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Abstract: The mining sector actively seeks to improve operational processes and manage residual
materials, especially in areas used for heap leaching disposal. The flowability of residues following
deposition can have an impact on storage capacity, productivity, and workers’ safety. In this study,
an artificial neural network (ANN) approach is applied to evaluate the accuracy of three models
in predicting the flowability of spent heap leach when it is discharged into the dump, considering
three or five segregation categories. The models with five categories exhibited the highest level
of accuracy, with learning responses ranging from 72% to 78% and predictions from 88% to 96%.
These indicate that ANN models have the potential to be a decision-making tool for the discharge
strategy in the dump. Modules containing lithologies such as clays and phyllosilicates exhibited
increased susceptibility to separation due to their water retention capacity, which negatively impacted
their permeability and conductivity. The decomposition of iron oxide, along with clays and low
hardness, led to the formation of fines, limited permeability, and inadequate solution drainage. Rock
competence and low formation of fines provide good permeability, and better drainage conditions
for the solution, and help maintain the stability of the spent heap leach in the dump.

Keywords: mineral extraction; deep learning; process control; prediction accuracy; artificial neural
networks; mineral waste disposal; heap leaching piles

1. Introduction

The mining industry is continuously adjusting to the challenges posed by low-grade
deposits and the need to process larger quantities of material for the extraction of the
metal of interest, consequently increasing the amount of waste that includes sterile material
(without economic value) and unwanted by-products [1]. For this reason, more attention is
placed on the study of minerals that are difficult to treat both chemically and physically [2]
and the implementation of new sustainable solutions to improve waste management
practices [3]. The process of benefiting copper minerals is carried out according to the
characteristics of the ore (e.g., oxides or mixed with secondary sulphides) generally treated
by hydrometallurgy processes [4,5] where a selective dissolution of the mineral occurs
through leaching, following solvent extraction and electro-winning to be recovered as a
cathode [6]. In the leaching stage, a mass transfer of the element of interest is dependent
on the hydraulic flow regime of the fluid and the physicochemical reactions present in the
system [7].

Currently, there is a strong presence of hydrometallurgical processes in Chile estimated
in 60% of the mining plants [8] with the heap leaching process being part of refined copper
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production representing around 19.6% of the world’s copper production [9]. Due to the
decreasing availability of high-grade ores, research is mostly focused on the processing
of challenging low-grade ores [10]. Among the several technologies, the heap leaching
method is widely employed due to its straightforwardness, minimal environmental impact,
and cost-effectiveness. However, further research is necessary to optimise it, as the effects of
ore heterogeneities are observed to change over time, in relation to their physical, chemical,
and mineralogical features [11,12].

The operation in the leaching modules directly affects the characteristics of the leaching
waste debris or spent heap leach. As described by Ghasemzadeh et al. [13], variables such
as the height of the heap, particle size distribution, surface roughness, bulk density, acid
concentration, and irrigation rate can influence the behaviour and structure of the spent
heap leach due to physicochemical interactions modifying the fluid acidity, plasticity, and
permeability. This last effect can change the percentage of fine granules because of chemical
and mechanical wear and tear or blockage, causing migration and segregation due to a lack
of porosity. Elements like calcium, magnesium, manganese, and iron are often to blame [12].
It can also cause material compaction due to its own weight and liquefaction phenomenon
during the transport of the spent heap leach on conveyor belts to final deposition. The
higher number of mineralogical alteration zones leads to a higher clay content, which
changes the drainage solution [14]. This changes the material’s permeability, pore sizes,
and hydraulic conductivity, which in turn changes the granulometric sensitivity. Another
relevant factor corresponds to the mineralogical content and clay, affecting permeability,
rock competition, and acid consumption. A study by Liu et al. [15] used near-infrared
spectroscopy (NIR) to find units with low permeability and high rock competition. These
units included plagioclase, chlorite, and calcite. Sericite, kaolinite, quartz, and szomolnokite
were also present.

Numerous authors have demonstrated the importance of geotechnical characterization
in maintaining process stability. For example, Watanabe et al. [16] focused on analysing the
chemical comminution and identifying the modification of the permeability and the static
liquefaction, where it was demonstrated that a high content of fines decreases the drainage
capacity of the minerals by decreasing the permeability, altering the solid-leaching solution
contact, and causing chemical crushing that increases the presence of fine particles and
supports solid segregation. According to Bard [17], when spent heap leach is discharged,
static liquefaction happens. This causes a loss of shear strength when going from a drained
load condition to an undrained one. This leads to an increase in pore pressure and the
product of its own weight in materials with fine granulometry (20% less than 75 µm).

The disposal of spent heap leach requires specific engineering designs that depend
directly on the operating and location conditions [14]. The material can be stacked at levels
that reach an average of 4 m in height and that can generate dumps with a height of over
70 m [18,19]. It is common to obtain, as a result of the stacking process, that spent heap leach
presents different segregation behaviours, making it difficult to discharge into the dump and
making it impossible to configure the original design. An area is considered in the original
dump design where the stacking must meet important requirements, such as extensive
land breadth and a slope between 0.7% and 5%, to ensure pile stability and allow for the
collection of drained flow [20]. In many cases, the design cannot be applied, requiring a
request for the extension of the dump to the adjoining land to meet the demand for the
available volume for the spent heap leach disposal and comply with the environmental
and easement limits. The segregation and limited drainage of the spent heap leach have
also generated problems associated with equipment failures, such as the misalignment
of conveyor belts due to the instability generated by the material at different moisture
concentrations, or in the spreader equipment or tripper, which, transported over the
deposited spent heap leach, can produce geotechnical problems, generating subsidence of
this equipment, which has resulted in stoppages and delays in the removal and unloading
of the material, which can lead to the stacking bridge approaching the removal bridge,
causing that the stacker reaches the safety distance to the bucket wheel (generally 150 m,



Minerals 2024, 14, 40 3 of 19

preventing the formation of new modules to be leached. Nowadays, the mining industry
seeks more complex ores and looks for improvements in both the operation-process line
and the disposal of the rejected materials.

In recent years, researchers have used numerical and CFD (computational fluid dynam-
ics) simulation alongside traditional analysis, yielding interesting results. However, these
methods present limitations due to uncertainties caused by computing values and their
dependence on the approximations made [21]. Researchers have applied deep learning
methods like artificial neural networks (ANN) to tasks such as predicting and regressing
surface quality in flotation and heap leaching processes. For instance, Zadeh [22] used
fuzzy logic, Bergh et al. [23], Correa et al. [24], Umucu et al. [25], and Leiva et al. [26] did
research on mineral extraction that compares how well Bayesian networks and ANNs
work. In the case of applying computational techniques in the copper industry, Haghighi
et al. [27] analysed the low-grade mineral identification and reduction of production costs,
and in 2015, they improved the copper recovery obtained through leaching by ANN pre-
diction [28]. Salmani et al. [29] use an ANN to analyse the copper flotation process to
predict copper float rates under different operating conditions, considering different doses
of chemical reagents, feed rate, and particle size, obtaining a quality prediction in the test
process of 93%.

When spent heap leaches are removed and transported to their final destination, their
flowability (or segregation) characteristics can influence the material stacking stability,
which affects the original storage capacity, production, and worker safety. This study aims
to develop accurate models that can predict the segregation behaviour of the spent heap
leach. These models will assist in making strategic decisions regarding the discharge and
final disposal of this material. Additionally, they will help optimise the use of the dump
area, ensuring it is efficiently adapted to daily operations. We created three artificial neural
network (ANN) models to predict the segregation categories that may occur when the
spent heap leach is discharged in the dump. These models were developed using seven
input variables related to mineralogy, lithology, granulometry, agglomeration conditions,
drainage time, cover conditions, and moisture.

2. Methodology
2.1. ANN Application Background

Artificial neural networks (ANN) is a deep learning tool inspired by the functioning
of the human nervous system, using interconnected artificial neurons as a base [30,31].
A classic structure of a neural network is made up of an input layer, a hidden layer,
and an output layer where the organisation of the present layers is specified [32]. This
study follows the workflow of a Gaussian naïve Bayes classification method. The dataset
comprises continuous variables assumed to have a Gaussian distribution. The classification
procedure excludes dependency among the input variables. The input variables (Xi) to the
neurons are responsible for delivering the initial information to the network, where i goes
from 1 to n, and considering a weighting (Wij) where j ranges from 1 to n depending on the
input variables. This weight is a probabilistic value based on the Gaussian basis function
W (Equation (1)) that indicates the intensity with which the variable affects the neuron and
the possible response of the process [24]. In the input layer, the values are first standardised
by subtracting the sample mean of the n training cases and by dividing over the sample
standard deviation. The procedure continues in the pattern layer, where the contribution of
Xi to the probability density function W in their correspondent group j is calculated. For
this, it uses the activation function gij (Equation (2)), which quantifies the contribution of
the ith value of X to estimate the density function W for the group j to which it belongs
(Equation (1)) [30,33,34]. Artificial neurons in the hidden layer determine their activation
state using an activation or transfer function. This function operates within ranges of −1
to 1 or 0 to 1, where a value of 1 represents a fully active neuron, while −1 or 0 indicates
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complete inactivity [32]. The information about all the features in each training group is
represented by Equation (3), which is further processed in the summary layer [33,35,36].

W = exp

(
∥ X − µ ∥2

σ2

)
(1)

gij = W
(

X − Xi
φ

)
(2)

gj(X) =
1
nj

∑n
i=1 gij (3)

where:
i: Corresponds to input values.
j: Corresponds to output groups.
Xi: input variable in activation function.
nj: Number of observations belonging to the output group j.
W: Weight function (Gaussian basis or probability density function).
φ: Scaling parameter.
Only the scaling parameter (φ) can be varied, which affects how quickly the influence

of an observation on the density at point X decays as its distance to this point increases,
starting from a value of 1, but varying in search of maximising the percentage of correctly
classified observations [33,37]. The misclassifying cost, cj, refers to the misclassifying effect
of a predictive response, and hj is the probability that an observation belongs to a response
group without considering the input variables, representing a relative proportion of the
sample. This is because, in some cases, it is more detrimental to classify an observation
incorrectly in one group than in another. The purpose of this layer is to assign a score to
each output group that will later be directed to the output layer. This is done by multiplying
the estimated density function by the prior probability and the cost of classifying incorrectly,
as described in Equation (4). For this study, we use a non-differential misclassification cost
where the probability of misclassification is the same for all the study groups [33,36].

Scorej = hjcjgj(X) (4)

where:
hj: Prior probability.
cj: Misclassification cost.
gj(X): Probability density function.
Jackknifing re-sampling was used for cross-validation, removing one point at a time

from training groups and determining the frequency of the correct classification. The
jackknifing procedure seeks to reduce biases based on logarithmic dispersion methods by
randomly eliminating part of the data to make valid interferences for those values that are
not distributed linearly [38,39]. As a result, in the output layer, the answer to the problem
is provided using binary neurons, which activate if the score j > score k when k is different
from j; otherwise, they are inactive. The number of responses in the output layer is defined
by the number of neurons being used, similar to the characteristics of the input layer [40].
Figure 1 represents a conceptual map of the network operation.

ANN can be used to solve regression problems by calculating a continuous function
of the input variables or classification problems by producing discrete function values that
correspond to a certain class using supervised and unsupervised learning. In these circum-
stances, one tries to adapt the input variable weights such that the procedure produces
the desired response for the model’s training and verification [41]. The neural network in
supervised learning determines the difference between the information provided by the
input signals and the output by introducing a set of patterns that contain system inputs
and process responses. In unsupervised learning, the neural network simply considers
the input data, ignoring the signal it has to provide. It then compares the data it receives
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to find common features, correlations, and patterns in order to assign synaptic weights
and ultimately produce a final signal output response. The classification analysis using
nearest neighbours is based on the proximity of an initial data point, assuming that similar
behavioural patterns may be identified in the resulting response [33,35]. The training set
values are preserved, so that if an error occurs, it is mostly observed with the nearest neigh-
bour. The model will generate two predictions: the first prediction will be the response
with the highest probability, which corresponds to the nearest neighbour, and the second
prediction will be the response with the second highest probability, corresponding to the
second nearest neighbour.
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2.2. Case Study Background

The study utilised both operational and laboratory datasets obtained from a copper
mine in Chile. The mine employs a dynamic heap leaching method, with a height ranging
from 3.8 to 4.0 m, and a leaching cycle lasting 84 days. The utilisation of sulfuric acid is
affected by the particle size distribution within the range of 18% to 150 µm, with concen-
trations ranging from 4.5 to 8.5 g/L [20]. The drainage period begins when the irrigation
of heap leaching ceases and concludes when the removal of spent heap leach begins. The
intended duration for this procedure is 4 days. However, operational difficulties related to
material removal can cause delays in certain modules, resulting in an extended drainage
period that may exceed 13 days before proceeding to the removal stage. The spent heap
leach is extracted and conveyed to a dump located 4500 m away from the site. The dump
has an average moisture content of 13.5%, a surface permeability of 2 × 10−3 cm/s, and
a pH ranging from 1.3 to 1.5 in the drainage/pore water. The spent heap-leach material
in this study contains about 12 to 46% of clays, and hydrated phyllosilicates such as bi-
otite, muscovite, and chlorite, with kaolinite and muscovite having a significant impact on
moisture retention. The particle size is one of the most important factors of the process [2],
and for this case, particles can range from 12 to 25 mm. (P80 pre-leach of 12.7 mm). The
dump contains cuttings that deposit between 27 and 49% of the fines under 75 µm. The
site operations measure the moisture level in the spent heap leach, which ranges from
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8% to 17.6%. However, there were instances where the moisture content reached 22%,
resulting in an average moisture content of 13%. This higher moisture content may cause
the material to flow over wider areas than initially projected during unloading, as per the
design. The landfill has a total area of 6.36 million square metres and has two layers for
environmental protection. The initial layer consists of a 16- to 24-m-thick layer of gravel
with a particle size distribution (P80) ranging from 38.1 to 50.8 mm. This layer effectively
manages the phreatic level and prevents excessive saturation [20]. Subsequently, a layer
of impermeable andesite lava volcanic rock is applied as a protective covering. This rock
contains less than 5% non-organic material and is devoid of acidic solutions. The dump
has a maximum capacity of 726 million tonnes, which needs to be piled in layers at the
deposition site. However, the implementation of a 5-level storage system was not possible
due to the limited possibilities for stacking the segregated material along the dump. This
condition prompts the increased utilisation of the basal area of the landfill, requiring an
expansion of the dump surface in order to uphold its intended lifespan of 23 years. The
dump incorporates a drainage system that utilises granular material sourced from the mine
tailings. The granular material has a maximum size of 305 mm and contains less than 5%
particles [42].

3. Experimental Design
3.1. Dataset

The approach collects available data from previous studies and operating conditions.
To generate the dataset, we included operational data from 122 copper-oxide ore heap
leaching modules in 6 months of operation, which also includes the characterization
of their correspondent spent leach at the time of discharge in the dump. In this study,
26 variables were analysed as presented in Figure 2, which are grouped into mineralogical
characteristics, lithology, drainage time, moisture, granulometry, and channels present in
the cover, in addition to considering conditions used in stages prior to leaching, such as
dosages used in agglomeration.

The characterization and operation data were obtained from the processing plant,
and analyses were done in the laboratory, including mineralogical data, lithology, particle
size (coarse and fine), solution drainage conditions from the modules, impermeable layer
conditions, and moisture data from the spent heap leach.

For the creation of the dataset, we considered the following assumptions:

i. The dump slope in the discharge of the spent heap leach was first estimated and fixed
as constant due to no significant variability;

ii. The speed and capacity of the conveyor belts were fixed constant, it is a standardised
process without failures or stop times, and it does not vary significantly;

iii. Having a regular movement during the operation, the inclination of the discharge
plume is considered constant, not a significant variable in the behaviour since it does
not generate variation in the physical behaviour analysed.

For the input of the ANN model, we carefully chose the most pertinent variables that
have an impact on the spent heap leach during disposal. These variables are categorised
and shown in Figure 2. For training and corroboration of the models, Figure 3 describes the
five spent heap leach segregation categories used in the study. The flowability observed
in the material disposal, recorded hourly by the spreader, serves as the foundation for
the categorization. Subsequently, data from 30 modules covering one month of opera-
tion will be utilised to validate the constructed predictive model and identify findings
and recommendations.
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3.2. Segregation Categories

The evaluation of segregation quality in the discharged spent heap leach was per-
formed, resulting in the identification of five categories (Figure 3) based on the behaviour
of the material. Category 1 represents the driest material with the least fluidity, while
category 5 corresponds to wet material with complete fluidity. The compilation of this data
is generated at the time of unloading the spent heap leach from the spreader, consider-



Minerals 2024, 14, 40 8 of 19

ing the corresponding category, the height of the plume, the slope of the dump, and the
transported flow.

3.3. Data Analysis

Once the metadata is generated, an analysis is conducted to establish strategies for
the data acquired in the field and from the available variables from the operation plant,
plus a benchmarking of the behaviour of spent heap leach that considers four mining
companies close to the operation of the case studied to identify relevant variables. As
shown in Figure 2, the mineralogical characteristics, granulometry, drain time, and moisture
are considered critical factors that affect the flowability of the deposit of the spent heap
leach. The postulates of López et al. [20], Núñez [43], and Bard [17] reinforce the idea
that the fine grain size factor and distribution within a module can significantly affect
permeability, which is crucial for constructing predictive models. Once the database has
been generated, the predictive models designed are organised (Figure 4) following the next
response variables: Model 1 with 5 response variables (solid, semi-solid, intermediate, semi-
liquid, and liquid), model 2 with 3 response variables (solid, intermediate, and liquid), both
considering the general behaviour of the module, and model 3 using 5 response variables
but based on the behaviour by module advance. This corresponds to the monitoring
of mineralogical conditions in the modules carried out as the process progresses, which
corresponds to a range of 12 to 14 measurements to exceed 1500 conditions to use as a
database. The comparison regarding general and advanced databases also seeks to analyse
the prediction behaviour generated by different sizes of datasets, with the dataset used in
models 1 and 2 being significantly smaller compared to that generated from the advance,
and corroborate that by analysing nonlinear behaviours in small datasets, it is possible to
aim at finding causal relationships, particularly using ANN as presented by Pasini [44],
Condon [45], and Feng et al. [46]. The software RAPIDMINER Studio Version 9.10 [47]
is used to construct predictive models. First, we used a supervised method to train the
neural network by looking at all the possible outcomes. Then, we used an unsupervised
method to let the network make its own predictions, and finally, we checked that the
predictions were correct. Initially, we use supervised training to determine the process
response based on seven predictive variables (Figure 2). These variables are chosen from
analyses conducted with the metallurgy department of the mining company, benchmarking
of other mining processes with similar characteristics, and correlation analysis associated
with the segregation categories of the spent heap leach. The combination of variables is
then expanded based on the generation of the highest percentage of success in network
training. A statistical summary of these variables is presented in Table 1.
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Table 1. Statistical summary of the variables used in the models.

Variable ID Variable Name Average Standard
Deviation Low Range Medium

Range High Range

1 % Poor quality lithology 8.6 10.7 0.0 4.0 50.0
2 % Intermediate lithology 48.7 27.1 0.0 49.5 100.0
3 % High presence of clays and silicates 43.5 27.8 0.0 41.3 100.0
4 % Low presence of sulphates 8.2 14.9 0.0 0.0 77.6
5 % Medium presence of sulphates 1.0 3.7 0.0 0.0 30.8
6 % High presence of sulphates 0.8 2.8 0.0 0.0 23.5
7 % High acid consumption 32.7 25.9 0.0 31.3 100.0
8 % Low acid consumption 13.8 18.6 0.0 4.0 100.0
9 % Phyllosilicates 4.3 1.7 0.0 4.3 8.4

10 % Iron oxide 2.1 1.1 0.0 2.1 6.2
11 % Sulphate 4.3 7.1 0.0 0.4 46.0
12 % Mesh Fines 2 (−75 µm) 11.8 3.7 6.7 11.0 23.9
13 Drain Time (days) 7 3 3 7 16

The artificial neural network (ANN) scheme used in this study (Figure 5) consists of a
pattern layer with 10 neurons, which receives input data corresponding to the variables
selected for each model, assigns them a weight (Wi), and processes it through various
connections. Five neurons in a summatory cell combine the output of each neuron in the
pattern layer. This summatory cell computes the weighted sum of the inputs and applies an
activation function. Finally, the output layer consists of 5 neurons based on the segregation
categories that generate the network’s response based on the computed values from the
summatory cell.
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In the first stage, a training phase is conducted to build models that can successfully
categorise flowability. An optimised activation function is implemented using jackknifing
for models 1 and 2, while for the third model, the nearest neighbour approach is used.
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The second stage corresponds to evaluating the models and identifying how the chosen
variables influence the prediction, considering different amounts of fluency categories.

4. Results and Discussion

Figure 6 displays a multivariate analysis that presents density graphs on the major
diagonal. These graphs demonstrate the correlations among the variables utilised in the
database for models 1 and 2, which are related to the overall behaviour of the modules.
From a statistical analysis, the intermediate lithology and poor-quality lithology variables
exhibit higher average values compared to the other parameters. The sulphate percentage
and poor-quality lithology variables stand out as the most variable parameters. There is a
strong correlation between intermediate lithology and variables such as sulphate percent-
age, iron oxide, and plagioclase, indicating their interdependence. Mesh fines 2 percentage
shows a moderate positive correlation with iron oxide and plagioclase, implying that higher
levels of these components lead to increased fines. Moisture exhibits a positive correlation
with iron oxide and plagioclase, implying an association between these variables and
increasing the moisture content in the module.
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The data correlation implies that the most important correlation can be observed
between intermediate lithology and sulphate percentage, iron oxide, and plagioclase vari-
ables. This correlation highlights the potential trade-off between poor-quality lithology
and moisture content, indicating that as one variable worsens, the other may improve. It
may be worth investigating the specific factors that contribute to this negative correlation
to identify strategies for optimising both variables simultaneously.

Regarding the correlation present in the variables used in the database for model
3 related to the advanced behaviour of the modules (Figure 7), it was observed that in-
termediate lithology with a high presence of clays and silicates had a positive correlation
but a relatively low impact on segregation behaviour. Sulphate presence exhibited a low
correlation but high weight in the ANN models, influencing the segregation of the spent
heap leach. This is explained considering that its presence occurs in a range between 1 and
30%. Iron oxide showed a positive correlation but with small weights in the models. On the
other hand, phyllosilicates had a high ANN weight, signifying a significant impact on the
ANN model’s output. Poor-quality lithology that considers the presence of granodioritic
minerals with potassium alterations and drain time as variables both had moderate correla-
tions and ANN weights. With this, the importance of considering the composition of clays,
silicates, and sulphates in understanding acid consumption and drain time is detected.
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Figure 8 presents a comparison between the correlation and ANN weights for the
variables used in the models. Positive correlation weights suggest a positive relationship
and higher ANN weights indicate a stronger influence of the variable on the model’s output.
In the general module data, variables such as intermediate lithology, sulphate percentage,
and phyllosilicates exhibited higher correlation weights, indicating a moderate to strong
linear relationship with the target variable, whereas the ANN weights varied across these
variables. Phyllosilicates had the highest ANN weight, suggesting an important impact
on the prediction models. In the advanced module, data variables such as the high per-
centage presence of clays and silicates, the high percentage presence of sulphates, and the
medium percentage presence of sulphates demonstrate positive correlation weights. The
ANN weights for these variables varied as well, with the medium percentage presence of
sulphates having the highest weight, indicating its strong influence in the ANN model.

Minerals 2024, 14, x FOR PEER REVIEW 11 of 19 
 

 

 
Figure 7. Correlation between the variables used in model 3 by multivariable analysis. 

Figure 8 presents a comparison between the correlation and ANN weights for the 
variables used in the models. Positive correlation weights suggest a positive relationship 
and higher ANN weights indicate a stronger influence of the variable on the model’s out-
put. In the general module data, variables such as intermediate lithology, sulphate per-
centage, and phyllosilicates exhibited higher correlation weights, indicating a moderate 
to strong linear relationship with the target variable, whereas the ANN weights varied 
across these variables. Phyllosilicates had the highest ANN weight, suggesting an im-
portant impact on the prediction models. In the advanced module, data variables such as 
the high percentage presence of clays and silicates, the high percentage presence of sul-
phates, and the medium percentage presence of sulphates demonstrate positive correla-
tion weights. The ANN weights for these variables varied as well, with the medium per-
centage presence of sulphates having the highest weight, indicating its strong influence in 
the ANN model.  

 
Figure 8. Correlation and ANN weight comparison for general and advanced modules variables. 

% High presence of clays and sil

% Low presence of sulphates

% Medium presence of sulphates

% High presence of sulphates

% High acid consumption

% Low acid consumption

Drain Time

Figure 8. Correlation and ANN weight comparison for general and advanced modules variables.



Minerals 2024, 14, 40 12 of 19

4.1. ANN Model Training Stage

The training result with seven predictor variables is presented in Table 2, where model
1 obtained a 72.5% correct classification in training considering the general behaviour of the
modules being applied to 98 cases, with a spacing parameter optimised by jackknifing of
0.1109. Model 2, considering the same predictor variables and cases used for the generation
of model 1, with a spacing parameter optimised during training by jackknifing of 0.0429,
obtains a success rate of 73.47%. The training of model 3 was incremented to 5 response
categories (solid, semi-solid, intermediate semi-liquid, and liquid) and elaborated consider-
ing the percentages of stacking and removal of the modules, reaching 78.10% of correctly
classified cases for a total of 1575 cases analysed and using the nearest neighbour as a
spacing parameter.

Table 2. Classification training results for models 1, 2 and 3.

Model 1 Model 2 Model 3

Spent Heap Leach
Behaviour Categories Cases

Percentage
Correctly

Classified (%)
Cases

Percentage
Correctly

Classified (%)
Cases

Percentage
Correctly

Classified (%)

Solid 1 0.0 10 77.1 78 73.1
Semi-solid 9 77.8 - - 134 59.7

Intermediate 48 83.3 48 70.0 618 85.6
Semi-liquid 32 56.3 - - 610 77.1

Liquid 8 75.0 40 70.0 135 69.6

Total 98 72.5 98 73.5 1575 78.1

The error obtained in the model classification occurs when spent heap leach data
is interpreted as a contiguous category. For model 1, of the 48 cases identified with
intermediate flow and segregation, forty were correctly classified, three were classified as
semi-solid, and five as semi-liquid.

For the case of semi-liquid behaviour, of the 32 cases studied, 18 were correctly
classified, 13 were classified as intermediate behaviour, and 1 was liquid behaviour. This
situation confirms what was expressed by Alom et al. [41], where the error can be minimised
as more cases are entered into the data for training, where the errors mostly occur with
neighbouring behaviours that the spent heap leach presents.

Model 2 presents a better classification due to the reduction of response variables, and
the errors produced mostly occur in the closest category. Model 3 is the one that achieves
a better classification of the behaviour of the unloading spent related to the cases used to
train the network, as expressed by Albalasmeh et al. [48], minimising the error, covering
all the feasible options that may occur, adjusting the synaptic weights of the neurons, and
modifying the outputs according to the error made in each learning step until getting as
close as possible to the desired output.

4.2. ANN Models Prediction and Corroboration

Once the training of the three models has been carried out, an unsupervised classifica-
tion method is applied in order to analyse the level of prediction achieved. To analyse the
behaviour capacity, two levels of classification response probability are applied, the first
corresponding to the nearest neighbour, that is, the response with the highest probability
of being obtained, and the second corresponding to the second closest neighbour, that
is, the answer with the second highest probability of coming out. In the results given in
Tables 3 and 4, the percentage correctly classified difference for the intermediate category
is approximately 28.5%, indicating a significant improvement in model 3’s classification
accuracy for this category. This suggests that model 3 was preferable at classifying spent
heap leach with intermediate behaviour, achieving a higher rate of accuracy. In the category
of semi-liquids, the percentage difference is approximately 61.5%, indicating that model
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3’s correct classification percentage has increased, suggesting that model 3 performed
significantly better than model 1 with 5 categories.

Table 3. Corroboration results for models 1, 2, and 3 considering the 1st highest probabilities.

Model 1 Model 2 Model 3

Spent Heap Leach
Behaviour Categories Cases (%)

Percentage
Correctly

Classified (%)
Cases (%)

Percentage
Correctly

Classified (%)
Cases (%)

Percentage
Correctly

Classified (%)

Solid 0.0 0.0 3.9 100.0 1.0 100.0
Semi-solid 3.9 100.0 - - 1.0 100.0

Intermediate 69.2 77.8 69.2 66.7 40.1 75.3
Semi-liquid 26.9 42.9 - - 27.1 65.4

Liquid 0.0 0.0 26.9 57.1 30.7 55.9

Total 100.0 73.6 100.0 74.6 100.0 79.3

Table 4. Corroboration results for models 1, 2, and 3 considering the 1st and 2nd highest probabilities.

Model 1 Model 2 Model 3

Spent Heap Leach
Behaviour Categories Cases (%)

Percentage
Correctly

Classified (%)
Cases (%)

Percentage
Correctly

Classified (%)
Cases (%)

Percentage
Correctly

Classified (%)

Solid 0.0 0.0 3.9 100.0 1.0 100.0
Semi-solid 3.9 100.0 - - 1.0 100.0

Intermediate 69.2 100.0 69.2 100.0 40.1 100.0
Semi-liquid 26.9 85.7 - - 27.1 69.2

Liquid 0.0 0.0 26.9 100.0 30.7 88.1

Total 100.0 95.2 100.0 100.0 100.0 91.5

For the category of liquids, the percentage difference is approximately 54.3%, indi-
cating a substantial improvement in the classification accuracy of model 3. Model 1 made
90 predictions, of which it corroborated 26 cases, obtaining 73.55% certainty as the first
response. This increases to 95.24% certainty for the process considering the two predictions
corresponding to the first and second highest probability that a certain behaviour of the
spent heap leach will occur. The prediction analysis strategy of model 2 considers, like
model 1, the generation of 90 predictions obtaining 1.06% less success than that obtained
in model 1 with corroboration from 26 cases considering the first probable answer, but
this difference increasing by 4.76% considering the 2nd highest probability, where the
range of physical qualities is smaller so there are no intermediate behaviours (semi-solid
or semi-liquid), so it can be considered more drastic when making the decision. Model 2
reaches a prediction level of 100% certainty with the first and second highest probabilities,
defining strategies for both categories with the highest probability of exiting.

For model 3, considering the behaviour due to module advancement, 192 corrobora-
tions were conducted, obtaining a 79.33% accuracy in the prediction, considering the first
highest probability of a certain category occurring, increasing to 91.47% when considering
two probabilities of occurrence. The errors produced in the models correspond to the
responses given to the categories close to the true response, mostly in the intermediate
behaviour and the semi-solid and semi-liquid classifications.

The error generated under the 5 categories provides an opportunity for correction
during the operation since these categories are contiguous and defined with similar spent
heap leach discharge strategies, thereby not affecting the space allocated to the dump.
These results demonstrate that it is indeed possible with the currently monitored variables
and with the application of ANN to obtain a high degree of prediction as the new data
related to spent heap leach is integrated into the original data. Model 3 performed slightly
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better than models 1 and 2 in terms of the overall percentage correctly classified, which
leads us to consider that the use of a small dataset can be a possibility to evaluate an
ANN performance considering ensuring that the input data is diverse, covers patterns,
and is relevant to the behaviour. There are variations in the accuracy for the segregation
categories; the solid category improved significantly, semi-solid and liquid dropped in
the larger dataset, and the accuracy for the intermediate segregation category remained
consistently high in both models. Figure 9 presents the prediction percentage for the three
models, considering the training and prediction stages.
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If we compared the predictive models based on evaluation metrics, the results indicate
that the ANN advance module outperforms the ANN general module in terms of predictive
performance but considering the differences in cases used in the database, it is possible
to say that the ANN general module results can be considered “not as strong” as the
predictions obtained with the advance module.

The ANN advance module demonstrates a lower root mean squared error (RMSE)
of 0.819 ± 0.023 compared to the RMSE of 0.853 ± 0.278 for the ANN general module,
indicating better accuracy in its predictions. The ANN advance module model also achieves
better accuracy and superior performance for average absolute error (0.613 ± 0.016 vs.
0.682 ± 0.012) and relative error (16.12% ± 0.28% compared to 17.47% ± 0.31%). Addition-
ally, the ANN advance module exhibits a higher correlation of 0.429 ± 0.083, while the
ANN general module correlates 0.191 ± 0.074, indicating a stronger relationship between
the predicted variables and actual segregation categories.

Analysing the weight given by the variables at the prediction level, the presence of
fines in the ore is one of the most influential variables that explain the behaviour of the
spent heap leach. As mentioned by López et al. [20], the particle size profile for the leaching
process seeks to maximise the surface contact area in order to maximise the extraction of the
element of interest, which results in changes in the physicochemical characteristics of the
mineral that can affect the heap permeability. In this study, the granulometry in this process
is between 11 and 18% under 75 µm (200 Tyler mesh), reaching a P80 of 12.7 mm, which
affects the behaviour of the material in the dump. If the fines percentage increases, greater
compaction is generated, decreasing the size of the pores, and reducing their hydraulic
conductivity, as also established by Marchant [14], preventing good drainage in the piles.
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Other variables, such as the fluctuation in ferrous sulphate concentration (low, medium,
and high), have been recognised as significant factors for the model. This is due to the
presence of them exceeding 30% in certain modules, resulting in a spent heap leach with
minimal rock competition and high solubility in water, leading to chemical crushing. The
presence of phyllosilicates as the major component leads to a rise in the fines percentage, as
demonstrated by Bard et al. [17]. This drop in particle sizes adversely affects permeability,
resulting in a reduced drainage capacity.

The lithology of intermediate quality is primarily composed of limonite and clays,
such as muscovite and kaolinite. This lithology significantly affects the model due to its
low permeability and capacity to undergo chemical crushing, facilitated by the presence of
fine-grained iron oxide and low hardness (1.5–1.6 on the Mohs scale). When lithologies
of good quality, such as granodiorite with potassium are present, it results in strong rock
competition, preventing the generation of fine materials. This leads to excellent permeability
within the material, improved hydraulic conductivity, and efficient drainage of solutions.
Phyllosilicates play a crucial role in transporting water, as indicated by Ganzhorn et al. [49],
highlighting their significance as a constant factor throughout the three models. In models
1 and 2, the inclusion of sulphates as a variable significantly improves the accuracy of
the model. This is because sulphates generate a substantial number of fines, which have
a physical and chemical impact on the behaviour of spent heap leach by affecting its
permeability. Minerals with relatively low hardness, such as brochantite (3.5 to 4.0) [50]
and chalcanthite (2.5), can be disintegrated on the surface [51].

4.3. Segregation Behaviour and Moisture Relation

As it was established by Pieretti et al. [52], the moisture content of the spent heap
leach is one of the most influential variables in the behaviour of these materials in their
operational transport and deposition. The use of this variable as input data depends on
the time of availability of this characterization, and for the case studied, it is performed
once the module has been downloaded, with an average waiting period of 7 days for
analysis. This situation means that currently, it is not possible to use this variable as part
of a previous predictive analysis if the result delivery times cannot be improved. When
analysing the behaviour of the moisture percentage against the segregation behaviour as
shown in Figure 10, there is a clear relationship, whereas as the moisture increases, the
quality of the spent heap leach becomes more liquid, reaching category 5. When employing
5 response categories, the moisture present is modified to exhibit a logarithmic pattern, in
contrast to the observed polynomial.
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5. Conclusions

In this study, it was possible to verify that the application of deep learning is feasible to
predict the behaviour of the spent heap leach when they are dumped. The neural network
method is efficient for this kind of analysis prediction, with 95.24% accuracy for model 1
when the two highest probabilities of data correlation are taken into account. From the
three models generated, the models using five variables as a classification response are
more reliable as they have intermediate segregation behaviours that can help minimise
prediction errors by designating similar discharge strategies. The versatility of using an
artificial neural network in this type of operation considers the option of using two models
together using different predictor variables to know the general segregation by the spent
heap leach disposal. The errors produced in the models occur with the closest neighbour to
the correct category; therefore, it would not affect the discharge strategy of the spent heap
leach in the dump.

However, when the moisture content is over 8%, the material flows using larger areas
than originally estimated by design. Currently, considering the moisture percentage as a
predictive variable in a day-by-day operation is not possible because its measurement is
performed once the modules are removed, and the results of the chemical analysis are not
available before the spent heap leach is discarded in the dump. However, since the objective
of this work was to identify the most relevant variables to predict behaviours at the time
of depositing the spent heap leach, moisture has a clear relationship with segregation and
flows; therefore, it must be used as a parameter to consider for the elaboration of shifting.
Evaluating a small dataset with adequate input data can be the first approach to assessing
segregation behaviour. Although a larger dataset generally yields more reliable and robust
results, it has been identified that carefully designing, representing, and studying a small
dataset beforehand can provide valuable insights into the classification performance.

The modules with a high presence of sulphate showed poor rock competence and
great ability to form fines, causing permeability problems and preventing proper drainage
of the leach solution, and the spent heap leach will have less stability in the dump. The
high presence of clays and silicates has an important effect on permeability, inhibiting the
hydraulic conductivity of the modules, as clays have a high capacity to retain moisture.
The presence of fine granulometry in the modules (higher than 18% −150 µm) is one of the
variables with the greatest weight when developing the models, since a high presence in the
module directly affects the permeability of the bed, decreasing the hydraulic conductivity
and thus the fluidity. The flowability is better for the lithologies considered to be of good
quality, formed with granodiorite and potassium alterations, providing good permeability
with high rock competence and low formation of fines. With a higher presence of lithologies
in the module, better drainage conditions for the solution will be obtained, helping to
maintain the stability of the spent heap leach in the dump. Phyllosilicates provide fine
granulometry to the modules and are considered water carriers. They cause solution
drainage problems, producing a drainage deficit and causing spent heap leach with high
segregation. In the presence of iron oxides presenting clays as impurities with low hardness,
a scenario of easy disintegration is presented, causing fines, low permeability, and a deficit
in the drainage of the solution.

6. Recommendations

Using this methodology, it is relevant to obtain more data over time to complement
the metadata and provide a deeper level of characterization associated with the composites
that make up the modules. To use the moisture percentage as a predictive variable, a
24–48 h sampling procedure must be established after the module irrigation ends for
the characterization response time to occur before the module removal and to consider
with robust information the possible relationship with the spent heap leach behaviour in
the dump.
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