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Abstract: The Clarion—Clipperton Fracture Zone of the east Pacific contains numerous shallow buried
nodules that are in direct contact with pore water in sediment, providing a direct reflection of the
interaction between nodules and sediment. However, research on the geochemical behavior of these
shallow-buried nodules is limited. This study used laser ablation inductively coupled plasma mass
spectrometry (LA-ICP-MS), high-resolution transmission electron microscopy (HRTEM), and X-ray
diffraction (XRD) to compare mineral and element distribution in shallow buried nodules with surface
nodules. The shallow buried nodules are products of nodules entering the burial stage. In comparison
to surface nodules, shallowly buried nodules develop a fourth oxidized-suboxic diagenetic growth
layer after entering the burial stage, in addition to the three main growth inner layers (L1, L2, L3). We
suggest that L4 is not influenced by the bottom water source and that the presence of todorokite and
the high flux of Mn?* in the sediment pore water compete with other metal elements to enter the
lattice of manganate, resulting in significantly higher Mn, W, and Li contents in L4 compared to L2.
However, the content of Ni, Mg, and other hydrogenetic elements is much lower in L4 compared to
L2. We suggest that the instantaneous change in surface primary productivity results in a sudden
shift in the redox environment of the upper sediment layer. This reaction leads to the reduction
of solid-phase Mn, providing growth opportunities for the buried nodules. Simultaneously, this
may also be the reason why the growth layer of the nodules is jointly controlled by the sedimentary
processes of hydrogenetic, oxic diagenetic, and suboxic diagenetic processes.

Keywords: buried nodules; Clarion-Clipperton Fracture Zone; oxic-diagenetic; todorokite

1. Introduction

Deep-sea polymetallic nodules are abundant marine manganese deposits in the ocean
that can absorb valuable rare and critical metals elements, making them economically
valuable and commercially promising [1,2].

Manganese oxides, the primary constituent of deep-sea polymetallic nodules, play
a crucial role in enriching various elements within the nodules [3,4]. These oxides selec-
tively adsorb metal ions from bottom and pore water, forming growth layers through
hydrogenetic and diagenetic processes [5,6].

Apart from surface manganese nodules, manganese nodules are widely found in
seabed sediments, and they have been discovered in the Penrhyn Basin (PB), Central India
Basin (CIB), and Clarion—Clipperton Fracture Zone (CCFZ). These buried nodules are in
direct contact with pore water in sediment, providing a direct reflection of the interaction
between nodules and sediment. However, research on the geochemical characteristics and
formation processes of buried nodules is relatively limited [7,8].

Minerals 2024, 14, 80. https:/ /doi.org/10.3390/min14010080

https:/ /www.mdpi.com/journal /minerals


https://doi.org/10.3390/min14010080
https://doi.org/10.3390/min14010080
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0003-0109-3221
https://orcid.org/0000-0003-1128-8380
https://orcid.org/0000-0002-8841-4499
https://doi.org/10.3390/min14010080
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min14010080?type=check_update&version=1

Minerals 2024, 14, 80

2of 16

20°0'0"N

5°0'0"N  10%0'0"N 15°0'0"N

0°o'o"

Existing studies have indicated that buried nodules can have three potential fates:
they can either continue to grow, dissolve, or remain unchanged [8], which is influenced by
the position of the oxic-suboxic front (OSF) and burial depth within the sediment [9].

When the OSF is located at a deeper level within the sediment, Mn?* ions are unable
to migrate to the sediment surface and contribute to nodule growth [9,10]. In such cases,
shallow buried nodules may stop growing [8]. Conversely, when the OSF is situated
at a shallower depth, Mn?* ions in the sediment pore water can be directly supplied to
shallow buried nodules, allowing them to potentially continue growing. As the burial
depth increases, the oxidation-reduction environment within the sediment promotes the
reduction of manganese and iron oxides present in the nodules, resulting in the release
of free ions into the pore water of the sediment [6,11]. This phenomenon contributes to
the dissolution of nodules [12]. Consequently, dissolved nodules can appear as a result of
this process.

The interaction between buried nodules and sediment pore water is a critical aspect to
consider when studying the geochemical behavior of manganese oxides in sediments. In
this study, GIS software (Arcmap 10.8) was used to extract elemental datasets from indi-
vidual growth layers based on LA-ICP-MS scanning data. We compared the geochemical
characteristics of typical surface and shallowly buried nodules in the western region of the
CCFZ to elucidate the growth mode and element enrichment mechanism of polymetallic
nodules after burial.

2. Geological Background of the Study Area

The sample collection area for this study (Figure 1) is located between the Clarion
Clipperton Fracture Zone in the eastern Pacific Ocean. The structural characteristics of the
CCFZ mainly include the Clarion and Clipperton fault zones, as well as parallel secondary
or smaller transform faults, closely related to the history of plate evolution and activity
in the Pacific region, formed by the late Mesozoic to Cenozoic seafloor expansion. The
average depth of CCFZ is 5000 m, and the surface area has a large undulating terrain, with
plains, sea hills, seamounts, depressions, ditches, and troughs arranged alternately.
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Figure 1. Locations of polymetallic nodules in this study. The red pentagrams represent the sample
locations in this study (CCZ represents the Clarion-Clipperton Fracture Zone).
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The study area specifically focuses on the western region of the CCFZ, where the
basement formation dates to the Late Cretaceous period, approximately 95-65 million years
ago. Gravity anomalies in this area reveal a low positive gravity background, indicating
high-density mantle anomalies and seafloor uplift. Strong volcanic activity, well-developed
faults, and the formation of large-scale volcanic chains and intermountain basin structures
are prominent features of the study area.

The CCFZ is situated within an intermediate block of the Pacific Plate, located in a
highly biologically productive area north of the equator. The primary productivity rate
in the northeastern Pacific Ocean ranges between 0.1 and 0.2 kg C m~2 yr—! [13,14]. It is
noteworthy that surface primary productivity gradually decreases from east to west [15].

3. Materials and Methods

We selected typical co-existing surface nodules (512) and buried nodules (B09, burial
depth of approximately 60 cm) in the western part of CCFZ to ensure the representative
nature of the results. Samples B09 and S12 (156.71° W, 9.33° N, collection depth: 5246 m)
were all obtained through a box corer during the cruise DY73. The depth of nodule
collection is deeper than the carbonate compensation depth (CCD: ~4500 m), and the
sediment type in the collection area is pelagic clay.

Nodules were embedded in epoxy resin and sliced along the long axis direction from
top to bottom. Each sample is further divided into two parts. Take half of each nodule and
grind to 200 mesh using an agate mortar. The mineral composition of each nodule was
analyzed by HRTEM and XRD. Concurrently, the other half was polarized and bonded to a
glass slide, sectioned at a thickness of 100 um for EPMA and LA-ICP-MS analyses.

3.1. X-ray Diffraction (XRD)

The X-ray diffraction analysis was performed using an X'Pert PRO X Advance diffrac-
tometer at the Instrument And Service Center for Physical Sciences of West Lake University
in Hangzhou, China. The powdered samples were divided into three portions, with one
portion measured directly, and the other two portions heated at 100 °C and 300 °C, respec-
tively, for 24 h before XRD data collection. XRD was performed at 40 kV and 45 mA using
a CuKa radiation source. The scanning angle ranges from 5° to 70° at a speed of 1.8° /min.
The diffraction data were identified using MDI JADE software (version 6). For specific
analysis and testing methods, please refer to [16].

3.2. High-Resolution Transmission Electron Microscopy (HRTEM)

Powders of nodules were further analyzed by HRTEM at the Guangzhou Institute of
Geochemistry, Chinese Academy of Sciences. The analysis was conducted using an FEI
Talos F200S field-emission transmission electron microscope equipped with two SuperX
high-resolution energy-dispersive X-ray spectrometer (EDS) detectors and one high-angle
annular dark-field (HAADF) detector. The analysis was performed at 200 kV voltage and
included HRTEM and scanning transmission electron microscopy (STEM-EDS) analysis.
The spatial resolution of the STEM mode is approximately 0.16 nm. Z-contrast images
were acquired using a camera length of 160 mm to maximize the contrast changes between
different atoms in HAADF images [17].

3.3. Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS)

The trace elements surface scanning analysis was determined in Guangzhou Tuoyan
Testing Technology Co., Ltd. This anylysis involved the use of the NWR 193 nm ArF excimer
laser ablation system, in conjunction with the iCAP RQ ICPMS. The ICP-MS was calibrated
using NIST 610 and NIST 612 standard glasses [18] to ensure a low oxide production rate.
During the testing process, the laser spot size was set to 100 pm, and the scanning speed
was 120 um/s. The energy density was set at 3.5 j/cm? with a repetition frequency of
15 Hz. The obtained data were processed using the Iolite software (version 4.0), and specific
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analysis methods can be found in [16]. The data generated using Iolite were then gridded
using ArcMap software (version 10.8).

For spot LA, a 50 um spot size was used with an energy density of 5 J/cm? and
a repetition frequency of 5 Hz. Each round of analysis comprised 20 s of background
measurement (laser-off) and 45 s of data acquisition. Data calculations were performed
using ICPMS DataCal, following the methods of [19,20].

3.4. Electron Microprobe Analyses (EMPA)

The major elements in the growth layer of B09 were analyzed in situ using the
JEOL (Japan Electron) JXA-iSP100 electron probe microanalyzer at the Second Institute
of Oceanography, Ministry of Natural Resources, China. The analysis was carried out
with an accelerating voltage of 15 kV, a beam current of 10 nA, and a beam spot size of
10 pm. The ZAF method was used to perform baseline correction on all data. The UK
MAC mineral/metal standards and the Chinese national standard sample GSB were uti-
lized for calibration purposes. Specific regions of interest were selected within relatively
homogeneous areas of the growth layer of B09 for the electron probe analysis.

4. Results
4.1. Structure Characteristics of Individual Growth Layer

The growth stages of nodules are divided based on the mineral reflectance and growth
structure of the nodules.

The B09 nodule is divided into four individual layers (Figure 2a), with its core being
an opal replaced by ferromanganese (Figure 2d). The L1 (~15 mm) is similar to the L3
(~5 mm), both of which have stromatolite structure, exhibiting alternating stacking of
high reflectivity minerals and low reflectivity minerals at the micrometer scale, with good
homogeneity and low porosity. L2 (~4 mm) has a laminated structure, with higher mineral
reflectance than L1, poor homogeneity, loose layer structure, and extremely high porosity.
Outside the L3, there is a thin (~0.3 mm) and dense like layer with high mineral reflectance
and good uniformity, defined as the L4 (Figure 2b).

S12is divided into three growth layers, among which L1 (10-20 mm) and L3 (4-10 mm)
both have concentric circular structures with good homogeneity, low porosity, and overall
low mineral reflectance. There is a high reflectivity mineral filling effect between the
concentric circular structures. On the contrary, the L2 (2-10 mm) has a laminated structure
with poor homogeneity, high porosity, and high mineral reflectance.

4.2. Geochemical Characteristics of the Ferromanganese Nodules

We define the genetic types of B09 and S12 based on two ternary genetic diagrams (Figure 3):
Mn-Fe-10 x (Ni + Cu) [21], 10 x (Cu + Ni + Co)-100 x (Zr + Y + Ce)—~(Fe + Mn)/4 [22].

The results indicate that there is no significant difference in the geochemical character-
istics between the L1, L2, and L3 of B09 and S12. Both L1 and L2 exhibit a mixed origin, but
the data points are more inclined towards a hydrogenetic genesis type.

It is worth noting that the L4 of B09 data points is located in the oxic-suboxic diagenetic
origin, and its element data distribution does not significantly coincide with B09-L2 and
512-L2 (Figure 3e,f), indicating that BO9 received a higher proportion of diagenetic end
element input.

The major and trace element content of B9 nodules are shown in Figure 4. There is
significant element fractionation between the hydrogenetic and the diagenetic growth layer,
with the hydrogenetic layer (L1, L3) being more enriched in Fe, Si, Ca, Ti, P, Sc, Zr, *REE,
while the diagenetic layer (L2, L4) is enriched in Mn, Ba, Ni, Cu, Zn, Mg, Li, Mo, W, Al.
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Figure 2. Reflected light images of the B09 (a), and S12 (e). (b): Indicating the stromatolite structure of
B09-L3 and the dense block like structure of B09-L4. (c): Indicating the laminated structure of B09-L2
and the stromatolite structure of B09-L1. There is a clear hiatus between the L2 and L1. (d): Indicating
the opal core that has been replaced by ferromanganese oxides. (f): Indicating concentric circular
structure of S12-L1, (g): Indicating lanminated structure of S12-L2. (h): Indicating concentric circular
structure of S12-L.3. The solid lines represent the boundaries between different growth layers, and
the white dashed lines indicate the boundaries of secondary growth layers.
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Figure 3. Ternary genetic diagram of Mn-Fe—(Ni + Cu)*10 [21] and (Mn + Fe)/4—(Cu + Ni)*15—(Zr + Y
+ Ce)*100 for ferromanganese nodules [22]. The basic data set is primarily composed of data extracted
from LA-ICP-MS point analysis and surface scanning. (a,b) includes datasets of L1 layer in two
nodules B09 and S12. (c,d) includes datasets of L3 layer in two nodules B09 and S12. (e,f) includes
datasets of L2 and L4 layers in nodules B09 and S12.
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Figure 4. Comparative box plot of major and trace elements in B09.

It is worth noting that in comparison to the element content between the diagenetic
layers (L2, L4), L4 exhibits higher average concentrations of Mn (41.2 vs. 31.2 wt%),
W (328 vs. 170 ppm), and Li (290 vs. 140 ppm), but lower concentrations of hydroge-
netic end member elements such as Fe (0.62 vs. 6.78 wt%), Co (0.04 vs. 0.35 wt%), REE
(131 vs. 1600 ppm), Ti (0.05 vs. 0.84 wt%), Sc (6.23 vs. 13.13 ppm), Pb (124 vs. 1475 ppm)
and diagenetic end member element such as Ni (1.29 wt% vs. 1.8 wt%) and Mg (2.13 vs.
3.16 wt%) in comparison to L2.

We use the empirical formula R(mm/Ma) = 13.8 (Mn/ Fe?) + 0.75 [23] to estimate
the growth rate of the nodules. The results show that the average growth rate of L4 is
1977.6 mm/Ma, which is significantly higher than the diagenetic L2 (135.4 mm/Ma) and
the hydrogenic L1 (4.47 mm/Ma) and L3 (2.4 mm/Ma).

4.3. Principal Components Analysis of BO9

A PCA (principal components analysis) can visualize the complexity in a multidimen-
sional dataset with information on the specific metal associations [24,25]. We assume that
Mn/Fe = 2.5 is the boundary between the hydrogenetic and diagenetic layers (Halbach
et al., 1981). PCA analysis was conducted on the elemental content of the four layers
mentioned above (Figure 5), and the results showed that the elements in the nodules are
mainly controlled by PC1 and PC2, with PC1 + PC2 accounting for 45.2%-59.9%.

There is a strong correlation between Mn, Ni, Cu, Mg, Li, W, Mo, and Zn, and the
above elements are more affected by PC2. It is speculated that PC2 is a sedimentary pore
water mineralization environment. Fe, Pb, Zr, Ti, Co, REE, and Sc are more controlled by
PC1, suggesting that PC1 indicates the sedimentary environment of marine bottom water.
The loadings of Na, Al, Si, and P in PC1 and PC2 are relatively small, while PC3 has a
significant impact on these elements, which may be influenced by sedimentary debris.
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Figure 5. Principal component analysis of the LA-ICP-MS dataset of element concentrations in B09.
The red boxes indicate a dataset with Mn/Fe < 2.5, while the gray boxes indicate a dataset with
Mn/Fe > 2.5, and the ellipse represents a 95% confidence interval.

4.4. The Mineralogy of B09 and S12

The XRD patterns reveal that B09 (excluding the L4 layer) and S12 have similar
diffraction periods, with only two broad and weak diffraction peaks in the high angle region
(~2.45 A and ~1.42 A) (Figure 6e,g). This indicates that the main mineral composition of B09
and S12 is 5-MnO; [26,27]. However, there are obvious diffraction peaks in the low angle
diffraction region (~10 A) of the B09-L4 (Figure 6f). After heating at 100 °C and 300 °C,
the 10 A diffraction peak disappears with the 7 A diffraction peak increasing, indicating
that the main mineral of L4 is 10 A manganate with relatively lower thermodynamic
stability [28,29].
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Figure 6. HRTEM images of L4 (a) and L2 (b) Mn minerals in B09 were inserted with the correspond-
ing selected area electron diffraction (SAED) patterns. (c): Typical 120° twinning of todorokite (red
square in (a)) corresponded with FFT (Fast Fourier transform) patterns. (d): HRTEM image and insert
FFT pattern of L2 in a representing birnessite with fibrous parallel lattice fringes at 7 A. (e): The XRD
patterns of L1, L2 and L3 in B09. (f): The XRD patterns of L4 in B09. (g): The XRD patterns of a bulk

sample of S12.
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Todorokite has a stable tunnel-like structure and is not easily altered under vacuum or
heating conditions [28-30]. However, its thermal stability may decrease due to irregular
arrangements of the [MnOg] octahedron or the larger diamention of tunnel size [4,31,32].
The lower thermodynamic stability and lower crystallinity of todorokite in nodules may
result in similar periodicity of todorokite and 10 A vernadite in XRD spectra, making them
difficult to distinguish. However, this cannot be taken as evidence of the non-existence
of todorokite.

The mineral structure characteristics of the two diagenetic layers in nodule B09 are
illustrated (Figure 6a—d). It is worth noting that the manganate in L4 exhibits a plate-
like and fibrous morphology, as shown in Figure 6a. Selected area electron diffraction
(SAED) analysis indicates that the mineral possesses well-defined crystallinity, with d-
spacing values of hkl reflections matching those of todorokite (4.48 A, 2226 A, 1.698 A, and
1.508 A) [33]. Fast Fourier transform (FFT) images (Figure 6¢) reveal a triplet pattern of fiber
crystals that are twinned at 120° angles from each other (Figure 6¢). The 10 A-manganate in
L4 exhibited better crystallization (Figure 6¢,d), possibly due to the higher influx of Mn?*
provided by the sediment pore water [6]. L2 layer reveals diffuse hk0 diffraction rings with
d-spacing of 2.4 and 1.4 A (Figure 6b), combined with d = 7 A in FFT images (Figure 6d),
could be indicative of 7 A vernadite [32], which may result from the dehydration and
condensation of 10 A manganate [29].

5. Discussion

Due to the continuous uplift of the strata, the previously formed old nodule fragments
are exposed on the surface of the sediment and enveloped by new growth shells, while
buried nodules that have not been uplifted from the sediment surface are still left in
the sediment [7,34]. However, in this study, the internal growth layers (L1, L2, L3) of
surface nodule 512 and shallowly buried nodule B09 had similar structures and chemical
compositions, while the L4, developed geochemical characteristics that were completely
different (Figure 3f).

Therefore, we speculate that the shallow buried nodules might be a product of entering
the burial stage after the formation of surface nodules and may continue to grow and
develop the L4 growth layer after burial.

5.1. Controls on the Mineralogy of Buried Layer

The dominant mineral composition of diagenetic nodules is primarily 10 A-vernadite,
with a relatively low content of todorokite [29]. Todorokite is mainly found in buried
nodules. As the burial depth of the nodules increases, the proportion of todorokite gradually
increases [8,35]. In this study, the unique presence of todorokite in the L4 layer suggests
that todorokite may be a characteristic mineral of buried-type nodules.

Mn3* plays a critical role in facilitating the formation of todorokite in the reflux
product [36,37]. The [Mn(II[)Og4] can act as pillars, providing support for the tunnel
structure of todorokite [36,38]. In this study, under suboxic conditions, free Mn?* in the
sediment pore water would migrate upwards and react with MnO, above the oxic-suboxic
boundary (OSF), resulting in the generation of Mn3* [35]. The suboxic conditions prevalent
in the sediment maintain a considerable concentration of Mn3* [39,40]. This abundance of
Mn3* allows it to enter the 10 A-vernadite and promote the formation of the tunnel walls
of todorokite [32,36]. It is worth noting that the elongation of Mn(III)-O along the a-axis
may facilitate folding at the Mn(III)-O-Mn(IV) junctions due to the Jahn-Teller effect [27,31].
In summary, we suggest that todorokite could potentially serve as an indicator mineral for
manganese nodules undergoing burial processes.

5.2. Controls on the Geochemistry of L4 in Buried Nodules
5.2.1. Controls on the Chemical Composition of L4

The L1 and L3 datasets of B09 and S12 nodules consistently fell within the hydrogenetic
and oxic-diagenetic layers on the ternary genetic diagram (Figure 3a—d). However, L4
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datasets fell within the range of oxic-diagenetic to suboxic-diagenetic, suggesting that its
mineral source could primarily originate from sediment pore water.

The content of hydrogenetic end member elements in L4 is significantly lower than
that in L2 (Figure 4). This may be due to the fact that L2 starts growing on the surface of
sediments, developing 6-MnQO, and receiving detrital supply from deep-sea bottom water.
The Fe-Mn oxyhydroxides in L2 have a larger reactive surface area [1], enabling efficient
adsorption of high-field strength elements (HFSE) such as Sc, Zr, rare earth elements (REEs),
and Pb [22].

The dissolution of organic matter in sediments releases a significant amount of tran-
sition metals, leading to higher fluxes of diagenetic elements entering the nodules [1,6].
However, it is worth noting that the content of diagenetic elements in the L4 is lower com-
pared to the L2. We suggest that there may be two possible reasons for this phenomenon.

Phyllomanganate minerals usually have low-valence isomorphic ions replacing Mn**,
resulting in layer charge defects which can be compensated for by incorporating hy-
drated interlayer ions like Na*, Li*, and Ca?* into the interlayer space, or by adsorb-
ing cations such as Mn?*, Ni%t, Cu?*, Zn%*, and Cr?* in vacant sites below the MnOj
octahedral layers [27,41,42]. Todorokite, on the other hand, has limited tunnel structures
that can adsorb monovalent and divalent cations [32]. Therefore, the L2 layer, rich in
phyllomanganate minerals, has a higher potential than L4 to attract metal cations [27,32,33].

On the other hand, during the growth process of L4, the increase in Mn flux in the
sediment [6] leads to competition between Mn?* and other metals, such as Ni%*, Cu?*,
Co?t, Ca?t, Mg2+, to preferentially incorporate into the manganese mineral crystal [6,11].

5.2.2. The Formation of B09-L4

The process of oxic diagenesis is believed to take place within nodules embedded
in oxygenated sediments through a sequence of sedimentary processes and chemical
reactions [43]. This process is characterized by moderate Mn/Fe ratios and high Ni and
Cu concentrations [11,44]. In the current study, the L4 is identified within sub-surface
sediments at a depth of 60 cm. Given that the OSF is approximately 2-3 m deep in the
eastern part of the CCFZ [9], and considering the lower surface productivity in the western
part of the CCFZ compared to the east [15,45] and Antarctic Bottom Water (AABW) flows
from west to east in the CCFZ [46], it is anticipated that the OSF depth in the western part
should exceed 2 m. Consequently, the growth position of L4 is expected to be above the
OSF, indicating an association with oxic diagenetic processes. However, the B09 nodule
displays higher Mn/Fe ratios and lower Ni and Cu concentrations (Figure 4), which do not
correspond with the oxic diagenesis interval illustrated in the ternary plot.

The growth rate of L4 is about 1977.6 mm/Ma, significantly higher than the growth
rate of L2 (135.4 mm/Ma). However, the thickness of the L4 layer is only 0.3 mm, indicating
that the growth of the L4 layer may be transient.

Our investigation in the area revealed that the surrounding sediment where buried
nodules are located mainly consists of compacted pelagic clay, with limited pore water flow.
This suggests that the conditions necessary for sustained growth of the L4 layer may not
be met.

Therefore, the formation of the L4 could be attributed to large seasonal variations in
primary productivity on the surface [43,47]. This leads to a temporary surge in oxygen con-
sumption in surface sediments and the development of a transient suboxic environment [48]
above the OSF. In this suboxic environment, manganese oxides in surface sediments dis-
solve, releasing Mn?* and associated elements trapped in organic matter particles [9]. This
process may directly contribute to the growth of the oxic-suboxic diagenetic layer.

5.2.3. Multiple Sources Control the Growth of Nodules

The substantial overlap between the datasets of the inner layers (L1, L2, L3) of B09
and S12 nodules suggests that there was a limited exchange of Ni, Cu, and Co with the
pore water of the sediment during the burial process of B09 (Figure 7).
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Figure 7. Relationships of Mn/Fe with Ni/(Mn + Fe), Cu/(Mn + Fe), and Co/(Mn + Fe) in 512 and
B09 (red points represent the buried nodule B09 and black points represent the surface nodule S12.

The correlation diagrams between Ni, Cu, Co, and Mn/Fe in S12 and B09 were gen-
erated using the LA-ICP-MS element dataset. These diagrams provide valuable insights
by overcoming the limitations of data volume in in-situ microanalysis (Figure 7) [49]. The
distribution of each element is influenced by three end members, indicating three genetic
processes: low Mn/Fe (Mn/Fe < 2) with low Ni/(Mn + Fe) and Cu/(Mn + Fe) (0-0.02), as
well as high Co/(Mn + Fe) (0.02), indicating hydrogenetic, medium Mn/Fe (Mn/Fe ~ 5)
with high Ni/(Mn + Fe) (0.07), Cu/(Mn + Fe) (0.06) indicating oxic-diagenesis, and high
Mn/Fe with low Ni/(Mn + Fe) (0.04), Cu/(Mn + Fe) (0.03), and Co/(Mn + Fe) (0.02) indicat-
ing suboxic diagenesis [50]. However, the data combination points are mainly concentrated
on one side of the hydrogenetic endmember, which may indicate that hyrogenetic deposi-
tion remains the primary sedimentary process for nodules. The instantaneous change in
surface primary productivity could lead to changes in the sedimentary environment and
may provide sources for nodules of oxic diagenetic and suboxic diagenetic (Section 5.2.2)

It is worth noting that in the individual layers of nodules, Co shows a sudden change in
element content at Mn/Fe ~ 2, while Ni and Cu show a change in element content around
Mn/Fe ~ 5. This may be due to changes in mineral composition during the sediment
environment transformation from oxic diagenetic to sub-oxic diagenetic [6,51].

5.3. Mineralization Pattern of Shallow Buried Nodule

Based on the mineralogical and element distribution characteristics observed in this
study, we have developed a mineralization model to explain the growth process of shallow
buried nodules in the western part of the CCFZ (Figure 8). The L1 layer is characterized
by the growth of concretions around opal. Low surface primary productivity and the
deep depth of OSF favor the formation of a hydrogenetic growth layer. As the surface
primary productivity increases, the nodules may undergo burial and dissolution of the L1
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layer [8]. When the sedimentation rate decreases and sedimentation becomes intermittent,
the nodules re-emerge on the sediment surface and develop the L2 growth layer, receiving
a pore water supply from the sediment. As the nodules continue to uplift [7], they receive
water and material supply from the bottom deep-sea water [1], leading to the development
of the L3 growth layer.

@
@R 4 @

L2

L3

L4
4-MnO,
10 A-vernadite
todorokite

Figure 8. Schematic diagram of shallow buried nodule and surface nodule growth model in the
western part of CCFZ. The surface nodules develop a three-layer structure, with their original
development positions located on the surface of the sediment. Shallow buried nodules are products of
the continued growth of surface nodules after being buried. The relatively sub-oxidized sedimentary
environment causes the formation of todorokite in the outer layer of shallow buried nodules. The
high Mn flux and differences in mineral composition result in relatively poor elements such as Ni,
Mg, Co, Ca, etc. in shallowly buried nodules.

After that, local increases in sedimentation rate or tectonic activity may have influenced
some nodules to be buried within the sediments. Influenced by large seasonal variations in
primary productivity, the increase in organic carbon flux at the seafloor could lead to an
increase in oxygen consumption, which could further result in the significant reduction of
MnOQO;, buried nodules continue to grow above the OSF.

Note that this study is only based on the analysis of two nodules (B09 and S12).
Important scientific conclusions and the geochemical model of the pore water-sediment-
nodules reaction must be confirmed on a larger population of samples.

6. Conclusions

This study aims to clarify the mineral composition, elemental geochemical behavior,
and formation processes of buried polymetallic nodules in the western part of CCFZ. The
buried nodules were further classified into three growth layers: L1 (hydrogenetic), L2 (oxic
diagenetic), and L3 (hydrogenetic). Additionally, a new oxic—suboxic diagenetic type, L4,
was identified, emerging from L3.

L4 shows higher contents of Mn, Li, and W, while the contents of Fe, Co, REE, Sc, Pb,
Ti, Ni, and Mg are relatively lower. We suggest that L4 could not be affected by the bottom
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water source. The presence of todorokite and the high flux of Mn?* in the sediment pore
water compete with other metal elements to enter the lattice of manganate, thereby leading
to a significant difference in elemental content between the two diagenetic layers.

An instantaneous increase in surface primary productivity could result in a temporary
rise in oxygenated sediment flux (OSF), enabling the upward movement of Mn?* to sup-
port the growth of L4. The instantaneous changes in the sedimentary environment may
ultimately result in alternating deposition of hydrogenetic, oxic diagenetic, and suboxic
diagenetic processes within the nodules.
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