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Abstract: To promote the sustainable exploitation of open-pit coal resources, waste is used as back-
fill material to realize the comprehensive utilization of solid waste mine resources. We proposed
a mining method that is a combination of the highwall mining and filling mining methods. Ce-
mented paste backfill (CPB) samples were prepared with high-clay-mineral-content marl particles
as aggregate and normal Portland cement, sulfoaluminate cement and gypsum as cementing mate-
rials. The physical and mechanical properties and microstructural evolution of CPB with different
binder ratios under wetting–drying cycles were measured. The results showed that the CPB with
0–3 wetting–drying cycles underwent shear and tensile coalescence, and that with 4–10 cycles un-
derwent shear coalescence. The unconfined compressive strength (UCS) and elastic modulus (EM)
decreased exponentially with increasing number of wetting–drying cycles but decreased exponen-
tially and cubically with increasing porosity, respectively. The EM is more sensitive to gypsum content
than the UCS. CPB deterioration was divided into an initial deterioration stage and a secondary
deterioration stage. The evolution curve of the total damage variable presents an ‘S’ shape, with
an initial damage stage, an accelerated damage expansion stage, a decelerated damage expansion
stage and an end damage stage. The research results provide a basis for improving the recovery
rate of resources under highwall conditions, and the extensive utilization of stripping materials, and
promote the coordinated development of coal resource exploitation and environmental protection.

Keywords: highwall filling mining; cemented paste backfill; wetting–drying cycle; bond strength;
damage evolution

1. Introduction

In recent years, the proportion of open-pit mining in the world’s mining industry
has been increasing, resulting in a large amount of waste and causing a series of envi-
ronmental problems, such as the spontaneous combustion of coal gangue [1], release of
excessive soil heavy metals [2], ecological damage [3], acid mine drainage (AMD) [4],
collapse of mining areas [5] and other issues. Over the past decades, many scientists from
the United States, Canada, Australia and other countries have been working on coal waste
management and environmental issues in depth [6]. For example, the establishment of
coal-based solid waste dams and coal slurry impoundments [7], coal-based solid waste
as construction materials (cement [8], road base materials [9], asphalt [10], environmen-
tal brick [11], coal waste-derived soil-like substrate [12], microbiological liquefaction of
lignite and mechanochemical oxidative modification for the treatment of solid waste re-
sources [13,14], backfilled roadways [15], AMD industrial extraction of metal elements [16]
and dewatering for landfill [17], etc.
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After high-intensity mining, open-pit coal mines leave a considerable amount of coal
resources within the mining boundary. Due to the previous lack of coal mining theory
and poor mining technologies, coal resources have been wasted [18]. At this time, waste is
backfilled to the stope and adit, which not only improves the recovery rate of coal resources
but also realizes the comprehensive utilization of solid waste mine resources as CPB [19].
However, in the process of coal mining, in the complex geological environment, rainfall
easily infiltrates into the interior of the mining chamber along fault fracture zones and
slope steps [20]. At the same time, groundwater easily infiltrates the adit along fractures
after coal mining [21]. The exposure of CPB to air and water cause it to repeatedly undergo
wetting–drying cycles [22], so the CPB is degraded by the water–rock chemical reaction [23],
as shown in Figure 1. Therefore, it is necessary to study the solid waste utilization method
of open-pit coal mines and CPB performance under wetting–drying cycles.

Minerals 2024, 14, x FOR PEER REVIEW  2  of  28 
 

 

[13,14], backfilled roadways [15], AMD industrial extraction of metal elements [16] and 

dewatering for landfill [17], etc. 

After high‐intensity mining, open‐pit coal mines leave a considerable amount of coal 

resources within the mining boundary. Due to the previous  lack of coal mining  theory 

and poor mining technologies, coal resources have been wasted [18]. At this time, waste 

is backfilled to the stope and adit, which not only improves the recovery rate of coal re‐

sources but also realizes the comprehensive utilization of solid waste mine resources as 

CPB [19]. However, in the process of coal mining, in the complex geological environment, 

rainfall easily infiltrates into the interior of the mining chamber along fault fracture zones 

and slope steps [20]. At the same time, groundwater easily infiltrates the adit along frac‐

tures after coal mining [21]. The exposure of CPB to air and water cause it to repeatedly 

undergo wetting–drying cycles [22], so the CPB is degraded by the water‒rock chemical 

reaction [23], as shown in Figure 1. Therefore, it is necessary to study the solid waste uti‐

lization method of open‐pit coal mines and CPB performance under wetting–drying cy‐

cles. 

 

Figure 1. Wetting–drying cycle diagram of CPB under an open‐pit coal mine slope. 

Most of the striped rock layers in open‐pit coal mines belong to geological soft rock, 

often containing a large amount of expansive clay minerals, which easily soften, expand 

and disintegrate in water [24]. Currently, with CPB with waste as the aggregate, clay min‐

erals and their influence on its performance need to be considered [25]. Previous studies 

on backfill materials  containing  clay minerals under wetting–drying  cycles mainly  fo‐

cused on the effect of gypsum on backfill. Aldaood et al. [26] showed that, under wetting–

drying cycles, the higher the gypsum content, the greater the crack propagation and the 

smaller the unconfined compressive strength (UCS) of the soil sample. Durgun [27] found 

that polypropylene reduces the negative effects of wetting–drying cycles on gypsum‐con‐

taining basalt pumice, reducing the loss of flexural strength to less than 7%. Li et al. [28] 

believed that extending the curing period of gypsum‐treated soil samples from 7 days to 

21 days could reduce the formation of vertical cracks during soaking. Ying et al. [29] indi‐

cated  that wetting–drying  cycles  softened gypsum‐treated  soil  and  that  seawater was 

more  likely to cause macropore development  than deionized distilled water. Although 

these studies have increased the understanding of the effect of wetting–drying cycles on 

gypsum‐treated soil, there has been no relevant experimental study on the effect of CPB 

containing clay minerals, and  the degree and mechanism of deterioration need  further 

study. 
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Most of the striped rock layers in open-pit coal mines belong to geological soft rock,
often containing a large amount of expansive clay minerals, which easily soften, expand and
disintegrate in water [24]. Currently, with CPB with waste as the aggregate, clay minerals
and their influence on its performance need to be considered [25]. Previous studies on
backfill materials containing clay minerals under wetting–drying cycles mainly focused on
the effect of gypsum on backfill. Aldaood et al. [26] showed that, under wetting–drying
cycles, the higher the gypsum content, the greater the crack propagation and the smaller
the unconfined compressive strength (UCS) of the soil sample. Durgun [27] found that
polypropylene reduces the negative effects of wetting–drying cycles on gypsum-containing
basalt pumice, reducing the loss of flexural strength to less than 7%. Li et al. [28] believed
that extending the curing period of gypsum-treated soil samples from 7 days to 21 days
could reduce the formation of vertical cracks during soaking. Ying et al. [29] indicated that
wetting–drying cycles softened gypsum-treated soil and that seawater was more likely
to cause macropore development than deionized distilled water. Although these studies
have increased the understanding of the effect of wetting–drying cycles on gypsum-treated
soil, there has been no relevant experimental study on the effect of CPB containing clay
minerals, and the degree and mechanism of deterioration need further study.

Studies have shown that wetting–drying cycles have a significant effect on the wa-
ter physical and mechanical properties of rocks [30]. With the increase in the number of
wetting–drying cycles, the water absorption and porosity of rock [31,32], the crack propa-
gation radius decreases [33], and the mechanical properties, such as UCS, EM, cohesion
and internal friction angle, gradually decrease [34,35]. The dissolution and loss of soluble
minerals and increased permeability are the key factors for the deterioration effect of a
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wetting–drying cycle [36]. However, for soft rock with a high clay mineral content, the
expansion/contraction behavior of clay mineral particles is more serious [37,38]. Although
CPB and rock have some similar characteristics, because CPB is a prefabricated material, its
particle size composition and cementing material composition are very different from rock.
Therefore, clay minerals and cementing materials are important to study to understand
the effect of wetting–drying cycles on CPB with waste as an aggregate. At present, the
mechanism of the physical and mechanical properties of CPB under this condition is not
clear, and the test method can be further explored.

Many scholars have studied CPB damage evolution. Aldhafeeri and Fall [39] exam-
ined the relationship between sulfide-containing CPB reactivity and mechanical damage.
Fu et al. [40] established a damage evolution model of CPB with a layered structure and
introduced the concepts of initial damage, load damage and total damage. Wang et al. [41]
and Zhou et al. [42] established a damage model based on the acoustic emission ringing
count rate and studied the variation in damage variables and the fractal dimension during
CPB damage. Yin et al. [43] proposed a CPB segmented damage constitutive model consid-
ering fiber content. Zhang et al. [44] established a CPB damage model considering initial
pore damage. The above studies focused on only mechanical damage and did not involve
wetting–drying cycle damage. Therefore, it is necessary to consider the establishment of a
CPB damage model under wetting–drying cycles.

In view of the existing technical defects and knowledge shortcomings, we propose a
method of solid waste utilization in open-pit coal mines. The water absorption crack devel-
opment, dynamic evolution law of porosity, mechanical property and failure characteristics,
damage evolution law and scanning electron microscopy (SEM) structure deterioration
analysis of CPB with marl as aggregate under wetting–drying cycles are studied. The
purpose of this work is to improve the recovery efficiency of coal resources, realize solid
waste utilization, clarify the deterioration effect and damage degree of the wetting–drying
cycle on CPB and promote the coordinated development of coal resource exploitation and
environmental protection.

2. Materials and Methods
2.1. CPB Preparation Process

While mining coal resources in open-pit coal mines, a large amount of waste is pro-
duced, mainly the soil–rock mixture of the stripped coal seam roof and overlying strata.
Therefore, this study was conducted in the context of CPB filling mining in the Puyang
open-pit coal mine, China. The coal mine uses marl as the raw material of the CPB aggre-
gate. Through grading screening, marl is broken and divided into five particle size ranging
from 0–0.3 mm, 0.3–0.6 mm, 0.6–1.18 mm, 1.18–2.36 mm and 2.36–4.75 mm, as shown. To
ensure the uniformity of the prepared CPB sample, Talbot continuous grading theory was
used to remix the aggregate particles to meet the following relationships [45]:

M
(

r < di

)
M0

=

(
di

dmax

)3−FD

(1)

where M
(

r < di

)
refers to the cumulative mass of rock and soil particle sizes greater than

di; M0 is the total mass of rock and soil particle sizes; d =
di+di+1

2 (di > di+1, i = 1, 2, . . .) is
the average value between the two particle sizes; dmax is the maximum rock particle size;
and FD is the fractal dimension.

Three groups (No. 1–3) of particle size screening tests were carried out on marl
particles of 100.00 g each. The mass of marl particles in each particle size range was
calculated using Equation (1) (see Table A1). No. 4 is the average of Nos. 1–3, and the
aggregate is configured with the particle mass in No. 4. Marl is a transitional rock between
carbonate rock and clay rock, and its mineral composition is very important for the analysis
of the CPB deterioration mechanism in subsequent wetting–drying cycles. Therefore, a
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X’Pert Pro MPD (see Table A2 for detailed parameters) was used to analyze the whole rock
and clay composition of the marl powder, as shown in Figure 2.
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Figure 2. Mineral composition of marl minerals and clay minerals.

In this study, normal Portland cement, sulfoaluminate cement and gypsum were
selected as cementing materials for the marl particles. Their basic physical properties and
main component contents are shown in Tables A3–A6. Since CPB has difficulty in meeting
the requirements of early strength with Portland cement alone, other reagents are often
added [46]. Therefore, four different composite cementing materials were set up, and the
mass ratios of normal Portland cement:sulfoaluminate cement:gypsum were 10:0:0, 8:0:2,
8:1:1, and 8:2:0. At room temperature, standard samples (50 mm in diameter and 100 mm
in height) were prepared by cementing material and marl aggregate with a cement–sand
ratio of 1:4.23 and a slurry concentration of 76%. A sample was placed at a temperature
of 20 ± 5 ◦C for 24 h until solidified; then, it was numbered, demolded and placed in a
SHBY-40A cement standard curing box with a temperature of 22 ◦C and a humidity of 95%
for 28 days. The sample preparation process is shown in Figure 3.
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2.2. Experimental Process
2.2.1. Wetting–Drying Cycle Test

To study the effect of wetting–drying cycles on the water physical and mechanical
properties of CPB, 48 samples were divided into 8 groups in the experimental design
scheme. A wetting–drying cycle determination test, wetting–drying cycle test and UCS test
were carried out, in that order. The specific scheme of each test is shown in Table 1. Before
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the wetting–drying cycle test, all CPB samples that had been cured for 28 days were placed
in an electric blast oven at 105 ◦C (see Table A7 for detailed parameters) for a 24 h drying
treatment and then sealed with a preservative film.

Table 1. Experimental scheme design.

Sample Number Test Classification
Normal Portland

Cement:Sulphoaluminate
Cement:Gypsum

Wetting–Drying Cycles Number of Samples

WD-1~3 Wetting–drying cycle
time determination test 8:1:1 1 3

RU1~4
Wetting–drying cycle

test

10:0:0 10 1
RU2~4 8:0:2 10 1
RU3~4 8:2:0 10 1

RU1-1~3
Wetting–drying cycle

test; UCS test

10:0:0 5 3
RU2-1~4 8:0:2 5 3
RU3-1~4 8:2:0 5 3

RU4-0~10-1~3 8:1:1 0~10 33

To determine the wetting–drying cycle time, a preliminary test was performed using
the method of Ma et al. [22] to obtain the time it took the CPB to reach saturation and
then fully dry. The dry CPB samples without wetting–drying cycles were designated
as experiencing 0 cycles. First, three initial CPB samples (WD-1~3) were immersed in
deionized distilled water with a pH value of 7 at room temperature by the free immersion
method and then dried in an electric blast oven at 105 ◦C. The CPB samples were weighed
every 5 min during immersion and every 1 h during drying. When the mass of the
CPB sample remained unchanged, it was considered that the CPB sample had reached a
saturated or dry state, and the curve of the water content of the CPB sample with time
is shown in Appendix C. According to the wetting–drying cycle time to determine the
test results, the control standard times were determined: 105 ◦C drying for 10 h and
room temperature soaking for 45 min. A CPB sample was immersed in water at room
temperature for 45 min for a wetting cycle; the sample was then dried in an oven at 105 ◦C
for 10 h and then cooled to room temperature, to complete a wetting–drying cycle. The
CPB samples were subjected to 10 wetting–drying cycles, and then immediately sealed
with an impervious film.

2.2.2. UCS Test

According to the sample number in Table 1, the UCS test of the WG-600 rock uniaxial
testing machine was carried out on CPB samples of different composite cementing materials
under wetting–drying cycles, as shown in Figure 3. The samples were numbered RU1-1~3,
RU1-2~3, RU3-1~3 and RU4-0~10-1~3 in the first wetting–drying cycle test and subsequent
UCS test. Before testing, the CPB samples were processed to ensure that the deviation of the
parallelism of the two ends was not greater than 0.1 mm and that the diameter deviation
was not greater than 0.2 mm. Three samples from each group were tested and loaded
at a displacement rate of 0.50 mm/s until failure. According to the test data, a smooth
stress–strain curve was drawn, and the USC and strain were obtained. The slope was
solved in the relatively straight area of the curve to obtain the EM.

2.2.3. SEM Test

The water absorption, compactness and bond strength of CPB samples are determined
by the distribution of microcracks, pores and hydration products with different contents of
composite cementing materials under wetting–drying cycles. The microstructure of CPB
samples was scanned by an FEI-QUANTA-FEG 250 scanning electron microscope under
different resolution conditions, and the corresponding parameters are shown in Table A8.



Minerals 2024, 14, 296 6 of 26

2.3. Methodology
2.3.1. Highwall Filling Mining Method

Highwall mining originated in the United States and subsequently became an impor-
tant means of mining open-pit coal in the United States, Australia, Indonesia and other
countries [47–49]. Due to the large number of coal pillars set up in the highwall mining
process [50,51], the recovery rate of highwall coal resources has not been considerably
improved. Currently, nonpillar mining technology by using waste as the filling aggregate
has great advantages. In this study, the highwall filling mining method (Figure 4a) is
proposed for the first time. It is based on the technology of mining the overlying coal seam
under the highwall of the continuous shearer [52]. The filling process system is integrated,
and the waste is used as the aggregate to form CPB, which completes the filling of the adit
formed by the continuous shearer mining, thereby controlling the movement of the slope
rock layer. The main process is as follows: the continuous shearer mining forms a series of
adits in the overlying coal seam under the highwall by means of sequential skip mining,
and then the wastes (coal gangue, soil–rock mixture, etc.) produced by the stripping of
the working side are transported to the crushing station through the mining truck, and the
wastes are broken into aggregate particles of appropriate particle size and then transported
to the batching station through the belt conveyor to mix with cement materials and water
to form CPB slurry. The filling pump station transports the CPB slurry to the adit through
the pipeline for filling and then recovers and fills the coal pillar after the filling of the adit
is completed. The specific implementation method is described in a patent [53]. Finally, the
stripping–mining–transportation–filling/dumping–reclamation integrated collaborative
operation is realized, as shown in Figure 4b. Through technological and conceptual innova-
tion, green mining with zero ecological damage is achieved, which improves the recovery
rate of coal resources, realizes solid waste utilization and greatly reduces the damage to the
ecological environment. This mining technology was first applied to the Puyang open-pit
coal mine in China.
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2.3.2. Porosity Calculation

Porosity is an important index with which to measure CPB and reflects the density of
the CPB [54]. By testing the mass and size of the CPB during the wetting–drying cycles, the
porosity φt of the t wetting–drying cycle can be calculated using Equation (2):

φt =
4(mwt − mdt)

πϕ2Hρw
(2)

where mwt is the mass of the CPB sample after water absorption (g); mdt is the mass of the
CPB sample after drying (g); ϕ is the diameter of the CPB sample (cm); H is the height of
the CPB sample (cm); and ρw is the density of deionized distilled water (g/cm3), which is
1 g/cm3.

2.3.3. Deterioration Degree of CPB

Previous studies have shown that wetting–drying cycles have different degrees of
influence on CPB. To further analyze the influence of the number of wetting–drying cycles
on the deterioration of the UCS and EM of CPB samples, Equations (3) and (4) were used
to calculate the following:

Dσ =
σt − σt+1

σt
× 100% (3)

DE =
Et − Et+1

Et
× 100% (4)

where Dσ and DE are the deterioration degrees of UCS and EM, respectively; σt and Et are
the UCS (MPa) and EM (GPa) of wetting–drying cycle t; and σt+1 and Et+1 are the UCS
(MPa) and EM (GPa) of wetting–drying cycle t + 1.

2.3.4. Damage Model of CPB

Under the combined action of the wetting–drying cycles and load, the CPB damage
variable can be expressed by the generalized damage variable D (Xu et al., 2017) obtained
by the equivalent strain principle [55]:

D = Dw + DL − DwDL (5)

where D is the damage variable under the coupling of the wetting–drying cycle and load;
DW is the damage variable under the wetting–drying cycles; and DL is the damage variable
under load.

The change in microstructure leads to a change in the macroscopic mechanical proper-
ties. Therefore, the damage variable of the damaged part of the sample after wetting–drying
cycles can be defined with the macroscopic mechanical properties EM of CPB, namely,

Dw = 1 − Et/E0 (6)

where E0 is the EM of CPB with 0 wetting–drying cycles.
Assuming that the CPB strength obeys a Weibull distribution, the damage variables of

the CPB under the load [56] are

DL =
∫ ε

0
Q(x)dx = 1 − exp

[
−(ε/ξ)m] (7)

where Q(x) is the probability density function; ε is the strain value of CPB; and m and ξ are
parameters that characterize the physical and mechanical properties of CPB, which can be
determined by the peak strength σp on the stress–strain curve and its corresponding peak
strain εp.
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Bringing Equations (6) and (7) into Equation (5),

D = 1 − Et

E0
exp

[
−(ε/ξ)m] (8)

According to Hooker’s theorem, in the case of one-dimensional elasticity, the basic
relationship of the damage constitutive can be obtained according to the Lemaitre strain
equivalence principle [57]:

σ = Etε(1 − DL) (9)

where σ is the stress of the CPB.
Taking Equation (7) into Equation (9), the CPB damage constitutive model equation

under the coupling of the wetting–drying cycle and load can be obtained as follows:

σ = Etε exp
[
−(ε/ξ)m] (10)

The derivative of Equation (10) is

∂σ

∂ε
= Et

(
1 + m(−ε/ξ)m) exp

[
−(ε/ξ)m] (11)

According to the geometric control equation, when ε = εp, σ = σp; when ε = εp,
∂σ/∂ε = 0; and  σp = Etεp exp

[
−
(
εp/ξ

)m
]

Et

(
1 − m

(
εp/ξ

)m
)

exp
[
−
(
εp/ξ

)m
]
= 0

(12)

The parameters m and ξ can be obtained from Equation (12):

m =
1

ln
(
Etεp/σp

) (13)

ξ = εp/
(

m−1
)m−1

(14)

The damage evolution equation and damage constitutive model equation of CPB are
obtained by bringing Equations (13) and (14) into Equations (8) and (10), respectively:

D = 1 − Et

E0
exp

[
− 1

m
(
ε/εp

)m
]

(15)

σ = Etε exp
[
− 1

m
(
ε/εp

)m
]

(16)

2.3.5. Data Processing Statistics

This study used OriginPro2021 to visualize the data and Microsoft Excel 2019 to perform
statistical analysis. The mean X (Equation (17)) and standard deviation S (Equation (18)) were
used to analyze the porosity, UCS and EM of the CPB samples after each wetting–drying cycle.
The calculation equations are as follows:

X =
1
N

N

∑
i=1

Xi (17)

S =

√√√√√ N
∑

i=1

(
Xi − X

)2

N − 1
(18)

where Xi refers to the porosity, UCS and EM of a CPB sample in the same group, and N
refers to the number of the three CPB samples in the same group.
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3. Results
3.1. Water Physical
3.1.1. Crack Propagation Law

The CPB samples with a composite cementing material ratio of 8:1:1 were subjected
to 10 wetting–drying cycles. For the zero–two wetting–drying cycle CPB samples, the
surface of the samples remained intact, and no visible microcracks were found, as shown
in Figure 5a–c. In the process of three~four wetting–drying cycles, a few pinnate micro-
cracks formed on the upper surface of the samples, and the range of microcracks was
small, as shown in Figure 5d,e. Starting from the fifth cycle, pinnate microcracks and other
microcracks appeared in the upper and middle parts of the sample surface, as shown in
Figure 5f. During the sixth cycle, V-type microcracks appeared on the upper part of the
sample, the crack length increased and the microcracks gradually expanded, as shown
in Figure 5g. During the seventh and eighth cycles, crack microcracks and V-type micro-
cracks were generated in the upper and middle parts of the samples, and the range of
microcracks gradually expanded, as shown in Figure 5h,i. During the 9th and 10th cycles,
microcracks and cracks appeared on the surface of the samples, the microcracks gradually
expanded into Y-type cracks and axial cracks and the crack length and range increased, as
shown in Figure 5j,k. According to the change in cracks, the crack propagation of CPB
samples in the wetting–drying cycles can be divided into several stages: fine crack formation
stage—V-type, pinnate microcrack development stage—crack microcrack formation
stage—Y-type crack propagation stage.
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Figure 5l–s shows that the surface crack propagation trends of CPB samples with differ-
ent cementation contents are significantly different. In the process of five
wetting–drying cycles, samples RU1-2 and RU3-2 (which did not contain gypsum) still
maintained surface integrity, and no visible microcracks were found. However, many micro-
cracks appeared on the surface of the RU2-2 and RU4-5-2 samples. Linear cracks appeared
in the middle and lower parts of sample RU2-2, and pinnate microcracks appeared in the
upper part of sample RU4-5-2. In the process of 10 wetting–drying cycles, samples RU1-4
and RU3-4 with composite cementing material ratios of 10:0:0 and 8:2:0 exhibited a few
visible microcracks, and the microcracks were linear. The surfaces of samples RU2-4 and
RU4-10-2 with composite cementing material ratios of 8:0:2 and 8:1:1 showed many cracks,
and the crack propagation and development degree of sample RU2-4 were significantly
more serious than those of sample RU4-10-2. The top crack of sample RU2-4 shows a cross
type, and the crack propagates across the whole surface of the sample. The upper surface
of sample RU4-10-2 shows a Y-type crack, and the lower part shows a linear crack.
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3.1.2. Variation in Porosity

The porosity curves of CPB samples with four different cementation ratios were ob-
tained by a wetting–drying cycle test. The initial porosity of all samples was approximately
12.91~14.39%, as shown in Figure 6. Figure 6a shows that the porosity change processes
of samples WD-1, WD-2 and WD-3 were almost the same, and the porosity rate increased
rapidly in the first wetting–drying cycle test. The porosity of the three samples was basi-
cally in equilibrium after the fourth wetting–drying cycle. The porosity after the fourth
wetting–drying cycle is plotted in Figure 6c. The porosity was between 25.88% and 27.65%,
and the average porosity was 26.81%. From Figure 6b, the porosity change trends of sam-
ples RU1-4 and RU3-4 were basically consistent. The porosity of the samples with four
different cementation contents increased with the number of wetting–drying cycles and
finally reached a stable porosity [31]. Among them, the porosity change rates of samples
RU1-4 and RU3-4 were basically the same, and the porosity change rate of sample RU4-10-1
was basically the same as that of sample WD-3, but the porosity change rate of sample
RU2-4 was more complex than that of the other three samples. The equilibrium porosity
histogram of Figure 6d shows that the porosity of the four samples followed the order of
RU2-4 > RU4-10-1 > RU3-4 > RU1-4.
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3.2. Variation in Mechanical Properties
3.2.1. Stress–Strain Curve

Figure 7a–c shows the CPB stress–strain curve for 0–10 wetting–drying cycles. The
results show that, with the increase in the number of wetting–drying cycles, the original
pore compaction stage of CPB increased, the peak stress decreased and the peak strain
increased. In the process of 0–10 wetting–drying cycles, the stress–strain curve shows an
S-type shape; the CPB had high compressibility and plastic–elastic-plastic characteristics.
With 0–3 wetting–drying cycles, the CPB cementation strength was high, the surface of the
sample remained intact and the internal pores and microcracks were underdeveloped. As
shown in Figure 5, the original pore compaction stage was shortened, the change rate of
the stress–strain curve was fast and the peak stress changed greatly, but the peak strain
was not much different. In the process of 4–10 wetting–drying cycles, the pores and voids
in the sample increased, resulting in a weak CPB cementation ability, low strength, gentle
stress–strain curve slope, a small change in the peak stress and a large change in the
peak strain.
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Figure 7d shows the stress–strain curves of CPB samples with different composite
binders after five wetting–drying cycles. The cementation strength of samples RU1 and
RU3 was significantly greater than that of samples RU2 and RU4. Among them, the
peak strength of RU1 and RU3 was approximately 6.00 MPa. The strength of the CPB
samples with the four different composite cementing materials followed the order of
RU1 ≈ RU3 > RU4 > RU2, indicating that CPB samples with only normal Portland cement
or mixed with sulphoaluminate cement have better anti-degradation performance during
wetting–drying cycles. However, the cementation performance of the samples mixed with
gypsum is poor. The greater the amount of incorporation, the worse the performance of the
sample after the wetting–drying cycle, and the more serious the deterioration of the sample.
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The peak strain of samples RU1 and RU3 was significantly smaller than that of RU2 and
RU4, and RU2 > RU4, suggesting ductile failure [58]. From the original pore compaction
stage, the order of the compression time was RU2 > RU4 > RU3 > RU1. RU2 > RU4 because,
for sulfate cement in the early stages, the higher the heat of hydration [59], the more dry
shrinkage and bubbles, so that the addition of sulfate cement to normal Portland cement
increases the initial porosity. RU3 > RU1, because gypsum also forms more small bubbles in
the early hardening process, and in the subsequent wetting–drying cycle, gypsum and clay
minerals react with water to hydrate, resulting in an increase in pores in the sample [60].

3.2.2. Failure Mode and Characteristics

In 1960, Griggs performed a statistical analysis to classify rock uniaxial compression
failure. According to the strain corresponding to the peak stress in the stress–strain curve,
rock deformation can be divided into brittle failure, brittle–ductile transition failure and
ductile failure [58]. Figure 7 shows that the strain value of the CPB sample to reach the peak
stress is between 1.5% and 3.5%. If there is a relatively complete stress–strain curve, the CPB
sample is judged to be in ductile failure. This is consistent with the results of Zhao et al. [61].
Bobet and Einstein [62] carried out uniaxial compression tests on prefractured gypsum
samples and proposed a mechanism of crack coalescence under uniaxial compression:
the mechanism of shear coalescence is usually characterized by a crack propagation path
with twists and turns, rough crack edges, and more broken particles in the sample; the
tensile penetration shows that there are no broken solid particles on the crack surface,
and the crack edge is relatively smooth. Shear and tensile coalescence conforms to failure
between the two. Combined with Figure 8, it was found that there are fewer main cracks in
samples RU4-0, RU4-1, RU1 and RU3, and that there are fewer secondary cracks around
the main cracks. The edge of a crack is relatively regular, but there is local falling debris.
Therefore, it was determined that the penetration form of these CPB cracks is shear and
tensile penetration. The main cracks of RU2 and RU4-2~RU4-9 are more numerous, and
the crack propagation path, with more secondary cracks, is more tortuous and prone to
form debris and cause debris falls, which indicates that the crack coalescence form of these
samples is shear coalescence. This shows that the crack propagation of CPB is not only
affected by the particle size distribution and mechanical damage but also related to the
properties of the cementing materials and wetting–drying cycle damage.

The uniaxial compression failure mode of CPB with a composite cementing material
ratio of 8:1:1 under 0–10 wetting–drying cycles is shown in Figure 8. The number of
wetting–drying cycles had a significant effect on the damage morphology of the CPB. In
the CPB that was not affected by the wetting–drying cycling, the main crack gradually
expanded along the loading direction, and the two main cracks were obviously parallel to
the axial stress direction, accompanied by more secondary cracks. When the compression
energy reached the critical value, the local surface of the sample exhibited a spalling
phenomenon and, finally, the main crack penetrated the sample instability failure, as shown
in Figure 8 (RU4-0). The angle between the main crack and the axial stress direction of
the sample with one wetting–drying cycle gradually increased, the secondary cracks were
smaller and small debris appeared in localized places at the end, as shown in Figure 8
(RU-1). After two–four wetting–drying cycles of the sample, the main crack direction
was diagonal across the sample, and the number of main cracks gradually increased. The
surface of the sample exhibited a small amount of large pieces of falling debris and more
broken small pieces. The end of the sample damage was more seriously damaged, and the
sample exhibited obvious shear failure, as shown in Figure 8 (RU4-2~RU4-4). After five–six
wetting–drying cycles of the samples, the main crack direction and the axial stress direction
were approximately 45◦, there were fewer secondary cracks, the lateral expansion of the
samples under pressure was obvious and only a small number of debris falls occurred,
since the samples exhibited significant shear failure, as shown in Figure 8 (RU4-5 and
RU4-6). After seven–nine wetting–drying cycles of the sample, the main crack directions
were roughly the two diagonal directions of the samples, the main crack development was
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good and there were more secondary cracks and microcracks. However, after the failure of
the sample, there were only small pieces of falling debris, and the sample showed obvious
shear failure, as shown in Figure 8 (RU4-7~RU4-9).
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The uniaxial compression failure modes of CPB with different composite binder
ratios under five wetting–drying cycles are shown in Figure 8. For sample RU1, with a
composite cementing material ratio of 10:0:0, under axial stress loading, a main crack began
to gradually expand along the loading direction, accompanied by many secondary cracks.
The direction of the secondary crack was roughly parallel to the direction of the axial stress.
As the stress value continued to increase, a small piece of debris spalled off at the end of
the sample, and the main crack eventually penetrated the entire sample until the entire
sample was destabilized. In the process of axial stress loading, sample RU2 with a ratio of
8:0:2 of the composite cementing material produced multiple main cracks and gradually
penetrated the middle and lower sides of the sample; the secondary cracks were more
developed. The lateral expansion of the sample was obvious, and only a small amount
of debris fell, showing ∧-type shear failure. Sample RU3, with a composite cementing
material ratio of 8:2:0, produced only one main crack after the sample was destroyed. The
main crack gradually expanded from top to bottom, and some secondary cracks were
generated locally. The failure characteristics of RU4-5 with a composite cementing material
ratio of 8:1:1 are analyzed in Figure 8.

3.2.3. Variation in Cementation Strength

(1) Effects of wetting–drying cycles on UCS and EM

The UCS and EM changes in CPB under different numbers of wetting–drying cycles
are shown in Figure 9a,b. The wetting–drying cycling had a significant effect on the UCS
and EM. As the number of wetting–drying cycles increased, the UCS and EM decreased
exponentially. In zero–five wetting–drying cycles, the UCS decreased by 0.91 MPa, 2.9 MPa,



Minerals 2024, 14, 296 14 of 26

4.21 MPa, 5.58 MPa and 5.84 MPa, respectively, and the EM decreased by 0.28 GPa, 0.45 GPa,
0.59 GPa, 0.72 GPa and 0.76 GPa, respectively. For zero–four cycles, the wetting–drying
cycles had a significant effect on the UCS and EM, and the EM changed the most after the
first wetting–drying cycle. The degree of deterioration of CPB by a wetting–drying cycle
first increased and then decreased and then increased and decreased, gradually reaching a
stable trend. The degradation degree of the UCS under two–four wetting–drying cycles
was 21.47%, 18.05% and 22.87%, respectively, and the average degradation degree was
20.80%. Among them, the degradation degree due to the fourth cycle was the largest
observed, the rest of the degradation degrees were below 9.27% and the average degrada-
tion degree of the UCS under five–ten wetting–drying cycles was 7.53%. This shows that
two–four wetting–drying cycles had a great influence on the UCS, among which the fourth
wetting–drying cycle had the greatest degree of deterioration, and the five–ten
wetting–drying cycles had a relatively stable degree of deterioration. The degree of dete-
rioration of the EM for two–four wetting–drying cycles was 28.12%, 23.89%, 25.71% and
32.50%, respectively, and the average degree of deterioration was 27.56%. Among them, the
fourth wetting–drying cycle had the greatest degree of EM deterioration, and the remaining
degrees of deterioration were below 13.37%, indicating that zero–four wetting–drying
cycles had a significant impact on the deterioration of the EM, and the average degree of
deterioration of the EM was greater than that of the UCS, indicating that the EM was more
sensitive to wetting–drying cycles than the UCS.
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(2) Variation in UCS and EM with porosity

To further analyze the relationship between UCS and EM and porosity, Figure 9c was
drawn. The UCS decreased exponentially with increasing porosity n. However, the EM
decreased in the form of a quadratic function with increasing porosity n. According to the
rate of change in the UCS and EM curves with porosity, these curves were roughly divided
into an initial deterioration stage i and a secondary deterioration stage ii. In the initial
deterioration stage i, UCS and EM decreased slowly with increasing porosity, indicating
that the porosity had little effect on the UCS and EM at this stage. In the secondary
deterioration stage ii, with the increase in porosity, the change rate of the UCS and EM
curves was accelerated, indicating that the porosity had a significant effect on the UCS
and EM.

(3) The change in CPB bond strength of different composite cementing materials

Figure 9d shows that the CPB bond strengths of composite cementitious materials
with different contents after five wetting–drying cycles were quite different. The average
UCS results of RU1 and RU3 were 6.03 MPa and 6.18 MPa, respectively. The average UCS
results of RU2 and RU4-5 were 3.49 MPa and 4.49 MPa, respectively. The average UCS
results of RU1 and RU3 (6.11 MPa) were higher than the 75.07% and 36.08% of RU2 and
RU4-5, respectively. The average EM results of RU1 and RU3 (0.395 GPa) were higher than
those of RU2 and RU4-5 by 99.49% and 68.80%, respectively. The UCS and EM of the RU1
and RU3 series of samples with ratios of 10:0:0 and 8:2:0 were similar and higher, and the
UCS and EM of the RU2 and RU4 series of samples with ratios of 8:0:2 and 8:1:1 were
lower. The CPB strength of the four composite cementing materials followed the order of
RU1 ≈ RU3 > RU4-5 > RU2.

3.3. Damage Evolution

According to the experimental data of the stress–strain curves of CPB samples under
different numbers of wetting–drying cycles in the UCS test, the strain values (peak strain)
corresponding to UCS, EM and UCS were obtained. The physical and mechanical parame-
ters m and 1/m of CPB samples were obtained by substituting them into Equation (13), and
the CPB damage constitutive equation was calculated, as shown in Table 2.

Table 2. Parameter value and equation of the damage constitutive model for marl paste samples.

Sample Number EM/MPa UCS/MPa Strain
ε

m 1/m Damage Constitutive Equation

RU4-0-1 1009.16 10.225 0.0159 2.223 0.450 σ = 1009.16ε exp
(
−0.450(ε/0.0159)2.223

)
RU4-2-1 469.73 6.666 0.0182 4.069 0.246 σ = 496.73ε exp

(
−0.246(ε/0.0182)4.069

)
RU4-4-1 286.97 4.723 0.0228 3.055 0.327 σ = 286.97ε exp

(
−0.327(ε/0.0228)3.055

)
RU4-6-1 203.61 4.149 0.0284 3.073 0.325 σ = 203.61ε exp

(
−0.325(ε/0.0284)3.073

)
RU4-8-1 160.52 3.519 0.0314 2.781 0.360 σ = 160.52ε exp

(
−0.360(ε/0.0314)2.781

)
RU4-10-1 112.66 2.951 0.0359 3.185 0.314 σ = 112.66ε exp

(
−0.314(ε/0.0359)3.185

)

The parameters in Table 2 were brought into Equation (15) to obtain the damage
variable evolution curves of CPB samples under different wetting–drying cycles, as shown
in Figure 10. There were significant differences in DW for different wetting–drying cy-
cles. As the number of wetting–drying cycles increased, DW increased. In general, com-
pared with CPB samples without wetting–drying cycles, the influence of the first three
wetting–drying cycles were the largest for DW, and the values were between 0 and 0.562.
The DW variation during four–ten wetting–drying cycles was relatively small, and its value
was between 0.716 and 0.888. The damage accumulation of the CPB sample gradually
slowed, namely, the axial strain gradually increased. The damage variable of the CPB sam-
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ple reached one in a large strain range. The evolution curve of the total damage variable
showed an S shape and was divided into four stages (taking CPB samples without wetting–
drying cycles as an example). The initial damage stage I: there were microcracks in the
CPB at this stage, and the microcracks gradually closed under uniaxial loading. In a small
strain range, the CPB remains. Accelerated damage propagation stage II: in this stage, with
the increase in the load, the microcracks inside the CPB developed rapidly, resulting in the
dislocation and connection of pores and cavities; the total damage value increased rapidly,
and the CPB peak strength was reached. Damage decelerated propagation stage III: the
microcracks and voids inside the CPB were connected, so that the CPB gradually lost its
bearing capacity, and the total damage value gradually approached one. End of damage
stage IV: the CPB internal cracks broke through to the surface, and the CPB completely lost
its bearing capacity, so the total damage value remained unchanged at one.
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The parameters in Table 2 were brought into Equation (16) to obtain the damage
constitutive equation of CPB under different wetting–drying cycles. According to the
damage constitutive equation, the theoretical prediction curve and the measured curve
were drawn, as shown in Figure 11. It can be seen from the figure that the theoretical
prediction curve is in good agreement with the measured curve, which indicates that
the established damage constitutive model is reasonable and reliable and can provide a
reference for the CPB filling design of open-pit mines.

3.4. Deterioration Mechanism of the Microstructure

For CPB samples under zero–four wetting–drying cycles, small pores developed, and
the overall structure was relatively dense. The internal hydration products of the CPB
were analyzed. As the number of wetting–drying cycles increased, the number of ettringite
grains with longer needle bar lengths increased, and the remaining hydration products
remained basically unchanged. Compared with CPB samples without wetting–drying
cycles, small particles fell off of the surface of the CPB internal cement during the second
and fourth wetting–drying cycles, as shown in Figure 12a–c. For the CPB samples that
underwent 8 and 10 cycles, the surface voids of the cement were more developed, the traces
of large particles falling off were obvious, many small cracks appeared and the structure
of the cement was seriously damaged, but the cement still maintained a large structure.
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Large cracks appeared along the edge of the aggregate, the connection between the cement
and the aggregate was poor and the whole sample was in a loose state. The number of
internal ettringite was small, and the calcium silicate hydrate (C-S-H) distribution gradually
changed from a network distribution to a coral and cluster distribution. The spherical
contour of aluminum glue gradually became obvious, the internal macropores were well
connected and the porosity was relatively large, as shown in Figure 12d–f.
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From the comparison of the density of CPB samples, RU1-1 and RU3-1 were denser,
followed by RU4-5-1, and RU2-1 was the worst. Regarding the development of microc-
racks on the surface of the cement, RU2-1 and RU4-5-1 developed well, and RU1-1 and
RU3-1 had a low degree of microcrack propagation. The damage degrees of the cement
followed the order of RU2-1 > RU4-5-1 > RU1-1, RU3-1. Comparing the quantity and
structure of the hydration products, the quantity of ettringite followed the order of RU1-1,
RU3-1 > RU4-5-1 > RU2-1. For RU2-1 > RU4-5-1 > RU1-1, RU3-1, RU2-1 and RU4-5-1, the
macropores gradually penetrated, whereas for RU1-1 and RU3-1, local pores penetrated, as
shown in Figure 12d,g,h.

4. Discussion

The common methods for recovering coal resources in the highwall of open-pit coal
mines include continuous miner highwall mining [52], timeliness slope theory [63], steep
end-slope mining [64] and filling roadway mining [65]. Timeliness slope theory and steep
end-slope mining technology further increase the mining angle of the slope and complete
the coal mining of the limit mining angle of the highwall within a certain period but cannot
solve the problem of coal mining under the highwall [66]. The filling roadway mining
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technology of highwall roadways overcomes the limit of steep end-slope mining technology,
but it is restricted according to the relevant national regulations and mining costs [67]. At
present, continuous miner highwall mining is used to mine near-horizontal and gently
inclined coal seams in the highwall, and many coal pillars are retained, making the re-
covery rate of the coal resources less than 50% [51]. Therefore, based on the technology
of continuous highwall mining of the overlying coal seam under the highwall, the waste
is used as CPB aggregate to backfill the adit (Figure 4a) to realize the utilization of solid
waste and the recovery of coal resources with maximum efficiency. To better realize the
concept of ecological restoration during mining and reclamation [68], in the integrated col-
laborative operation of stripping–mining–transportation–filling/dumping–reclamation in
open-pit mines (Figure 4b), it is necessary to emphasize the coordination, cooperation and
synchronization among various mining processes and reclamation processes. The synergis-
tic attributes and the synergistic effects generated reflect the spatiotemporal relationship
among the stripping, mining, transportation, filling, dumping and reclamation projects
in open-pit mines. An orderly design considering time, space and level is established,
and unified planning and parallel operation are carried out to form a process system of
collaborative mining of the same open-pit mine, the coordinated disposal of solid waste
and common reclamation.

A wetting–drying cycle had a significant effect on the physical and macroscopic
mechanical properties of CPB. In a wetting–drying cycle, CPB samples produced a cer-
tain number of microcracks and cracks, as shown in Figure 5a–k. This was because
there was no water bonding on the surface of a CPB sample, but there was a temper-
ature difference between the inside and outside of the sample, resulting in thermal ex-
pansion and contraction. The surface of the sample lost water quickly, and the surface
tension was less than the internal tension. Under the combined action of gravity and
tension at the bottom of the sample, many microcracks were generated. With the in-
crease in the number of wetting–drying cycles, the position of microcracks on the surface
of CPB samples was continuously damaged by wetting–drying cycles, resulting in the
water–rock chemical reaction of clay minerals and gypsum on the surface, so that microc-
racks gradually expanded into cracks [26]. The main reason for the cracks in Figure 5l–s
was that the greater the proportion of gypsum in the CPB samples, the greater the promot-
ing effect of temperature on the formation of ettringite [69]. The greater the number of
wetting–drying cycles, the higher the probability of expansion of the ettringite in the sam-
ple, which caused the internal stress in the CPB samples to expand and crack the original
skeleton of the sample, resulting in expansion cracking [70,71]. With the development of
microcracks and cracks on the surface of CPB samples, gypsum aggravates the propagation
of cracks, which is extremely unfavorable to the integrity of the samples.

According to past research on cementing materials under wetting–drying cycles, the
main reasons for the deterioration of CPB in stage i are the loss of small particles from the
CPB skeleton, the water–rock chemical reactions of clay minerals and the development of
microcracks and cavities. CPB is formed by the consolidation and demolding of particles
with different sizes as aggregates under the hydration reaction of composite cementitious
materials. Among them, particles with particle sizes less than 0.3 mm account for 13.93%,
which form noncritical cements with composite cementing materials [22] and fill the spaces
between larger particles. During a drying–wetting cycle, these noncritical cements are
destroyed, and small particles are detached from the cements [72] and are transported to
the distilled water through pores and microcrack channels, resulting in noncritical cements.
A loose, weak cementation ability can also be observed in Figure 12a–c. According to
the mineral composition analysis of marl, it contains 24.50% clay minerals, and these clay
minerals include illite (44%), illite–smectite mixed-layer minerals (36%) and kaolinite (20%),
as shown in Figure 2. Illite and illite–smectite mixed-layer minerals are highly hydrophilic
minerals [24]. During the immersion process, it was found that the color of the distilled
water mixture gradually turned pale yellow after immersion, which was speculated to
be caused by the loss of the water–rock chemical reaction from illite and illite–smectite
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mixed-layer minerals to distilled water [32]. This phenomenon caused the disintegration of
illite and illite–smectite mixed-layer minerals, a loss of connection between clay particles or
between clay particles and noncritical cements [37], the expansion of noncritical cements
and an increase in noncritical cement pores [29]. Under the action of wetting–drying cycles,
the clay particles repeatedly underwent expansion–contraction or even disintegration (the
process mechanism is shown in Figure 13), until they detached from the cement. Under the
action of water gravity, the water carried small particles, such as detached clay particles,
flowing from the pores and initial microcracks [73], resulting in the loss of some fine
aggregate particles inside the CPB before the four wetting–drying cycles. In addition to the
weakening of the cementation ability of the noncritical cements, the microcracks and voids
generated inside the CPB during the consolidation and demolding process still dominated
the mechanical failure performance of the first three wetting–drying cycles [31,60].
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In the degradation stage (stage ii), the loss of small particles, clay minerals and cements
in the CPB decreased, and its UCS and EM decreased rapidly. Because cement is the main
component of CPB, it is mainly the hydration product of the composite binder [74]. As the
number of wetting–drying cycles increases, the hydration products in the cement at the
critical steady state frequently undergo a water absorption–dehydration process, and these
hydration products are easily converted at a certain [75]. When the ettringite growth reaches
a certain level, at temperatures above 65 ◦C, some of the ettringite will decompose to form
delayed ettringite [76]. When the temperature reaches 95 ◦C, the ettringite will disappear
quickly and become difficult to observe [69]. Some other ettringite absorbs a large amount
of water molecules, causing repulsion between the particles, resulting in expansion [77]
and causing the cement in the critical stable state to be destroyed (Figure 12d–f), resulting
in an increase in the number of internal cracks in the CPB and the gradual development of
microcracks. Finally, although the number of wetting–drying cycles increased, the UCS and
EM basically remained stable, indicating that the key cements and aggregates in the CPB
form a relatively stable skeleton [22] and are not easily affected by wetting–drying cycles.

CPB with composite cementitious ordinary Portland cement and sulfoaluminate ce-
ment has better resistance to the deterioration of wetting–drying cycles, while CPB with
gypsum has poor water resistance (Figure 5l–s) (Durgun, 2020), and the more gypsum that
is added, the less stable the strength of CPB (Figure 9d). From the variation in UCS and
EM, EM is more sensitive to gypsum incorporation than UCS. Although some hydration
products in CPB with normal Portland cement and sulfoaluminate cement are degraded,
they still maintain a relatively complete cementation structure, so they can maintain a
higher UCS and EM. However, too much ettringite may be generated in CPB with too
much added gypsum [78], which accelerates the development of pores and microcracks
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and destroys the bonding structure (Figure 12g–i), resulting in a weakened resistance to
deformation and decreased compression resistance.

There were significant differences in DW between different wetting–drying cycles, and
DW increased with an increasing number of wetting–drying cycles [79]. With the increase
in axial strain, the total damage variable evolution curve of CPB presented an ‘S’ shape,
and Song et al. [80] and Wang et al. [41]) also obtained this conclusion. CPB deformation to
failure is a progressive damage process [81].

Based on the above, for the CPB backfill of open-pit coal mines with frequent ground-
water activities and frequent rainfall, especially backfill with aggregates with a high clay
mineral content, it is necessary to strengthen waterproofing and drainage measures. The
upper bench of the adit is also protected by a flood dam, and flood protection is provided
at the adit entrance to ensure that surface precipitation does not enter the adit and affect
the stability of the coal pillar, the filling body and the roof of the adit. The exposed areas
of the filled adit are protected by sprayed concrete to minimize the deterioration of the
filling body wetting–drying cycles weathering. Carefully consider the amount of gypsum
added, and pay attention to CPB softening in water to prevent slope failure due to the
deterioration of the physical and mechanical properties of the CPB and weak layer sliding.

5. Conclusions

(1) The highwall filling mining method and the stripping–mining–transportation–filling/
dumping–reclamation integrated operation scheme are proposed to achieve solid
waste utilization and improve the recovery rate of coal resources in an open-pit
coal mine.

(2) The wetting–drying cycles and added gypsum accelerated the development of micro-
cracks and cracks on the CPB surface. The higher the gypsum content, the fur-
ther developed the microcracks and cracks on the surface of the CPB after five
wetting–drying cycles, which was not conducive to the strength stability of CPB,
and EM was more sensitive to gypsum incorporation than UCS.

(3) With the increase in the number of wetting–drying cycles, the porosity increased
gradually and tended to be stable after four cycles. The tested CPB showed ductile
failure. The crack coalescence form of the CPB during the 0–3 wetting–drying cycles
was shear and tensile coalescence, and that during the 4–10 cycles was shear coales-
cence. Both UCS and EM decreased exponentially with the increase in the number of
wetting–drying cycles, but they decreased exponentially and cubically, respectively,
with the increase in porosity.

(4) The initial degradation stage of the CPB was caused by the loss of small particulate
matter from the skeleton, the water–rock chemical reaction of clay minerals and the
development of original microcracks and cavities. The main reason for the secondary
deterioration stage was the destruction of the cement in the critical stable state formed
by the hydration products.

(5) With the increase in the number of wetting–drying cycles, the initial damage degree
of the CPB increased continuously. The damage to the CPB during the zero–three
wetting–drying cycles was the largest observed, and the evolution curve of the total
damage variable showed an ‘S’ shape. The proposed damage constitutive model of
CPB is reasonable and reliable and can provide a reference for CPB filling design in
open-pit coal mines.
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Appendix A

Table A1. Physical properties of marl after crushing.

Numbering
Particle Size Distribution (mm)

Fractal Dimension FD Match Index
R2<0.300 0.300–0.600 0.600–1.180 1.180–2.360 2.360–4.750

1 13.93 7.04 11.44 11.62 55.97 2.40 0.947
2 11.40 13.18 14.56 10.48 50.38 2.34 0.986
3 12.41 9.73 13.87 11.56 52.43 2.36 0.979
4# 11.34 11.32 12.16 18.87 46.31 2.37 1.000

Table A2. Key parameters of X’Pert Pro MPD.

Model X’Pert Pro MPD

Manufacturer Nalytical, Netherlands
X-ray tube Copper target

Maximum power 2.2 kW
Maximum tube voltage 60 kV
Maximum tube current 55 mA

Diffraction angle 1◦~160◦

Appendix B

Table A3. Chemical composition statistics of marl (%).

Sample CaO SiO2 Al2O3 Fe2O3 MgO K2O TiO2 SO3 Other

Marl 39.78 33.23 14.76 5.90 2.50 2.22 0.70 0.62 0.29

Table A4. Chemical composition statistics of normal Portland cement (%).

Sample CaO SiO2 Al2O3 SO3 Fe2O3 MgO Ignition Loss

Normal portland cement 49.70 22.60 9.87 3.84 3.50 2.06 8.43

Table A5. Statistics of chemical composition of sulphate aluminum cement (%).

Sample CaO Al2O3 SO3 SiO2 Fe2O3 MgO TiO2 Ignition Loss

Sulphatealuminium cement 45.30 18.40 12.50 7.23 4.30 1.35 0.87 10.05

Table A6. Chemical composition statistics of gypsum (%).

Sample SO3 CaO Al2O3 SiO2 Fe2O3 SrO

gypsum 59.92 39.76 0.13 0.11 0.04 0.04



Minerals 2024, 14, 296 23 of 26

Table A7. Key parameters of electric blast drying oven.

Model HS-DHG-9070A

Power supply voltage AC220V ± 10%, 50 Hz ± 1 Hz
Heating power 1050 W

Working temperature Room temperature~200 ◦C
Temperature control accuracy ±0.1 ◦C

Timing device 0~9999 h

Table A8. Key parameters of Scanning Electron Microscope.

Model FEI-QUANTA-FEG 250

Resolution 1.04 nm
Magnification 15~300,000

Accelerating voltage 0.2~30 kV
Searching current 0.3–22 nA
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