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Abstract: The influence of the paleo-Tethys or paleo-Pacific oceanic plate subduction on Early Tri-

assic South China has long been debated. We have studied the zircon U-Th-Hf isotopes, trace ele-

ments, and whole-rock geochemistry of Early Triassic peraluminous granitoids in the Qinzhou Bay 

area, South China Block. LA–ICP–MS zircon U–Pb dating has revealed the Jiuzhou granodiorites 

and Dasi-Taima granite porphyries formed between 248.32 ± 0.98 and 246.6 ± 1.1 Ma. These rocks 

are characterized by high K2O and Al2O3, and low MgO, CaO, and P2O5 contents with A/CNK = 

1.06–1.17, showing high-K calc-alkaline S-type affinities. The Early Triassic intrusive rocks and ad-

jacent silicic volcanic rocks in the Qinzhou Bay area were found to be comagmatic and derived from 

a common magma pool, detached in an undifferentiated melt instead of indicating remarkable crys-

tal‒melt separation. Although the analyzed granitoids have highly enriched zircon Hf isotopic com-

positions (εHf(t) = −23.9 to −7.8), they cannot originate solely from metasedimentary protoliths. 

Source discrimination indicators have revealed enriched lithospheric mantle-derived magma was 

also an endmember component of the S-type silicic magma, which provided a heat source for the 

crustal anatectic melting as well. We inferred the studied Early Triassic granitoids formed under the 

paleo-Tethys tectonic regime before the collision of South China and Indochina blocks, as the oce-

anic plate subduction would have created an extensional setting which further caused the mantle-

derived upwelling and volcanic eruption. 

Keywords: S-type granitoids; mantle contribution; Early Triassic; paleo-Tethys subduction; South 

China 

 

1. Introduction 

The Triassic tectonic evolution of the Asian continent is important and puzzling, per-

formed by the successive amalgamation of continental blocks such as Siberia, North 

China, South China, Indochina, and India [1–3]. The tectonic development during this 

period involved large-scale intracontinental deformation and associated magmatism, es-

pecially in the South China Block [4]. However, the tectonic setting of the Triassic South 

China Block is a point of debate, for which two main models are proposed: (i) the Andean-

type subduction of the paleo-Tethys oceanic plate followed by continent‒continent colli-

sion [4,5], and (ii) the flat-slab subduction of the paleo-Pacific oceanic plate followed by 

slab foundering and retreat [6,7]. In addition, a few studies have considered the Emeishan 

plume as a possible heat source for the high- or ultrahigh-temperature magmatism and 

coeval metamorphism that characterized this period [8,9]. 
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The voluminous Jurassic–Cretaceous granitoids and silicic volcanic rocks found in 

coastal South China reflect the history of the paleo-Pacific oceanic plate subduction [10,11]. 

By contrast, the Triassic igneous rocks in South China are dispersed and occur mainly in 

the inland region, comprising mainly of granitic intrusions with much rarer volcanic rocks 

[4]. The older Triassic igneous rocks were emplaced mainly at the southern and south-

western margins of the block, such as Hainan Island and the Qinzhou Bay area, adjacent 

to the northeastern part of the Indochina Block [12]. Here, we present a study of the geo-

chronology and geochemistry of Early Triassic S-type granitoids from the Qinzhou Bay 

area, to place constraints on their petrogenesis and tectonic setting. Our new zircon U–

Pb–Hf isotopic and whole-rock geochemical compositions allow us to constrain the timing 

and origin of the silicic magmatism. Based on these results, we examine the nature of Tri-

assic tectono-magmatic activity in South China. 

2. Geological Background and Sampling 

Formed through the collision of the Yangtze and Cathaysia blocks at ca. 880 Ma [2], 

the South China Block is separated from the Indochina Block by the Ailaoshan-Song Ma 

suture zone in the southwest, from the North China Block by the Qinling-Dabie-Sulu oro-

genic belt in the north, and from Tibet by the Longmenshan Fault in the west [2] (Figure 

1a). It is also bounded by the Pacific oceanic plate in the east. Silicic magmatism occurred 

primarily within the Cathaysia Block, and formed granitoids covering ca. 30% of the area 

in multiple periods from early Paleozoic (ca. 450–420 Ma) to Permian–Triassic (ca. 280–

205 Ma), and Jurassic–Cretaceous (ca. 195–70 Ma) [4,5,11,13–15]. 

 

Figure 1. (a) Tectonic schematic map of South China and its surrounding blocks, including North 

China Block in the north and Indochina Block in the southwest, as well as Tibet in the west, which 

is subdivided into several smaller terranes; (b) geological map of the Qinzhou Bay Granitic Complex 

[16] with sample locations. 
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The late Permian to Triassic magmatic rocks in South China primarily developed 

within the interior of the block [5,6,13], with the older segments emerging along the south-

ern and southwestern margins, notably in regions such as Hainan Island, the Qinzhou 

Bay area, the Ailaoshan, and the southern Lancangjiang zones [4,12,17,18]. These rocks are 

predominantly granites, accompanied by minor syenites, diabase, gabbros, and infre-

quent mafic enclaves [15]. Among them, the prevailing types are biotite granites, two-mica 

granites, and muscovite granites [5,13]. Geochemically, the granitoids are mainly high in 

potassium, calc-alkalic, weakly to strongly peraluminous, and are predominantly catego-

rized as S-type and I-type or, more rarely, A-type granitoids [15]. 

The Qinzhou Bay area hosts the Late Permian to Triassic granitoids, forming the Qin-

zhou Bay Granitic Complex, known for their typical S-type composition containing cor-

dierite [16]. The granitic complex strikes northeast parallel to the regional deep faults and 

is approximately 400 km in length and 20–75 km in width, potentially extending further 

into Vietnam, with a total outcrop area exceeding 10,000 km2 (Figure 1). The magmatic 

rocks intruded into Cambrian–Permian sediments, and the country rocks are mainly 

flysch formations with locally distributed molasse and carbonate rock formations [18]. 

This granitic complex comprises over 40 plutons of different sizes, including the plutonic 

Darongshan biotite granite suite, plutonic and hypabyssal Jiuzhou granodiorite suite, and 

superhypabyssal-subvolcanic Taima granite porphyry suite, stretching from northeast to 

southwest [18]. Enclaves, primarily metapelitic granulite, along with quartzo-feldspathic 

gneiss, schist, arkose quartzite, hornfels, and sporadic mafic microgranular enclaves, can 

be found dispersed within the granitoids, some reaching decimeter sizes [19]. Addition-

ally, this region exhibits the only known occurrence of Early Mesozoic silicic volcanic 

rocks within the South China Block [20,21]. 

In total, nine granitic samples were collected from different granite quarries (Figure 

1b). The Jiuzhou granodiorite exhibits a medium- to coarse-grained equigranular texture 

(Figure 2a,b), composed of plagioclase (30–50 vol.%), quartz (25–35 vol.%), alkali feldspar 

(10–30 vol.%), biotite (8 vol.%), orthopyroxene (5 vol.%), and less than 1 vol.% cordierite. 

It also contains accessory minerals such as zircon, monazite, apatite, and ilmenite. The 

rocks of the Taima pluton are porphyritic, characterized by a phenocryst content of up to 

40–50 vol.% (Figure 2c). These phenocrysts consist of plagioclase (35–40 vol.%), quartz 

(25–30 vol.%), alkali feldspar (25–30 vol.%), minor orthopyroxene, biotite, and cordierite 

(<3 vol.%). They are embedded in a matrix composed of plagioclase, alkali feldspar, 

quartz, and biotite, along with accessory minerals such as zircon, monazite, apatite, and 

ilmenite. The rocks of Dasi pluton display an even higher phenocryst content (up to 50–

60 vol.%) compared to the Taima granite porphyries. The mineral textures and composi-

tions of the crystal clusters in the Dasi pluton resemble those found in the Taima pluton 

(Figure 2d). 
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Figure 2. Representative photomicrographs of (a,b) the Jiuzhou granodiorites, (c) Taima granite 

porphyry, and (d) Dasi granite porphyry, respectively. Notes: Pl, plagioclase; Kfs, K-feldspar; Qtz, 

quartz; Bt, biotite; Opx, orthopyroxene; Crd, cordierite. 

3. Analytical Methods 

All analyses were carried out at the Guangxi Key Laboratory of Hidden Metallic Ore 

Deposits Exploration, Guilin University of Technology, China. 

Zircon grains were randomly extracted and mounted in a 2.5 cm diameter epoxy 

disk, and then polished to expose the central parts of the grains. Photomicrographs and 

cathodoluminescence (CL) images were obtained to characterize the internal structures of 

the grains and to select appropriate analysis sites excluding small crystal and melt inclu-

sions. 

Zircon U–Pb dating was carried out using an Agilent 7500 ICP–MS equipped with a 

GeoLas HD laser sampler. Elements such as Si, Ti, Y, and rare earth elements (REEs) were 

simultaneously analyzed together with U–Th–Pb isotopic compositions. The standard zir-

con GJ-1 was analyzed frequently to monitor the reproducibility and the stability of the 

instrument. The analyses were conducted with a beam diameter of 32 μm, 6 Hz repetition 

rate, and energy of 10 J/cm2. For the instrument settings, analytical procedures, and data 

processing, we followed Liu et al. (2010) [22]. 

The Lu–Hf analysis spot was placed in a similar domain of a previous U–Pb spot 

within the same zircon, based on the photomicrograph and CL image (Figure 3). In situ 

zircon Hf isotope analyses were performed using a GeoLas HD laser ablation system with 

a Neptune Plus MC–ICPMS, with a beam diameter of 44 μm, 6 Hz repetition rate, and 

energy of 10 J/cm2. Zircon GJ-1 was used as the reference standard during the analyses. 

The analytical details were similar to Liu et al. (2016) [11]. The initial 176Hf/177Hf ratios were 

calculated using 176Lu decay constant of 1.867 × 10−11 yr−1 [23]. The chondritic values of 
176Hf/177Hf = 0.282785 and 176Lu/177Hf = 0.0336 [24] were used to calculate εHf values. The 

depleted mantle Hf model ages (TDM) were calculated using the depleted mantle reservoir 

present 176Hf/177Hf ratio of 0.28325 and 176Lu/177Hf ratio of 0.0384 [25]. A two-stage model 



Minerals 2024, 14, 22 5 of 19 
 

 

age (TDM2) was also calculated by assuming the parental magma was produced from a 

Depleted Mantle-derived average continental crust (176Lu/177Hf = 0.015) [26]. 

 

Figure 3. Cathodoluminescence images of representative zircons from granitic rocks of the Qinzhou 

Bay Granitic Complex. 

Whole-rock major element analyses were conducted using the X-ray fluorescence 

(XRF) method, whereas the loss-on-ignition (LOI) values of each sample were measured 

after heating to 1000 °C. Trace element analyses were undertaken with an Agilent 7900CX 

ICP–MS instrument after the acid dissolution of the samples in a mixture of HNO3, HCl, 

and HF. The U.S. Geological Survey standards BHVO, AGV, W-2, and G-2 and Chinese 

national rock standards (GSR-1, GSR-2, and GSR-3) were used to monitor analytical qual-

ity. The analytical precision was better than ±5% for major elements and better than ±2%–

5% for most trace elements. 

4. Results 

4.1. Zircon U–Pb Geochronology and Trace Elements 

The analyzed zircons, typically colorless or light yellow and transparent, exhibit a 

primarily prismatic shape with lengths ranging between 100–300 μm and aspect ratios of 

1:1 to 3:1. Within some zircon grains, there are small crystal and melt inclusions alongside 

ellipsoidal inherited zircon cores shown in the CL images (Figure 3). These zircons 

demonstrate a magmatic origin, evident through distinct oscillatory zoning and high Th/U 

ratios [27] (Table S1). In addition, they display depletion in light REEs with strong nega-

tive Eu anomalies (Eu/Eu* ≤ 0.06) and positive Ce anomalies (Ce/Ce* ≥ 1.53; Table S2), 

further confirming their igneous origin. 

One sample from each of the studied granitic bodies was selected for zircon U–Pb 

dating (Table S1). The results of the analyses were all concordant or nearly concordant 

(Figure 4), yielding weighted mean 206Pb/208U ages of 247.4 ± 1.0 Ma (2σ; MSWD = 0.66; n 

= 22) for Jiuzhou granodiorite, 246.6 ± 1.1 Ma (2σ; MSWD = 0.47; n = 20) for Dasi granite 

porphyry, and 248.32 ± 0.98 Ma (2σ; MSWD = 0.27; n = 23) for Taima granite porphyry, 

being identical within error with each other. Moreover, one zircon grain from the Jiuzhou 

granodiorite exhibits an older 206Pb/208U age of 357 ± 5 Ma, as is also the case for three 
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zircons (694 ± 4 Ma, 536 ± 10 Ma, 451 ± 11 Ma, respectively) from the Dasi granite porphyry, 

implying these are inherited zircons. 

 

Figure 4. Zircon U–Pb dating results for samples of the Qinzhou Bay Granitic Complex. 

The trace elements of zircons in the analyzed samples largely overlap with each other 

(Figure 5; Table S2). Most zircons, which we inferred to be magmatic, displayed notably 

low concentrations of La (<1 ppm), except for two grains (La = 1.38 and 2.65 ppm), which 

may contain micro-inclusions and were thus excluded from subsequent statistical analysis 

[28]. These zircons have regular contents of Th (39.7–201 ppm), U (162–604 ppm), and Ti 

(3.08–17.9 ppm) but much higher Hf (9820–12496 ppm) and Y (1223–2658 ppm) contents. 

Estimations of the crystallization temperatures for these magmatic zircon grains, using Ti-

in-zircon thermometry [29], yielded values of 702–882 °C (Table S2), with average temper-

atures of 811 °C, 805 °C, and 808 °C for the Jiuzhou granodiorite and the Dasi-Taima gran-

ite porphyries, respectively. Notably, the magmatic temperatures of the Jiuzhou granodi-

orite are slightly higher than those of the Dasi-Taima granite porphyries (Figure 5a). Ad-

ditionally, the Hf contents display an increase with decreasing Ti, i.e., with lower temper-

ature. The Y/Dy values slightly increase with decreasing Th/U (Figure 5b), comparable to 

those values of coeval silicic volcanic rocks [21]. The calculated ΔFMQ values of these 

samples are highly similar, with averages of −4.8, −4.8, and −4.6 for the Jiuzhou granodio-

rite and the Dasi and Taima granite porphyries, respectively. It suggests a comparable 

oxidation state of the magma, as the state can be determined based on the magnitude of 

zircon Ce anomalies [30]. 

 

Figure 5. (a) Ti vs. Hf and (b) Y/Dy vs. Th/U variations in zircons from granitic rocks of the Qinzhou 

Bay Granitic Complex. Previously published data for the coeval silicic volcanic rocks are from [21]. 
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4.2. Zircon Hf Isotopes 

The εHf(t) values of the analyzed zircons span a wide range from −23.9 to −7.8 (Figure 

6; Table S3). Although each sample has one or two zircons reflecting a highly enriched Hf 

isotopic composition (εHf(t) < −18.5), most of the zircons show unimodal distributions 

ranging within 5–6 units. Excluding several outliers, the weighted mean εHf(t) values are 

−10.5 ± 0.6, −9.8 ± 0.6, and −9.8 ± 0.5, corresponding to two-stage model ages (TDM2) of 1.76–

2.10 Ga, 1.74–2.07 Ga, and 1.77–2.03 Ga for the Jiuzhou granodiorite and Dasi and Taima 

granite porphyries, respectively. As for the highly enriched members, the two-stage 

model ages range from 2.20 to 2.75 Ga. 

 

Figure 6. Zircon εHf(t) vs. U–Pb age diagram for rocks of the Qinzhou Bay Granitic Complex. The 

previously published data for the granitoids and coeval silicic volcanic rocks are from [18,21,31] and 

those for the coeval dolerites are from [32]. 

4.3. Whole-Rock Major and Trace Elements 

The whole-rock major and trace element compositions of the Qinzhou Bay Granitic 

Complex are given in Table 1. The granitic samples span a range of SiO2 contents from 

64.02 wt.% to 72.54 wt.%, and the total alkali (K2O + Na2O) contents range from 5.22 wt.% 

to 7.41 wt.%, showing geochemical features typical of high-K calc-alkaline granites and 

granodiorites (Figure 7a,c). Moreover, the magmatic rocks exhibit relatively low contents 

of TiO2 (0.37–1.12 wt.%), MgO (0.60–2.15 wt.%), CaO (1.61–3.51 wt.%), and P2O5 (0.12–0.16 

wt.%) but high Fe2O3T (2.35–7.28 wt.%) and Al2O3 (13.90–14.42 wt.%). Therefore, these 

samples are peraluminous with A/CNK values ranging from 1.06 to 1.17 (Figure 7b), 

showing S-type affinities (Figure 7d). 

The studied granitic rocks have REE contents of 187–327 ppm, with relative light over 

heavy REE enrichment {(La/Yb)N = 6.16–13.03} and negative Eu anomalies (Eu/Eu⁎ = 0.47–

0.56) (Figure 8a). All samples exhibit similar trace elemental patterns, with significant de-

pletion of high-field-strength elements (e.g., Nb, Ta, and Ti) and enrichment of large-ion-

lithophile elements (e.g., Rb and K) (Figure 8b). 
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Table 1. Analytical results of whole-rock major (wt.%) and trace elements (ppm) for granitic rocks 

from the Qinzhou Bay Granitic Complex. 

Plutons Jiuzhou Granodiorite Dasi Granite Porphyry Taima Granite Porphyry 

Sample No. GX18 GX19 GX25 GX44 GX35 GX36 GX39 GX41 GX45 

SiO2 66.67 67.24 64.02 67.50 68.99 69.24 72.54 72.26 72.26 

TiO2 0.81 0.85 1.12 0.79 0.72 0.67 0.39 0.37 0.39 

Al2O3 13.95 14.18 14.01 14.13 14.03 14.14 13.90 14.42 14.18 

Fe2O3T 5.76 6.04 7.28 5.77 4.89 4.63 2.68 2.35 2.68 

MnO 0.08 0.08 0.09 0.10 0.07 0.06 0.05 0.04 0.04 

MgO 1.86 1.84 2.15 1.81 1.44 1.34 0.72 0.60 0.64 

CaO 2.77 3.11 3.51 3.25 2.91 2.81 1.93 2.33 1.61 

Na2O 1.73 1.84 1.90 1.61 2.15 1.96 2.18 2.21 1.98 

K2O 3.79 3.82 3.32 3.99 4.05 4.23 4.91 4.91 5.43 

P2O5 0.16 0.16 0.12 0.16 0.16 0.15 0.14 0.14 0.14 

LOI 1.36 0.77 0.98 0.00 0.32 0.63 0.28 0.09 0.16 

Total 98.94 99.95 98.51 99.11 99.72 99.85 99.72 99.71 99.49 

A/NK 2.01 1.98 2.09 2.02 1.77 1.81 1.56 1.61 1.55 

A/CNK 1.16 1.11 1.07 1.09 1.06 1.09 1.12 1.09 1.17 

V 92.5 94.2 68.3 100 68.9 61.8 24.5 23.6 26.9 

Co 32.0 52.4 62.0 45.9 22.9 33.5 15.6 19.3 29.8 

Ni 32.8 40.3 30.1 66.2 16.6 21.2 4.97 6.24 102 

Ga 27.2 33.4 28.7 41.3 31.1 31.1 28.4 31.2 32.4 

Rb 184 171 189 160 190 174 181 195 225 

Sr 127 156 138 153 121 117 100 124 90.6 

Y 39.1 40.0 37.9 36.3 41.2 36.9 36.6 36.7 43.5 

Zr 284 272 218 429 305 268 204 200 214 

Nb 16.2 16.0 14.4 19.8 15.8 14.0 10.5 10.5 11.9 

Cs 13.7 10.0 11.8 9.49 7.67 8.36 11.4 10.8 15.1 

Ba 590 788 670 1039 734 739 686 762 747 

La 54.8 56.7 41.2 70.0 55.7 52.9 40.1 44.8 38.5 

Ce 99.0 102 74.5 137 101 93.9 72.0 79.5 72.5 

Pr 12.3 12.6 9.35 17.0 12.4 11.8 9.21 10.1 10.1 

Nd 45.4 46.1 34.9 62.9 45.8 43.8 33.9 37.3 37.3 

Sm 8.95 8.92 7.23 11.0 9.02 8.56 6.94 7.44 7.99 

Eu 1.33 1.57 1.30 1.84 1.37 1.38 1.13 1.25 1.26 

Gd 8.21 8.29 7.01 9.66 8.37 7.80 6.71 7.19 8.06 

Tb 1.19 1.21 1.07 1.25 1.24 1.16 1.08 1.12 1.32 

Dy 6.87 7.04 6.56 6.64 7.29 6.76 6.46 6.65 8.21 

Ho 1.36 1.41 1.31 1.29 1.47 1.33 1.28 1.31 1.68 

Er 3.85 3.88 3.66 3.68 4.08 3.70 3.63 3.71 4.78 

Tm 0.59 0.60 0.55 0.56 0.62 0.55 0.53 0.54 0.70 

Yb 3.73 3.87 3.54 3.72 3.79 3.47 3.31 3.36 4.33 

Lu 0.57 0.57 0.53 0.59 0.56 0.50 0.47 0.48 0.60 

Hf 7.68 7.31 6.05 11.5 8.21 7.36 5.67 5.60 6.17 

Ta 1.27 1.41 1.46 1.48 1.21 1.34 0.99 1.03 1.31 

Pb 30.0 31.6 35.0 28.7 31.6 29.7 30.5 32.7 30.4 

Th 25.8 25.9 18.1 36.0 25.3 25.9 22.3 25.0 24.4 

U 4.41 4.08 4.86 3.58 4.48 4.01 4.09 4.59 4.95 

Eu/Eu* 0.47 0.56 0.55 0.54 0.48 0.51 0.50 0.52 0.48 
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ΣREE 248 254 193 327 253 238 187 205 197 

Note: Eu/Eu* = EuN/(SmN × GdN)0.5, where N are normalization values after [33]. “T” means “in 

total”, assuming that total Fe in rocks appear as Fe2O3. 

 

Figure 7. (a) Total alkali vs. silica [34], (b) A/NK vs. A/CNK, (c) K2O vs. SiO2 [35], and (d) ACF [36] 

diagrams for rocks of the Qinzhou Bay Granitic Complex. Previously published data for granitoids 

and coeval silicic volcanic rocks are from [16,19–21,37–39], and for coeval dolerites are from [32]. 

 

Figure 8. (a) Chondrite-normalized REE patterns [33] and (b) primitive-mantle-normalized trace 

element variation diagram [40]. Data sources are the same as for Figure 7. 
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5. Discussion 

5.1. Genetic Relationship with the Coeval Silicic Volcanic Rocks 

One striking feature of the Qinzhou Bay area is that it hosts the only occurrence of 

Early Triassic silicic volcanic rocks within the South China Block [20,21]. Closely associ-

ated with the Jiuzhou pluton, the Triassic Banba Fm. volcanic rocks primarily comprise of 

rhyolites interlayered with perlites, tuff lavas, agglomerate lavas, and rhyolitic tuffs. 

Meanwhile, the lower Triassic Beisi Fm. volcanic rocks exhibit a volcanic succession char-

acterized by alternating dacitic-rhyolitic lavas interlayered with pyroclastic rocks. These 

distinct volcanic formations, the Banba and Beisi Fms., are situated on the southeast and 

northwest side, respectively, of the Shiwandashan Mesozoic–Cenozoic Basin. These silicic 

volcanic rocks not only have comparable whole-rock geochemical and almost identical 

isotopic compositions (Figures 6–8) but also formed coevally with the coexisting granites, 

with zircon U–Pb dating results ranging from 248.8 ± 1.6 to 246.5 ± 1.3 Ma [21]. 

The genetic relationship between silicic plutonic and volcanic rocks has long been a 

subject of debate, holding key significance in comprehending the geochemical evolution 

of silicic magma systems [41]. Scholars have presented conflicting perspectives on this 

matter. Some have argued the plutonic and volcanic rocks formed independently via dif-

ferent processes. According to this view, large caldera-forming eruptions resulted from 

rapid magmatic input, whereas the large plutons evolved incrementally over millions of 

years, influenced by a lower thermal flux [41–43]. By contrast, an alternative theory sug-

gests a crystal‒melt separation model that volcanic rocks arise from the extraction of a 

fractionated melt from crystal mushes, while plutons are considered the residual crystal 

cumulates left behind after the eruption of volcanic magma [44–46]. 

As mentioned above, the comparable whole-rock geochemical compositions of the 

coexisting plutonic and volcanic rocks in the Qinzhou Bay area indicate they are comag-

matic rather than independent in terms of magmatic origin. On the other hand, the crys-

tal‒melt separation model assumes silicic volcanic rocks undergo more extensive crystal 

fractionation than their plutonic equivalents. In their case study, Medlin et al. (2015) [47] 

investigated the intra-caldera Kathleen ignimbrite and Rowland Suite intrusions in West 

Musgrave Province, Australia, and suggested the crystal-rich, porphyritic Rowland Suite 

rhyolite intrusions represented a primitive cumulate endmember, whereas the Kathleen 

ignimbrite eruption sequence represented the evolved and highly fractionated endmem-

ber of the magmatic system. Yan et al. (2016) [48] also interpreted rhyolitic extrusives in 

the Yandangshan caldera, SE China, as a highly fractionated endmember, whereas the 

subvolcanic intrusions of porphyritic quartz syenites could be residual crystal mushes. 

However, the Early Triassic granitic rocks in the Qinzhou Bay area have a total SiO2 range 

of 62.95–74.47 wt.%, encompassing their volcanic equivalents (SiO2 = 64.32–72.65 wt.%; 

Figure 9). There exists no complementary geochemical relationship between the silicic 

volcanic rocks and granitic intrusions. 
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Figure 9. SiO2 vs. Al2O3 (a), CaO (b), MgO (c), Fe2O3T (d), TiO2 (e), and P2O5 (f) diagrams (in wt.%) 

of rocks from the Qinzhou Bay Granitic Complex. Temperature estimate lines in (e) are after [49] 

and those in (f) are after [50]. Symbols and data sources are the same as in Figure 7. 

Trace elements in igneous zircon crystals offer valuable insights into the conditions 

of crystallization as a record of various magmatic processes, including magma rejuvena-

tion, magma mixing, and fractional crystallization [27,51,52]. For example, variations in 

elements such as Hf and Th/U ratios in zircon can signify changes in melt composition 

and temperature during crystallization. Notably, Hf in zircon typically increases, while 

Th/U ratios decrease, with decreasing temperature [53]. Zircon trace elements of the Qin-

zhou Bay volcanic and plutonic rocks also display almost identical compositional varia-

tions, with no complementary signatures (Figure 5). Hence, it is impossible that the gra-

nitic rocks are cumulates left behind after volcanic melt extraction. 

In addition, a typical volcanic-intrusive complex would form in a ring structure, with 

voluminous volcanics on the outside and subsequent intrusives at the center. The volcanic 

rocks in the Qinzhou Bay area, on the contrary, are located in the distant corner of the 
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entire volcanic-intrusive sequence, with a negligible mass compared to the granitoids. The 

characteristics of the silicic volcanics and adjacent Jiuzhou pluton are clearly controlled 

by the regional deep fault (Figure 1). Therefore, we believe the Early Triassic volcanic and 

intrusive rocks are comagmatic and derived from a common magma pool, detached in an 

undifferentiated melt instead of indicating remarkable crystal‒melt separation. 

In fact, we consider fractional crystallization played a less important role during the 

silicic magmatic evolution of the Early Triassic Qinzhou Bay area. Another reason for this 

is the rather homogeneous whole-rock geochemical composition observed within a single 

granitoid body. The Jiuzhou pluton has a narrow SiO2 range of 64–68 wt.% in the case of 

our sample and one of 64–70 wt.% based on the combined data from the references. The 

same is true for the Dasi and Taima granite porphyries, with SiO2 ranges of 68–70 wt.% 

and 70–73 wt.%, respectively. The narrow and uncoincidental compositional variation 

within a voluminous granitoid body requires a magmatic mechanism other than fractional 

crystallization. 

5.2. Petrogenesis of the Granitoids and Mantle-Derived Contribution 

The granitoids in the Qinzhou Bay Granitic Complex have long been demonstrated 

as unambiguous S-type granitoids, by their high Al2O3 contents, highly enriched radio-

genic Sr–Nd–Hf isotopic compositions, low oxygen fugacity, and, especially, the common 

presence of conspicuous cordierite in these granitoids [18,19,31,32,54,55]. The studied Jiu-

zhou granodiorites and Dasi-Taima granite porphyries are characterized by a high silica 

content (mostly SiO2 > 66 wt.%), peraluminous composition (A/CNK = 1.06–1.17), and low 

Sr abundance (90.6–170 ppm). These attributes suggest the magma most likely originate 

from Al-rich metasedimentary protoliths [56]. Their low zircon εHf(t) (−23.9 to −7.8), low 

whole-rock εNd(t) (−11.6 to −11.2), and high initial 87Sr/86Sr (0.71874 to 0.72157) [16] reveal 

a crustal source with an average crustal resident age exceeding 1.8 Ga. This is consistent 

with the low zircon oxygen fugacity (ΔFMQ < 0), as magmas derived from the melting of 

metasedimentary rocks commonly exhibit similarly low fO2 [57]. We should note the wide-

spread occurrence of metapelitic granulite enclaved in the Jiuzhou granodiorites [19], sup-

porting the idea that the granitic complex is predominantly derived from the melting of 

ancient metasedimentary rocks [18,19]. These granulite enclaves are considered residual 

material from the host granitoids, supported by systematic elemental variation trends and 

similar Sr–Nd isotope compositions between them [16,19]. 

Zhao et al. (2012) [19] conducted a subdivision of the granulite enclaves based on 

their different initial 87Sr/86Sr values. According to their estimations, approximately 10%–

40% low-87Sr/86Sr(i) and 60%–90% high-87Sr/86Sr(i) granulites were constrained as the 

magma source for the host granitoids. Nonetheless, the granulite endmembers used for 

this estimation have εNd(t) values at 253 Ma of −13.30 and −12.84, lower than the εNd(t) of 

the host granitoids (−11.6 to −11.2) [16]. Thus, an extra high-εNd(t) endmember should be 

included in the estimation of the magma source. 

Combined with the coeval silicic volcanic rocks and granitoids reported in the litera-

ture, our data show the content of SiO2 correlated negatively with Fe2O3T, Al2O3, MgO, 

CaO, TiO2, P2O5, and MnO (Figure 9) and positively with K2O and Na2O + K2O (Figure 

7a,c). Several processes could potentially account for the modification of granitic magma 

compositions, including fractional crystallization and cumulate formation, the entrain-

ment of restitic material, and/or magma mixing with mantle-derived melts. Above, we 

have argued fractional crystallization might have played a less important role during the 

magmatic evolution, because of the narrow geochemical variation within a single granit-

oid body and the lack of a fractional signature in the cogenetic silicic volcanic rocks. Alt-

hough restitic material was notably found within the Jiuzhou granodiorites, occurring 

both in centimeter-size enclaves and micro-restite [16], the whole-rock geochemical trends 

could not be explained by restite entrainment as plagioclases in the restite were insuffi-

cient in content to replicate the observed compositional variations [58]. 
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The granitoids in the Qinzhou Bay area, together with the cogenetic volcanic rocks, 

exhibited lower molar Al2O3/(MgO + FeOT), (Na2O + K2O)/(FeO + MgO + TiO2), Al2O3/TiO2, 

Rb/Sr, and Rb/Ba ratios but a higher CaO/Na2O ratio compared to the typical metapelite-

derived melt (Figure 10), which was discussed above as the major magma source. Thus, 

these compositional distinctions suggested magmas of such compositions could not solely 

originate from metapelitic sources. Instead, an evident transitional trend between metape-

lite- and basalt-derived melts reveals the input of mantle-derived materials or juvenile 

crust cannot be precluded in the genesis of the granitoids. 

 

Figure 10. Source discrimination diagrams for rocks from the Qinzhou Bay Granitic Complex: (a) 

after [59]; (b) after [60]; and (c,d) after [56]. Symbols and data sources are the same as in Figure 7. 

The zircon saturation temperature estimation using the Watson and Harrison (1983) 

[61] model reveals a narrow temperature range from 848 °C to 868 °C, although zircon 

inheritance might partly contribute to the whole-rock Zr contents [62]. The calculated Ti-

in-zircon temperatures also imply magmatic activity mostly (for more than 95% of the 

zircon grains) at 780–882 °C (Figure 5a), whereas major element contents of whole-rocks, 

such as TiO2 and P2O5, yield temperatures higher than 800 °C or even 900 °C (Figure 9e,f). 

Therefore, the granitoids were generated at a temperature even higher than that of the 

coeval I- and S-type granites in the interior South China Block [18]. 

The high-temperature magmatism and coeval metamorphism [16,18,19] require an 

intense heat source. Previous studies have often ruled out the possibility of mantle-de-

rived material input in the granitic magma, mainly because of the enriched Sr–Nd of 

whole-rocks and Hf isotopic compositions of their zircons [18,20,31]. However, Xu et al. 

(2018) [32] recently presented a case study of contemporary dolerites and basalts between 

the Jiuzhou and Darongshan plutons in the Qinzhou Bay area, which were inferred to 

originate from an enriched lithospheric mantle source with minor contamination. These 
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mafic rocks display comparable zircon Hf isotopic compositions (εHf(t) = −10.9 to −7.6, for 

t = ca. 250 Ma) but higher whole-rock εNd(t) values (−10.4 to −6.7) than the granitoids [32]. 

Apparently, the input of such mantle-derived materials into granitic magma would match 

the isotopic characteristics of the studied granitoids. 

Therefore, we suggest the mantle-derived mafic magma played an important role in 

the generation of the granitic and volcanic rocks in the Qinzhou Bay area, not only as a 

heat source for anatectic melting but may also as a component endmember. The compo-

sitional variation of the peraluminous rocks was at least partly, if not purely, due to vary-

ing degrees of mixing between crust- and mantle-derived magmas. Considering the lower 

SiO2 content and the presence of microgranular enclaves in the Jiuzhou granodiorites, as 

well as the slightly higher estimated zircon saturation and Ti-in-zircon temperatures, the 

contribution of the mafic endmember in the Jiuzhou granodiorites might be higher than 

that in the Dasi and Taima granite porphyries, which formed in succession. 

5.3. Implications for Paleo-Tethys Geodynamic Evolution 

Several geodynamic evolution models have emerged to explain the Early Triassic tec-

tono-magmatism in the Qinzhou Bay area, including subduction of the oceanic plate 

[5,6,18,20,55] or disturbance caused by the Emeishan mantle plume [9,63]. Some studies 

have entertained the idea of Emeishan plume as a possible heat source for the high-tem-

perature/ultrahigh-temperature metamorphism [8,9,63,64]. However, precise geochrono-

logical studies have indicated the Emeishan mantle plume ceased at ca. 259.1 ± 0.5 Ma [65], 

nearly 10 Ma before the onset of the magmatism and metamorphism in the Qinzhou Bay 

area. Additionally, the Qinzhou Bay area sits approximately 900 km distant from the 

Emeishan mantle plume center [66]. Moreover, mafic flows and dikes in western Guangxi 

induced by the Emeishan plume typically exhibit markedly elevated Ti/Y ratios with a 

limited εNd(t) range from +0.41 to +1.81 [67]. These characteristics stand in clear contrast to 

the mafic volcanic rocks found in the Qinzhou Bay area [32]. 

The studied granitic rocks exhibit obvious light REEs enrichment relative to heavy 

REEs and are significantly depleted in high-field-strength elements (e.g., Nb, Ta, and Ti) 

and enriched in large-ion-lithophile elements (e.g., Rb, and K). These geochemical traits 

showcase signatures typical of arc-related origins [20]. The genesis of the Late Permian to 

Early Triassic igneous rocks in the Qinzhou Bay and neighboring regions has been asso-

ciated with either paleo-Tethys subduction [4,5,55,58,68] or paleo-Pacific subduction 

[6,12,18,32]. This study confirms a subduction setting, wherein intense mantle-derived 

upwelling is postulated to have functioned not only as a heat source but also as a direct 

contributor to the formation of the granitoids and related silicic volcanic rocks in the Qin-

zhou Bay area. Nevertheless, the debate persists regarding whether the regional tectono-

magmatism was controlled by paleo-Tethys or paleo-Pacific plate subduction. 

Currently, it is widely accepted the substantial Late Mesozoic silicic magmatism in 

SE China stemmed from the paleo-Pacific subduction during 204‒88 Ma [4‒6,13,14]. The 

Early Triassic granitoids and silicic volcanic rocks display no close spatial‒temporal asso-

ciation with the Late Mesozoic granitoids and volcanic rocks in SE China, since there is a 

significant time gap of over 40 Ma and a spatial separation of over 700 km between them. 

Underplating of mantle-derived magma, the heat source accounting for the Late Permian–

Triassic magmatism and metamorphism in the study area, has been proposed to result 

from slab roll-back and/or tearing of the oceanic plate [18,32]. Some argued the stretching 

direction in NE of the Qinzhou Bay Granitic Complex coincided better with a NW-ward 

paleo-Pacific subduction model rather than a NE-ward paleo-Tethys subduction model 

[12,18,32]. It is worth noting the stretching shapes of Jiuzhou, Dasi, and Taima plutons are 

obviously controlled by the regional deep faults, while the Pubei pluton to the east of the 

faults displays in a much round shape. Thus, in our opinion, the silicic magmas rose and 

intruded primarily along the pre-existing faults which have plausibly been activated by 

the oceanic plate subduction (Figure 11). 
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Figure 11. Schematic geodynamical model of Early Triassic tectono-magmatism in the Qinzhou Bay 

area, South China (modified after [68]). A sequence of Permian–Triassic arc igneous rocks, along 

with high-pressure, low-temperature metamorphic rocks, and notably ophiolites, are observed 

across the Ailaoshan-Song Ma suture zone, stretching towards Hainan Island [55,68] (and references 

therein). It is also essential to highlight the higher temperatures necessary for the formation of the 

Qinzhou Bay Granitic Complex compared to those of the coeval I- and S-type granites in the interior 

South China Block. Our preference leans toward the model that asserts the Late Permian–Triassic 

tectono-magmatism in the South China Block was influenced by paleo-Tethys subduction. 

The S-type Qinzhou Bay Granitic Complex is considered to originate from various 

degrees of melting of the similar protolith at different crustal levels [54]. Zhao et al. (2017) 

[16] put forth the notion of rapid migration of a magma source, indicating an early (255–

249 Ma) melting event at ~950 ± 30 °C and ~500 ± 80 MPa, followed by a later (245–246 Ma) 

melting event at ~905 ± 15 °C and ~675 ± 25 MPa. It was inferred the crustal magma source 

had rapidly migrated from a depth of ~18 to ~25 km within 3–10 Ma [16], implying distinct 

crustal thickening. On one hand, this contradicts the theory of the paleo-Pacific subduc-

tion model, which involves no crustal thickening event. On the other hand, the rapid crus-

tal thickening indicates a switch in the geodynamic regime from subduction to continent–

continent collision between the South China and Indochina blocks, because the volcanic 

rocks and mantle-derived underplating should have formed in an extensional setting due 

to subduction. In this case, it is plausible the Early Triassic granitic rocks formed in the 

latest stage of subduction, just before the closure of the eastern paleo-Tethys [55] (Figure 

11). 

6. Conclusions 

The Jiuzhou granodiorites and Dasi-Taima granite porphyries in the Qinzhou Bay 

area, South China, formed between 248.32 ± 0.98 and 246.6 ± 1.1 Ma, coeval to the adjacent 

silicic volcanic rocks. The granitoids also show whole-rock geochemical features very sim-

ilar to those of the volcanic rocks; thus, we inferred they were comagmatic and derived 

from a common magma pool. Although fractional crystallization might have played a less 

important role during the magmatic evolution, it was more likely the silicic magma was 

detached in an undifferentiated melt instead of evolving due to remarkable crystal‒melt 

separation. Moreover, the source discrimination indicators and high calculated Ti-in-zir-

con temperatures (702–882 °C) reveal magma derived from the enriched lithospheric man-

tle not only provided a heat source for the anatectic melting of the metasedimentary pro-

toliths but was also an endmember component of the S-type silicic magma. We inferred 
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the studied Early Triassic granitoids formed immediately before the closure of the paleo-

Tethys Ocean, as the subduction associated with this event would have generated an ex-

tensional setting in which the mantle-derived upwelling and volcanic activity occurred. 
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