations: (a) coarse sample;
(b) fine sample.
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The plot of the P solubility of the coarse sample versus pH (Figure 7a) reveals that it
can be divided into three different stages of different linearity. The P solubility reached
almost 40% or above for all the coarse samples by a pH of 0.8. In the pH interval from 0.8
to 1.4, the solubility of P increased by only 10%–15%. At this point, all the samples reached
a P solubility of 60% or above. Moreover, in the pH interval from 0.8 to 1.4, the P solubility
was higher at a HCl concentration of less than 1 M and lower at a HCl concentration above
1 M. The next increase in P solubility by an additional ~30% raised the pH value up to 1.8.

For the fine sample (Figure 7b), the dependence of P solubility on the pH looks
different for the initial HCl concentrations of 0.5–1 M and 1.25–1.5 M. In the first case, two
reaction stages can be distinguished. The pH increases, respectively, from 0.4 to 0.7 up to
0.6 to 0.98, and the P solubility increases at that pH by up to 70%. A further increase in P
solubility by another 10% causes the pH to increase up to 1.61–1.76.

In the more concentrated 1.25 M and 1.5 M acid, three visible stages can be seen. The
dissolution of P up to 80% causes the pH to increase to 1.47. The additional dissolution
of 20% of P takes place at an almost constant pH value. When the maximum P solubility
is reached (97%–100%), the pH value starts to decrease, and if it falls back to ~1.4, the
solubility of P slightly decreases. All of this indicates that the dissolution processes taking
place have different mechanisms; it can also be related to shifts in the complex ionization
and solubility equilibrium.

At the initial step, the acid attacks the apatite particles, releasing F−, Ca²+, HPO4
2−,

and PO4³− ions into the solution, which can then develop a barrier liquid layer on the
unreacted core. As the reaction proceeds, the dissolution rate gradually reduces. A similar
behavior was also observed in previous studies [50–52].

The H+ ions then react with the PO4
3−, OH−, or F− ions that are already present in the

bulk solution, lowering their concentration. According to the solubility product principle,
during this process a change in the concentration of solution ions causes an unreacted
solid to dissolve more readily [53]. According to [49], the experiments suggested that the
FAp surface exchanges Ca2+ for two H+ ions and one F− ion for OH−. The overall low P
solubility rate observed from a pH of 0.64 to 1.76 may be attributable to the equilibration
between ions in the surface layer and bulk solution.

If the unreacted particle surface forms a Ca-rich layer due to re-adsorption, there will
be a gradient of ionic chemical potential between the surface and the bulk solution. The
remaining protons will rapidly attack the surface layer again to release P and Ca. The
consumption of solution protons will cause the next increase in the pH value. The results
show that the protonation of apatite surfaces is negligible at a pH ≥ 3 [49], which suggests
that pH values below 3 possibly provide a potential environment for the protonation of the
apatite surface. Therefore, this transition can cause higher P solubilities to be reached with
a narrower pH shift during the last stage of the process (Figure 7).

3.4. P Solubility versus F Solubility

Assuming that apatite dissolution was the only source of P and F in the solution, the
plot of P solubility versus F solubility for selected time intervals was constructed (Figure 8).
In the case of stoichiometric apatite dissolution, the P–F plot has to be linear.

As can be seen in Figure 8, the decrease in the fluorine content can be followed in
the solutions starting at 1 M and upward, and this decrease happens faster at higher
concentrations. This can be explained by the formation of solid CaF2 (reaction 10) in
HCl ≥ 1 M, and it also explains the solution’s simultaneous drop in pH.

2HF + Ca2+ → CaF2 + 2H+ (10)
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Figure 8. P solubility versus F solubility at different initial HCl concentrations: (a) fine sample;
(b) coarse sample.

3.5. PR Particle Surface Analysis—Before and after Dissolution
3.5.1. SEM Observations

The study of the particles before and after acid treatment using SEM revealed the
surface transformation that resulted from the dissolution process. In agreement with earlier
works [52], etch pit formation during dissolution was found (Figure 9).

The pits were detected on a smooth surface of the initial coarse sample (Figure 9a). Pit
size is a critical requirement for the initiation of dissolution, and the following dissolution
proceeds through the growth of these pits, resulting in the increase in surface area [54].
The SEM results demonstrate well that the acid-treated PR has small pits that lose their
orientation and become isotropic (Figure 9b).

According to Dorozhkin’s assumption [55], the detachment of phosphate anions
creates a hole on the surface with dimensions close to the lattice parameters (6–9 Å) of
apatite. As a result of this, he assumed that the development of such holes could form
an etch pit and that this hole could grow in width and spread over the surface with a
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finite lateral rate in the dissolution step. The SEM images of the reacted particles verified
this hypothesis.
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Figure 9. SEM image of PR surface of coarse sample: (a) before acid dissolution; (b) after dissolution
in 1.24 M HCl and washed with water.

According to the literature, dissolution often starts with the formation of etch pits [56].
Therefore, the pits observed in the initial particle can start the spreading of the etch pits
(i.e., the spreading of collections of vacant sites for Ca2+, PO4

3− and F−). The observed non-
etched areas can be associated with the variability of the PR surface and impurities. The
EDX analysis of different regions of the same particle (Figure 10) confirmed the diversity of
the surface.
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3.5.2. XPS Data

The XPS was utilized to determine the composition of the surface layers formed on
the particles that reacted at higher acid concentrations. The surface composition obtained
for the non-treated and HCl-treated PR was different from the bulk solution compositions.
For the acid-treated and water-washed sample surface, the Ca/P ratio decreased compared
to the unreacted particles (Table 2). Considerably lower Ca/F and P/F ratios were found in
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the final bulk solution. This may be attributable to the preferential accumulation of F and
some quantities of Ca at the surface of the treated particle.

Table 2. Ca/P ratio on the surface before and after acid treatment and in bulk solution.

Sample Ca/P

Surface of untreated particle 1.94
Bulk solution 1.69

Surface of acid-treated+ water-washed 1.56

The elements released into the solution at the different stages of the process were
not in the same proportions. The ratios of dissolved Ca: P, Ca: F, and P: F were slightly
higher at the beginning of the dissolution of PR. This is in accordance with the prediction
made by Dorozhkin [57], who stated that the chemistry of apatite dissolution appears to
be incongruent (non-stoichiometric) at the atomic (ionic) level or due to the preferential
dissolution of carbonate apatite. Fluorcarbonate apatite releases calcium more easily,
resulting in non-stoichiometric dissolution. The Ca/F and P/F ratios of the bulk solution
increased at the end of the process and rose with the concentration of the acid. This
indicated that a definite amount of F was re-adsorbed or precipitated on the insoluble part.

The scans of the P 2p, Ca 2p, and F 1s signals and of the respective binding energies
for the acid-treated samples were collected and are summarized in Table 3. All the curves
were fitted with the Gaussian distribution using a least-squares iteration.

Table 3. Binding energies (eV) of XPS peaks of PR treated in HCl and washed with water.

Sample Orbital

Ca 2p 3/2 P 2p3/2 O 1 s F 1 s C 1 s

PR −1.24 M HCl+
water-washed 346.988 132.835 530.755 684.090 284.621

The XPS spectra shown in Figure 11 confirm the presence of calcium fluoride. The
doublet at B.E. 346.9 and 350.5 eV in the Ca2p region is assigned to fluorine-bonded
calcium. As mentioned above, the F1s region is present only as one peak, which is assigned
to fluorine in calcium fluoride. The calculated composition from the XPS spectra gives a
stoichiometry of CaF1.8.
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3.6. Dissolution Kinetics—Models and Mechanism

The leaching of P from PR is a typical solid–liquid reaction. The rate of the solid–liquid
reaction can be controlled by several different mechanisms [39]. These models are not all
valid in every situation and for all stages of dissolution.

Three distinct stages were identified from the plots of P solubility versus time (Figure 4);
this may be attributable to the fact that there were different rate-controlling mechanisms. The
possibility of the existence of three stages was also noticed in the P solubility versus the pH
curves of the coarse sample (Figure 7a). The SCM model and three corresponding integral
equations [39] were used to clarify the rate-controlling mechanisms of the PR dissolution.

Based on the different descriptions in the literature, it can be assumed that the particle
is spherical and that the reaction causes etching. According to Levenspiel [39], the reaction
proceeds until the unreacted particle is semi- or fully consumed and reproduces a reaction
“product”. As mentioned earlier, some amount of desorbed F, Ca, and phosphate from
the solution can be adsorbed back onto the apatite surface and can lead to a resistance to
solubility. Then, the acid diffuses through this layer; it has been suggested that this is due
to the diffusion of H+ through this product layer (intra-particle diffusion).

In view of the possible dissolution steps, the rate-limiting processes were determined
by considering three phenomena: (1) the chemical reaction at the particle surface; (2) the
diffusion of the reactants or products into the particle through the possible solid product
layer on the particle; and (3) the interfacial transfer and diffusion through the product
layer [58]. Any of these could be rate-controlling mechanisms at some stage during the
overall dissolution process, and they can all vary depending on the extent of the reaction.

Model 1: Chemical reaction limitation

1 − (1 − x) (1/3) = k1 t

Model 2: Intra-particle diffusion through the residue or product layer

1 − 3(1 − x) (2/3) +2(1 − x) = k2 t

Model 3: Interfacial transfer and diffusion through the product layer

1/3 ln (1 − x) + ((1 − x) (−1/3) − 1) = k3 t

Here, x is the P leaching efficiency; k1 is the apparent rate constant for chemical
reaction; k2 is the apparent rate constant for diffusion; k3 is the apparent rate constant for
interfacial transfer and diffusion; and t is the time in minutes.

The data obtained within 2–60 min in the leaching experiments were analyzed utilizing
models 1–3. The appropriate mechanism validity intervals were identified by the best linear
fit or estimated by the highest value of the regression coefficient R2. The rate constants were
determined from the slope of the fitting line by plotting the left side of the equation vs. the
reaction time using the P leaching efficiency from the coarse and fine sample dissolution
experiments. The rate constants and respective R2 values calculated for the coarse fraction
are listed in Table 4.

However, as particle morphology varies during the leaching process, it influences the
significance of the chemical reaction, intra-particle diffusion, and interfacial transfer. This
can be adapted to the PR dissolution in such a way that the initial stage is governed by the
chemical reaction while the other mechanisms do not exist, as the reaction proceeds mainly
on the surface and there is no product layer. However, the other mechanisms can become
progressively dominating as the particle morphology changes.

It was found that, for different reaction stages, different models were valid according to the
regression coefficient and that a single reaction mechanism controlled the reaction rate during a
certain time period. A graphical representation of the analysis is shown in Appendix A.

The dissolution of the coarse particles of PR is controlled by the chemical reaction that
occurs between 2 and 8 min in 0.5 to 1 M HCl. At higher acid concentrations, this time
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period shortens, and at the concentration of 1.48 M, from the first measurable moment, the
limiting process is already intra-particle diffusion. The last time interval from 20 to 25 up
to 60 min is attributable to interfacial transfer and diffusion through the product layer. The
insoluble residue is formed by the insoluble impurities (quartz and pyrite), whereas the
solid product at HCl concentrations above 1 M was proven to be CaF2.

Table 4. Time periods of the validity of different models and the respective apparent rate constants
for the coarse sample.

Parameter Model 1 Model 2 Model 3

1 − (1 − x) 1/3 1 − 3(1 − x) 2/3 + 2(1 – x) 1/3 ln (1 − x) + ((1 − x) (−1/3) − 1)

HCl Concentration, M Time, min K1 R2 Time,
min K2 R2 Time, min K3 R2

0.5 0–8 0.0202 0.9993 10–20 0.0102 0.9972 25–60 0.0035 0.9988
0.8 0–8 0.0282 0.9972 10–20 0.0171 0.9986 20–50 0.0083 0.9981
1 0–8 0.0286 0.9977 10–25 0.0164 0.9969 25–60 0.0077 0.9975

1.24 0–6 0.0332 0.9951 8–60 0.0153 0.9955 -
1.48 - 0–10 0.0179 0.9907 12–50 0.0072 0.9959

The SCM model gave a different result for the dissolution process of the fine sample. It was
not possible to detect a single reaction mechanism for a certain stage of dissolution, but multiple
mechanisms can control the reaction rate at the same time due to the rapid reaction (Appendix B).

4. Conclusions

The specifics and kinetics of Estonian PR dissolution in HCl were studied based on the mea-
surements of the release of P and F into the solution, together with simultaneous pH monitoring.
The impact of the particle size and acid concentration on the process was determined.

The results showed that the particle size and acid concentration affect the P leaching
efficiency, rate, and specifics. Notably, the fine samples reacted more quickly and almost
reached the maximum leaching efficiency of 94%–100% within 50–60 min. The coarse
samples reached 82%–99% P solubility within 60 min.

For the first time, the pH value was continually monitored during the PR dissolution
process. The pH variation revealed that the time required to achieve an apparent steady-
state pH was reduced with an increasing acid concentration and decreasing particle size.

The analysis of the surface composition of the reacted particle proved that there was
precipitation of CaF2 on the surface. The CaF2 precipitation was clearly fixed in the HCl
solutions with concentrations starting from 1 M, and the phenomenon was more intensive at
higher acid concentrations. The formation of CaF2 in the more concentrated HCl solutions
caused a simultaneous drop in the pH and F concentration in the bulk solution.

It was shown that the dissolution was incongruent, and surface analysis confirmed
the formation of etch pits, which grew during the dissolution process and increased in
surface area. However, the dissolution process was accompanied by complex shifts in
ionization and the solubility equilibrium, as shown by the mutual variations in the P
leaching efficiency and pH.

The application of the shrinking core model revealed that P dissolution was controlled
by two or three different reaction mechanisms, depending on the extent of the process.
Under the experimental conditions used, dissolution was controlled by a combination of
chemical reaction, diffusion or interfacial transfer, and diffusion sequentially (for coarse
particles) or simultaneously (for the fine fraction).
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Figure A1. P solubility data of coarse sample reacted with 0.5M HCl and manipulated using all three
models to identify the best fitted line for the region: (1) from 2 to 8 min; (2) from 10 to 20 min; (3)
from 25 to 60 min.
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