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Abstract: Permian intermediate–felsic igneous rocks, widely distributed in the southern Beishan
orogen, provide crucial constraints on the geodynamic process of the late Paleozoic Paleo-Asian
Ocean. New zircon U–Pb dating using LA–ICP–MS determines the age of the northern Qingshan
diorites, the Heishantou quartz diorites, and the southern Qingshan biotite granodiorites at 300 Ma,
294 Ma, and 291–286 Ma, respectively. Their whole-rock compositions exhibit arc-like geochemical
features. Moreover, their zircon trace elements show the characteristics of continental arc zircons.
The diorites, characterized by low SiO2, high MgO with Mg# (50–52), and low Cr, Co, and Ni, display
enrichment in Sr-Nd-Hf isotopes (87Sr/86Sr = 0.7060 to 0.7061; ENd(t) = −1.4 to −1.7; EHf(t) = −4.7 to
−0.6), originating from the fractionation process of magma derived from the enriched mantle. The
quartz diorites show moderate SiO2 and variable MgO (2.75–3.84 wt%) and exhibit enrichment in
Sr-Nd (87Sr/86Sr = 0.7048–0.7050; ENd(t) = −1.5–+0.9) and depletion in zircon Hf isotopes (EHf(t) = 3.8
to 7.8). Combined with their high Y (20.0–21.0 ppm) and low (La/Yb)N (6.0 to 17.2), we conclude that
they originated from the juvenile lower crust previously influenced by oceanic sediments, with the
input of enriched mantle-derived materials. The biotite granodiorites display low A/CNK (0.91–0.97),
10000*Ga/Al (1.8–1.9), and Ti-in-zircon temperatures (average 711 ◦C), indicating that they are I-type
granitoids. These rocks show enrichment in Sr-Nd isotopes (87Sr/86Sr = 0.7054 to 0.7061; ENd(t) = −2.0
to −1.6) and many variable zircon Hf isotopes (EHf(t) = −2.3 to +4.5). Geochemical studies indicate
that they originate from the mixing of magmas derived from the enriched mantle and preexisting
juvenile lower crust. All these data imply the existence of oceanic subduction in southern Beishan
during the early Permian. Integrating these results with previous studies, it is inferred that the
retreating subduction of the Liuyuan Ocean contributed to early Permian intermediate–felsic rocks
becoming widespread in the Shibanshan unit, the southernmost part of the Beishan orogen, and also
why the Paleo-Asian Ocean in southern Beishan did not close during the early Permian.

Keywords: early Permian; magmatism; retreating subduction; Beishan; central Asian orogenic belt

1. Introduction

The Central Asian Orogenic Belt (CAOB), one of the largest accretionary orogenic belts
in the world, is situated along the Siberian Craton and the North China and Tarim Cratons
(Figure 1(1)). The CAOB formed through multi-stage accretionary-collisional processes
of the Paleo-Asian Ocean (PAO) during the Neoproterozoic and Phanerozoic periods
and consists primarily of microcontinental blocks, ophiolites, sea mountains, subduction–
accretion complexes, magmatic arcs, and related basins [1–3]. Recently, the Nd isotope
mapping results of intermediate–felsic magmatic rocks in the CAOB revealed that the areal
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proportion of the juvenile crust is approximately 58% [4], supporting substantial continental
growth within the CAOB. Moreover, the CAOB hosts a diverse range of world-class ore
deposits, including porphyry Cu–(Au)–(Mo) deposits and numerous other polymetallic
magmatic–hydrothermal deposits, showing significant mineral resource potential. The
comprehension of the subduction–accretion history of the PAO is crucial for revealing the
continental growth mechanisms and metallogenic significance of the CAOB [5–7].
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Cratons (modified after [1]); (2) Tectonic map of the Beishan orogen (modified after [8]).

The Beishan orogen, linking the Southern Tian Shan suture and the Solonker suture,
occupies a vital region of the central part of the southern CAOB (Figure 1(1)) [8]. More-
over, it acts as a crucial junction point connecting the CAOB and Tethys orogenic belt
(Figure 1(1)) [9,10]. The Beishan orogen thus offers an ideal place for investigating the
geodynamic interactions between these two orogenic belts. Regarding the geodynamic
evolution of this orogen during the Paleozoic, many works have focused on intrusive
rocks, volcanic–sedimentary rocks, and structural geology, and much progress has been
achieved [11–16]. For instance, several ophiolitic mélanges and regional faults have been rec-
ognized in the Beishan region (Figure 1(2)) [8]. They likely represent the different branches
of the PAO and segment the Beishan orogen into different tectonic units (Figure 1(2)) [11,12].
It is generally accepted that the early Paleozoic magmatism, which is widespread in the
different units of the Beishan orogen, forms in an arc-related setting [12,14]. However,
the late Paleozoic geodynamic process and the timing of the termination of the Beishan
orogen are controversial. In particular, the Permian tectonic setting in this orogen remains
under debate. Different tectonic models, including a subduction-related arc setting [16,17],
a mantle plume-related setting [18], and a post-collisional extensional setting [19,20], have
been suggested. These controversies hamper our understanding of the evolutionary history
of the PAO and the accretionary–collisional processes of the Beishan orogen. Permian
magmatism, which is widely distributed in southern Beishan, offers a promising means to
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resolve the above disputes. Variations in magmatic compositions can be formed either in
an ideal closed magmatic system through the partial melting and fractionation processes of
different source materials under various conditions [21,22] or in an open magmatic system
through the mixing process between different magmas and the wall–rock assimilation–
fractional crystallization process (AFC) [23,24]. Other magmatic processes, such as liquid
immiscibility and vapor-phase leaching [25,26], are also proposed to explain magmatic
compositional changes. However, no evidence suggests that they perform a crucial role
in producing chemical variations in igneous rocks [27]. The compositional changes in
natural igneous rocks can be influenced by multiple magmatic processes, with some being
dominant while others are secondary [27,28]. Generally, rock associations and geochemical
compositions of magmatic rocks reflect the characteristics of their magma sources and
formation conditions [29,30], thus offering insights into geodynamic settings.

This study presents new LA–ICP–MS zircon U–Pb dating and trace elements, whole-
rock geochemical data, and Sr-Nd-Hf isotopes for early Permian intermediate–felsic igneous
rocks from southern Beishan (Figures 1(2) and 2). Combined with previous regional studies,
our new data constrain the petrogenesis of these igneous rocks and provide a strong basis
for understanding the early Permian geodynamic evolution in southern Beishan.
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shows the compiled zircon U-Pb ages in the study area. Only 51 of the total 62 age data are included.

2. Geological Background and Description of Samples
2.1. Geological Background

The Beishan orogen extends across the Xinjiang–Gansu Inner Mongolia region, con-
necting the Dunhuang block and the Alxa block (Figure 1(1)). It is divided into five
tectonic units by four east–west-oriented ophiolitic mélange belts (Figure 1(2)) [8]. The
Shibanshan unit, the southernmost tectonic unit, is situated to the south of the Liuyuan
mélange belt and to the north of the Dunhuang block (Figure 1(2)). The Liuyuan mélange
belt intermittently stretches for about 300 km along both sides of the Liuyuan-Daqishan–
Zhangfangshan fault and is mainly exposed in the regions of Huitongshan, Liuyuan, and
Zhangfangshan (Figure 1(2)) [31,32]. Notably, the Liuyuan complex has been extensively
studied [17,33,34]. Zircon U-Pb dating results for the Liuyuan ophiolitic mélange belt span
from 504 to 270 Ma [33–35]. Moreover, geochemical analyses indicate that the basalts and
gabbros from this ophiolitic mélange belt exhibit signatures typical of mid-ocean ridge
basalt (MORB) and island arc basalt (IAB) [17,34]. Previous works argue that the Liuyuan
complex was likely generated in a fore-arc setting [17] or a back-arc basin [34].

The Shibanshan unit is predominantly composed of the Beishan complex, upper
Paleozoic, and Paleozoic intermediate–felsic intrusive rocks (Figure 2) [8]. The Beishan
complex mainly consists of felsic gneiss, biotite–plagioclase gneiss, and metamorphic
sedimentary rocks [36]. The origins and tectonic implications of the Beishan complex
remain controversial. Some propose that the Beishan complex developed in an arc setting
during the Paleozoic [36]. However, other studies argue that it represents the Precambrian
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microcontinent in southern Beishan [37,38]. The strata of the Carboniferous–Permian are
widely distributed (Figure 2). The Carboniferous strata primarily consist of clastic rocks,
slates, phyllites, limestones, and intermediate–felsic volcanic rocks. The Permian strata are
mainly composed of clastic sedimentary rocks, pyroclastic rocks, and mafic–intermediate
and felsic volcanic rocks [8,20]. Paleozoic magmatism, dominantly intermediate–felsic
intrusive rock, is widespread in the Shibanshan unit, mainly as Carboniferous–Permian
granitoids and minor diorites (Figure 2 and Table S1). These rocks show different mineral
assemblages and geochemical and Sr-Nd-Hf isotope compositions, which likely record the
history of the geodynamic evolution in southern Beishan during the Paleozoic [12,16].

2.2. Description of Samples

In this study, we investigated three intermediate–felsic intrusive plutons, including
the Heishankou, southern Qingshan, and northern Qingshan plutons (Figure 2), in the
Shibanshan unit. The northern Qingshan pluton is composed of early granitoids and later
intruding diorites (Figure 3(1)). The early granitoids, covering an area of about 150 km2,
intrude into the Precambrian strata (Figure 2). The diorites, forming as a stock, show
an exposed area of approximately 6 km2 (Figure 2). The diorites sampled in this study
are dark gray and medium-grained (Figure 3(1)), primarily consisting of plagioclases
(50 vol%), quartzes (5–10 vol%), amphiboles (35–40 vol%), and biotites (~5 vol%). Euhedral
to subhedral plagioclases present a zoning texture and polysynthetic twinning (Figure 3(4)).
Their interiors generally show a slight alteration, appearing blurred compared to their
edges (Figure 3(4)). Dark green amphiboles are anhedral, whereas biotites are subhedral
to euhedral. Quartzes are anhedral as interstitial crystals (Figure 3(4)). Furthermore, the
presence of amphiboles with residual pyroxene (Figure 3(4)) implies that the preexisting
pyroxene reacted with the surrounding magma [39]. Three rock samples were collected
from the diorite pluton. All were determined for whole-rock major and trace element
contents; one sample was selected for the analyses of zircon U-Pb dating and Lu-Hf
isotopes, and two rocks were used for the whole-rock Sr-Nd isotope measurement.
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Figure 3. Representative field images and photomicrographs of the sampled rocks in the Shibanshan
unit. (1,4) The northern Qingshan diorite; (2,5) The Heishankou quartz diorite; (3,6) The southern
Qingshan biotite granodiorite. Abbreviations: Px—pyroxene; Amp—amphibole; Pl—plagioclase;
Bt–biotite; Qz—quartz.

The Heishankou pluton extends nearly east–west for approximately 90 km and covers
an area of approximately 350 km2 (Figure 2). Here, we focused on the eastern section of
this pluton, which consists mainly of the quartz diorites sampled in this study and minor
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granodiorites with less mafic minerals (amphibole and biotite). The quartz diorites are
light gray and medium-grained (Figure 3(2)) and are mainly composed of plagioclases
(~60 vol%), quartzes (15 vol%), amphiboles (10–15 vol%), biotites (10 vol%), as well as
minor K-feldspars (~1 vol%) (Figure 3(5)). Plagioclases are euhedral to subhedral, generally
displaying polysynthetic twinning, with some Carlsbad–albite twins observed (Figure 3(5)).
Greenish-brown amphiboles are subhedral to anhedral, while biotites appear subhedral as
interstitial minerals (Figure 3(5)). Four rocks were collected from the quartz diorite pluton.
All rock samples were measured for whole-rock major and trace element compositions,
with one rock chosen for the measurement of zircon U-Pb dating and Lu-Hf isotopes and
two rocks selected for the determination of whole-rock Sr-Nd isotopes.

The southern Qingshan pluton, occupying an area of about 100 km2 (Figure 2), in-
trudes into the Precambrian strata (Figure 2) and is primarily composed of the biotite
granodiorites collected in this study and diorites (Figure 3(3)). Moreover, abundant mafic
enclaves have developed in the southern Qingshan pluton (Figure 3(3)). The biotite gra-
nodiorites are light gray and medium-grained and consist of plagioclases (40–45 vol%),
K-feldspars (~5 vol%), quartzes (30–35 vol%), amphiboles (~10 vol%), and biotites (~5 vol%)
(Figure 3(6)). Euhedral to subhedral plagioclases commonly show polysynthetic twinning,
with some interiors exhibiting a slight alteration (Figure 3(6)). Minor K-feldspars with
Carlsbad twins are observed. Dark green amphiboles and brown biotites are subhedral to
anhedral as interstitial minerals (Figure 3(6)). Eight rocks were collected from this pluton.
All rocks underwent analyses for whole-rock major and trace element compositions, with
two rocks selected for zircon U-Pb dating and Lu-Hf isotopes, and three rocks chosen for
whole-rock Sr-Nd isotope analyses.

3. Analytical Methods
3.1. Zircon U-Pb and Lu-Hf Isotopic Analyses

Conventional heavy liquid and magnetic techniques were employed to extract zir-
cons. Subsequently, these grains were mounted in epoxy resin and polished to roughly
half-thickness at the Shougang Geological Exploration Institute, China. Grains showing
euhedral to subhedral shapes, distinct zoning textures, and no fractures and inclusions
under cathodoluminescence (CL), transmission, and reflection images were selected as
potential zircon specimens for U–Pb dating and Lu-Hf isotopes.

Zircon U–Pb dating was performed using laser ablation (LA)–ICP–MS in the Mineral
and Fluid Inclusion Microanalysis lab, Institute of Geology, Chinese Academy of Geological
Sciences, Beijing, China. Zircon 91500 and SA01 were analyzed twice and once, respectively,
for every 12 sample points analyzed. Detailed analytical methods are described in [40,41].
The Iolite software (ver. 3.7) was used for the reduction in analyzed data [42]. The
exponential function was used to calibrate the downhole fractionation [42]. No corrections
for common lead were implemented, and the reported errors in Table S2 represent 2 sigma
values. NIST610 and 91Zr served as external and internal standards for calibrating the
zircon trace element contents, respectively. Concordia diagrams and weighted mean
calculations of U–Pb age were constructed using Isoplot (ver. 3.0) [43].

The determination of in situ zircon Lu-Hf isotopes was completed using a Resolution
S155 laser ablation microprobe attached to a Neptune multicollector ICP–MS (LA-MC-
ICP–MS) at the MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute
of Mineral Resources, Chinese Academy of Geological Sciences, Beijing. The instrumen-
tal conditions and data collection were thoroughly described by [44,45]. The reference
standard during our measurement was zircon GJ-1. Analytical data were processed of-
fline (including sample and blank signal selection and mass bias calibrations) using the
software ICPMSDataCal (ver. 11.4). The EHf(t) values and Hf model ages (TDMHf) were
calculated using the 176Lu–177Hf decay constant of 1.867 × 10–11 yr−1 [46], chondrite
ratios of 176Hf/177Hf = 0.282772 and 176Lu/177Hf = 0.0332 [47], and DM parameters of
176Hf/177Hf = 0.28325 and 176Lu/177Hf = 0.0384 [48].



Minerals 2024, 14, 114 6 of 23

3.2. Whole-Rock Major and Trace Elements

The measurement of whole-rock major and trace elements was carried out at the
Wuhan SampleSolution Analytical Technology Co., Ltd., Wuhan, China. The sample pre-
treatment for the analysis of whole-rock major elements was made using the melting
method. The flux is a mixture of Li2B4O7, LiBO2, and LiF (45:10:5). NH4NO3 and LiBr were
employed as oxidant and release agents, respectively. The melting temperature was 1050 ◦C,
and the melting time was 15 min. Zsx Primus II wavelength dispersive X-ray fluorescence
spectrometer (XRF) produced by RIGAKU, Japan, was adopted for the determination of
whole-rock major elements. The relative standard deviation (RSD) was less than 2%. The
measurement of whole-rock trace elements was performed on an Agilent 7700e ICP–MS,
and the analytical precision was better than 10%. The standards BHVO-2, BCR-2, RGM-1,
and JA-2 were used to monitor the data quality. Detailed sample preparation methods, as
well as analytical precision and accuracy for the analysis of whole-rock trace elements, are
described in [49].

3.3. Whole-Rock Sr-Nd Isotopic Analyses

Sr-Nd isotopes and Rb, Sr, Sm, and Nd concentrations for the Heishantou quartz
diorites and southern Qingshan biotite granodiorites were completed at the Institute of
Precambrian Geology and Geochronology, Russian Academy of Sciences. The Sr-Nd
isotopes were analyzed using a Triton TI (Finnigan MAT, Bremen, Germany) multicollector
solid-phase mass spectrometer in the static mode. The method of isotopic dilution was
used to determine the concentrations of Rb, Sr, Sm, and Nd trace elements. Detailed
processes are similar to those described in [50]. The 87Sr/86Sr and 143Nd/144Nd ratios
were normalized to 0.1194 and 0.7219, respectively. During data collection, repeated
measurements of the NBS987 and JNdi-1 standard solutions provided average values for
87Sr/86Sr and 143Nd/144Nd, at 0.710262 ± 0.000005 (2σ, n = 6) and 0.512103 ± 0.000003
(2σ, n = 5), respectively. Sr-Nd isotope analyses for the northern Qingshan diorites were
carried out at the University of Science and Technology of China, Hefei, China. The Sr-Nd
isotopes were analyzed using a Finnigan MAT 262 mass spectrometer. The 87Sr/86Sr and
143Nd/144Nd ratios were normalized to 0.1194 and 0.7219, respectively. Detailed analysis
processes were similar to those described in [51,52]. During data collection, repeated
measurements of the NBS987 and JNdi-1 standard solutions provided average values for
87Sr/86Sr and 143Nd/144Nd at 0.710245 ± 0.000012 (2σ, n = 3) and 0.512116 ± 0.000008
(2σ, n = 3), respectively. The values of (147Sm/144Nd)CHUR (0.1967), (143Nd/144Nd)CHUR
(0.512638), (147Sm/144Nd)DM (0.2136), and (147Nd/144Nd)DM (0.513151) were employed to
calculate all the ENd(t) values and model ages in this study [53,54].

4. Analytical Results
4.1. Zircon U–Pb Ages and Lu-Hf Isotope Compositions

Zircon U-Pb dating and Lu-Hf isotope results are shown in Supplementary
Tables S2 and S3, respectively. Zircons from the four rock samples in the Shibanshan
unit generally appear light to dark gray in the cathodoluminescence (CL) images (Figure 4).
These zircon grains typically exhibit euhedral to subhedral and prismatic shapes, with
lengths varying from ∼60 to 120 µm and widths from ∼30 to 70 µm. Zircons from the
northern Qingshan diorite (G22924-11.1) display relatively high aspect ratios of 2:1 to 5:1,
while those from the other three samples (G22917-2.1, G22919-5.1, and G22923-2.1) have
low aspects ratios of 2:1 to 3:1 (Figure 4). All analyzed zircon spots exhibit clear rhythmic
zoning in the CL images (Figure 4). With the exception of one zircon from the biotite
granodiorite (G22923-2) that shows a high, flat rare earth element (REE) pattern indicative
of chemical alteration [55], all analyzed zircons demonstrate steeply rising REE distribution
patterns from La to Lu and exhibit positive Ce and negative Eu anomalies (Figure S1),
suggesting their magmatic origins [55,56]. Furthermore, in the (Sm/La)N vs. La and Th
vs. U diagrams (Figure 5), they are plotted within the magmatic zircon field, providing
additional evidence for their igneous origins [57,58].
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zircons show the positions for U-Pb dating and Lu-Hf isotope analysis, respectively. The numbers
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Fourteen zircons from the northern Qingshan diorite (G22924-11.1) yielded 206Pb/238U
ages of 310 to 291 Ma, with a weighted mean age of 300 ± 2 Ma (n = 14, MSWD = 1.2)
(Figure 6(1)). Eleven zircons were chosen for the analysis of Lu-Hf isotopes. They exhibited
EHf(t) values ranging from −4.7 to −0.6 and relatively old two-stage Hf model aged
(TDM2Hf) between 1614 Ma and 1355 Ma.
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Figure 6. Concordia diagrams and weighted mean 206Pb/238U ages for the sampled rocks in the
Shibanshan unit. (1) The northern Qingshan diorite; (2) The Heishankou quartz diorite; (3,4) The
southern Qingshan biotite granodiorites.

Eighteen zircons from the Heishantou quartz diorite (G22917-2.1) yielded 206Pb/238U
ages ranging from 301 to 284 Ma, with a weighted mean age of 294 ± 2 Ma (n = 18,
MSWD = 0.94) (Figure 6(2)). Fifteen dated zircon grains were selected for the determination
of Lu-Hf isotopes. Their EHf(t) values varied from 3.8 to 7.8, with young TDM2Hf between
1059 and 813 Ma.

Zircons of two biotite granodiorites from the southern Qingshan pluton were analyzed.
Fifteen zircons from sample G22919-5.1 yielded 206Pb/238U ages ranging from 301 to 281 Ma,
with a weighted mean age of 291 ± 2 Ma (n = 15, MSWD = 0.93) (Figure 6(3)). All fifteen
zircons were analyzed for Lu-Hf isotopes. The EHf(t) values vary from −2.3 to 4.5 with
TDM2Hf from 1453 to 1021 Ma. For sample G22923-2.1, twenty zircons were measured. One
zircon (G22923-2-1-2) showed a strong influence on chemical alteration, as discussed above,
and its age data were eliminated. Nineteen zircons generated 206Pb/238U ages ranging from
297 to 280 Ma, with a weighted mean age of 286 ± 2 Ma (n = 19, MSWD = 0.98) (Figure 6(4)).
Additionally, fourteen zircon grains were analyzed for Lu-Hf isotope compositions. Their
EHf(t) values varied from −0.9 to 2.9 with TDM2Hf from 1364 to 1113 Ma.

4.2. Whole-Rock Major and Trace Element Geochemistry

Whole-rock major and trace element compositions are shown in Supplementary Table
S4. All analyzed rocks exhibited a low loss on ignition (LOI) content ranging from 0.58 to
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1.37 wt%, indicating limited weathering and/or alteration. Major element contents in this
study are normalized to 100 wt% on a volatile-free basis. The northern Qingshan diorites
display low SiO2 contents (54.68–55.25 wt%) and high Al2O3 (17.89–18.00 wt%), TFe2O3
(8.22–8.78 wt%), and MgO (4.46–4.53 wt%) contents with Mg# values (molar 100 × Mg/(Mg
+ Fe2+)) of 50 to 52 (Figures 7 and 8). Additionally, these rocks show moderate total alkali
(Na2O + K2O) contents (Figure 7(1)). They are sodium-rich with low K2O/Na2O ratios
(0.5–0.6), belonging to calc-alkaline series rocks in the SiO2 vs. K2O diagram (Figure 7(2)).
The diorites display slight enrichment in light REEs (LREEs) relative to heavy REEs (HREEs)
((La/Yb)N = 5.9–6.2) with no clear anomalies of Eu (Eu/Eu* = 0.9–1.0) (Figure 9(1)). Fur-
thermore, these rocks exhibit positive anomalies in Rb, Th, U, K, and Pb and negative
anomalies in Nb, Ta, and Ti (Figure 9(2)).
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Al2O3/(Na2O + K2O + CaO).
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Figure 8. Diagrams of various major elements vs. SiO2 contents. (1) TiO2 vs. SiO2; (2) Al2O3 vs. SiO2;
(3) MgO vs. SiO2; (4) Fe2O3T vs. SiO2; (5) Na2O vs. SiO2; (6) CaO vs. SiO2. The Setouchi sanukitoid
data are from [62–64]. The central Beishan sanukitoid data are from [13,65]. The data for metabasaltic
and eclogite experimental melts (1–4.0 GPa) are from [66–70].
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Heishantou quartz diorites display moderate and variable SiO2 contents (58.79–63.08
wt%) and a moderate total alkali, Al2O3 (15.76–16.72 wt%), TFe2O3 (6.05–7.24 wt%), and
MgO (2.75–3.84 wt%) content with Mg# values of 47 to 52 (Figures 7 and 8). They show
enrichment of K2O with high K2O/Na2O ratios (0.9–1.1), belonging to the high-K calc-
alkaline series (Figure 7(2)). The quartz diorites show variable (La/Yb)N ratios ranging
from 6.0 to 17.2, signifying different degrees of enrichment in LREEs. These rocks also
display negative Eu anomalies (Eu/Eu* = 0.7–0.8) (Figure 9(1)). In addition, they show
negative anomalies in Nb, Ta, and Ti, along with positive anomalies in Rb, Th, U, K, and Pb
(Figure 9(2)).

The southern Qingshan biotite granodiorites have SiO2 contents (65.11–66.61 wt%),
moderate total alkali and Al2O3 (15.03–16.45 wt%) contents, and slightly low TFe2O3 (4.32–
5.25 wt%) and MgO (1.61–2.41 wt%) contents with Mg# values of 42 to 48 (Figures 7 and 8).
They are enriched in K2O with K2O/Na2O ratios varying from 0.9 to 1.3, falling into the
high-K calc-alkaline series (Figure 7(2)). Moreover, they show characteristics of metalumi-
nous (Figure 7(3)). These rocks display negative to no anomalies of Eu (Eu/Eu* = 0.7–1.0)
and varying degrees of enrichment in LREEs with (La/Yb)N ratios ranging from 3.7 to 11.2
(Figure 9(1)). Additionally, these rocks have positive anomalies for Rb, Th, U, K, and Pb
and negative anomalies for Nb, Ta, and Ti (Figure 9(2)).

4.3. Whole-Rock Sr-Nd Isotope Compositions

Whole-rock Sr-Nd isotope compositions are shown in Supplementary Table S5. Initial
87Sr/86Sr ratios and ENd(t) values were calculated based on their zircon U-Pb ages, as
shown in Section 3.1. The northern Qingshan diorites present 87Sr/86Sr ratios ranging from
0.7060 to 0.7061 and ENd(t) values from −1.4 to −1.7 (Figure 10). The Heishantou quartz
diorites show 87Sr/86Sr ratios of 0.7048 to 0.7050 and ENd(t) values varying from −1.5 to 0.9
(Figure 10). The southern Qingshan biotite granodiorites present 87Sr/86Sr ratios ranging
from 0.7054 to 0.7061 and ENd(t) values varying from −2.0 to −1.6 (Figure 10).
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5. Discussion
5.1. Petrogenesis
5.1.1. The Northern Qingshan Diorites

The northern Qingshan diorites exhibit low SiO2, high Al2O3, TFe2O3, and CaO, and
moderate K2O and Na2O contents, resembling the characteristics of the Setouchi sanukitoid
suite (Figures 7 and 8). Additionally, they demonstrate similar REE and trace element
distribution patterns to the Setouchi and central Beishan sanukitoids (Figure 9). However,
these rocks exhibit slightly low MgO (4.46–4.53 wt%) contents with Mg# values of 50 to 52
and significantly low Cr (18.1–31.4 ppm) and Ni (6.87–7.74 ppm) contents when compared
to these sanukitoids (Figure 11(1–3)). Consequently, the northern Qingshan diorites should
be normal calc-alkaline series rocks (Figure 7(2)). Their potential origins include (1) a
magma mixing process between mafic and felsic magmas [73], (2) the partial melting of
mafic crustal rocks [74,75], and (3) the fractional crystallization of mantle-derived mafic
magma [22]. First, the absence of mafic enclaves in the diorites and their limited range of
Sr-Nd-Hf isotopes (Figures 10 and 12) do not support the existence of a magma mixing
process [23,76]. Furthermore, experimental research has demonstrated that the partial melt-
ing of mafic rocks can generate calc-alkaline intermediate melts (SiO2 < 58 wt%) [67,75,77].
These intermediate melts coexist with granulite residues below approximately 1.0 GPa and
with garnet-bearing granulite or eclogite residues at higher pressures [67]. The studied
diorites show high Y contents (17.8–19.1 ppm) and flat HREE patterns with low (La/Yb)N
ratios of 5.9 to 6.2 (Figure 9(1)). If the diorites are formed through the partial melting
process, these features preclude the involvement of garnet in the residues during partial
melting, indicating a relatively low melting pressure (<1.0 GPa). At low pressures, the
partial melting of metabasaltic rocks always yields intermediate melts with high Na2O
(>4.38 wt%) and low Mg# values (<50) [67,75,78], which are not shown by the diorites from
the northern Qingshan (Figures 8(5) and 11(1)). Therefore, it is inferred that the partial
melting of crustal rocks cannot account for the formation of the northern Qingshan diorites.
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Figure 11. (1) Mg# vs. SiO2 diagram. Mg# = 100*Mg2+/(Mg2+ + Fe2+). Data for metabasaltic and
eclogite experimental melts (1–4.0 GPa) are from the same source as those in Figure 8(2). Arrows
1 and 3 are after [79]; arrow 2 is after [68]. (2) Cr vs. MgO diagram. (3) Ni vs. MgO diagram.
Data for the Setouchi and central Beishan sanukitoids are from the same source as those in Figure 8.
(4) 10,000×Ga/Al vs. Zr + Nb + Ce + Y diagram [80].
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Figure 12. (1) Zircon EHf(t) vs. age (Ma) diagram. Data for A-type granitoids (295–273 Ma) are from
the same source as those in Figure 10. (2) Zircon EHf(t) vs. the whole-rock ENd(t) diagram. The fields
of oceanic sediments, including deep-sea clays and biogenic muds, Fe-Mn crusts and nodules, and
sands, the seawater array, and the terrestrial array are from [81,82].

Alternatively, the diorites likely formed through the fractional crystallization of mantle-
derived magma. In the Mg# vs. SiO2 diagram (Figure 11(1)), they are plotted near the
trend associated with the crustal assimilation–fractional crystallization (AFC) of mantle-
derived melts. Moreover, their significantly lower Cr and Ni contents and Mg# values
compared to those of mantle-derived mafic magma (Ni > 150 ppm; Mg# > 65) [83] suggest
the extensive fractionation of the mafic magma [22,84]. Additionally, these rocks exhibit
enrichments in LREEs relative to HREEs, positive anomalies in Rb, Th, U, K, and Pb, and
negative anomalies in Nb and Ta (Figure 9). Together with their enrichment in whole-
rock Sr-Nd isotopes (87Sr/86Sr = 0.7060–0.7061; ENd(t) = −1.4–−1.7) and zircon Hf isotopes
(EHf(t) = −4.7 to −0.6) (Figures 10 and 12), we infer that they were sourced from an enriched
mantle. The component with enriched compositions can be introduced to mantle-derived
magma, either through slab-derived materials (source contamination) or through the
overriding continental crust (path contamination) [85]. Here, it is difficult to quantify the
relative contributions of source and path contamination in the enriched mantle source
proposed for the northern Qingshan diorites due to the lack of detailed knowledge of
different end components. We prefer to suggest that the slab-derived fluids/melts likely
play a crucial role in forming the enriched mantle source, as indicated by the absence of
wall–rock xenoliths and the ancient inherited zircon in the studied diorites. Moreover,
both Ba and Th elements are mobile and tend to show high contents in subduction-related
fluids/melts [86]. The diorites display high Th/Yb and low La/Ba ratios, implying the
influence of slab-derived materials in their magma source. In summary, we infer that
the northern Qingshan diorites likely originate from an enriched mantle modified by
subduction-related components.

5.1.2. The Heishantou Quartz Diorites

The Heishantou quartz diorites are coeval with the northern Qingshan diorites dis-
cussed above, and they define curvilinear and/or linear compositional trends for major
elements with increasing SiO2 contents (Figure 8), which may suggest that the fractional
crystallization process dominantly contributed to their generation [87]. However, the
quartz diorites show a slight depletion in whole-rock Sr-Nd (87Sr/86Sr = 0.7048–0.7050;
ENd(t) = −1.5–+0.9) and zircon Hf (EHf(t) = 3.8–7.8) isotope compositions than those of the
diorites (Figures 10 and 12). This precludes the possibility of a magma fractionation process.
Moreover, geochemical modeling suggests that fractional crystallization would yield an
almost horizontal line in plots of incompatible trace elements with different bulk partition
coefficients, while partial melting and magma mixing would produce a straight line with a
slope [88]. In the Th/Nd vs. Th diagram (Figure 13(1)), the quartz diorites and diorites do
not define such a trend, which is inconsistent with a magma fractionation process.
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The calc-alkaline quartz diorites have SiO2 contents of 58.79 to 63.08 wt% and MgO
contents of 2.75 to 3.84 wt% (Figure 8). In the Mg# vs. SiO2 diagram (Figure 11(1)), these
rocks are plotted near the area of experimental melts of crustal rocks and tend to have
higher Mg# values with decreasing SiO2 contents. This observation indicates that quartz
diorites likely represent crustal-derived magma with varying degrees of input from mantle-
derived mafic melts. Among the quartz diorites, those with higher SiO2 (59.61 wt%) show
an enrichment in the Nd isotope composition (ENd(t) = −1.5) compared to less mafic rocks
(SiO2 = 62.57 wt%; ENd(t) = 0.9) (Supplementary Table S5). Therefore, the mafic magma that
was involved in the formation of quartz diorites should be sourced from enriched mantle
materials. Furthermore, the quartz diorites are all characterized by a slight depletion in
Sr-Nd-Hf isotopes (Figures 10 and 12), indicating a juvenile lower crust. Additionally, they
are enriched in LREEs relative to HREEs and display positive anomalies of Rb, Th, U, K,
and Pb, as well as negative anomalies of Nb and Ta (Figure 9), showing the signatures of
arc-like magmatism.

Generally, Nd and Hf isotopes of most crustal and mantle-derived rocks form the
“Terrestrial Array” due to the similar fractionation of Sm/Nd and Lu/Hf ratios during
magma evolution [82]. However, oceanic sediments, such as Fe-Mn crusts and nodules,
sea clays, and biogenic muds, are typically enriched in trace elements (e.g., Sm, Nd, and
Lu) and tend to have higher Lu/Hf ratios, resulting in high EHf values at given ENd values
(Figure 12(2)) [82]. In the zircon EHf(t) vs. the whole-rock ENd(t) diagram (Figure 12(2)), the
quartz diorites are plotted over the terrestrial array line, suggesting that oceanic sediments
from a subducted slab probably modified the mantle source where partial melting occurred
to form the juvenile lower crust mentioned above. Additionally, the breakdown of garnet
during crustal melting under high pressures can yield melts with elevated HREE contents,
leading to high Lu/Hf ratios and EHf(t) values in derived melts [89]. However, the quartz
diorites show high Y contents (20.0–21.0 ppm) and flat HREE patterns with (La/Yb)N ratios
of 6.0 to 17.2, which do not support the existence of garnet during their formation. The
mechanism of the disequilibrium melting of zircon during the crustal melting process is also
utilized to explain Nd-Hf isotope decoupling, as residual zircon can retain 177Hf and, thus,
generate high 176Hf/177Hf in melts [90]. However, the quartz diorites show positive Zr-Hf
anomalies (Figure 9(2)) and high Zr contents (94.3–158 ppm). Together with the absence
of inherited zircons, we infer that residual zircons do not substantially exist, precluding
the possibility of zircon disequilibrium melting [91]. In summary, the Heishantou quartz
diorites were derived from the partial melting of the juvenile lower crust, previously
influenced by oceanic sediments, with the involvement of enriched mantle-derived magma.

5.1.3. The Southern Qingshan Biotite Granodiorites

The southern Qingshan biotite granodiorites exhibit moderate SiO2 contents
(65.11–66.61 wt%) and contain amphibole in their mineral assemblages (Figure 3(6)), to-
gether with their metaluminous characteristics (A/CNK = 0.91–0.97) (Figure 7(3)), which
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indicate I-type affinities for these rocks [92,93]. The low 10,000×Ga/Al (1.8–1.9) ratios
(Figure 11(4)) and Ti-in-zircon temperature (647–790 ◦C, average 711 ◦C) further confirm
their classification as I-type granitoids [80,94,95]. Additionally, these rocks show high K2O
contents (2.88–3.70 wt%) with high K2O/Na2O ratios (0.9–1.3), belonging to the high-K
calc-alkaline series (Figure 7(2)). High-K calc-alkaline I-type granitoid can form via the
(1) fractional crystallization of mantle-derived alkaline mafic melts [96], (2) the partial
melting of mafic-intermediate metaigneous rocks with transitional to high K calc-alkaline
characteristics [97], and (3) magma mixing between crustal- and mantle-derived melts [98].
The absence of coeval cogenetic mafic rocks and associated cumulates in the regional
context precludes the possibility of the fractionation process. The biotite granodiorites
show enrichment in whole-rock Sr-Nd isotope compositions (87Sr/86Sr = 0.7054–0.7061;
ENd(t) = −2.0–−1.6) (Figure 10), which may indicate a uniform crustal source. How-
ever, their zircon Hf isotopes are variable, with EHf(t) values ranging from −2.3 to +4.5
(Figure 12(1)). Mafic enclaves are commonly present in the southern Qingshan pluton
(Figure 3(3)). They exhibit an igneous texture and zircon U-Pb age (274 Ma), similar to
the host biotite granodiorites [12]. The mafic enclaves show lower SiO2 (46.42 wt%) and
high MgO contents (5.52 wt%), together with their arc geochemical signatures [12], imply-
ing that they originated from the enriched mantle. Moreover, the enclaves also present
variable EHf(t) values of −1.3 to 5.1 [12], indicating that they were modified by the host
rocks. In the MgO and Mg# vs. SiO2 diagrams, the biotite granodiorites plot in the area
of experimental crustal melts, and some rocks exhibit a higher MgO and Mg# than those
of these melts (Figures 8(3) and 11(1)), suggesting the involvement of mafic magma. All
these data imply the key role of the magma mixing process in the formation of the biotite
granodiorites [23,99]. In the Th/Nd vs. Th diagram (Figure 13(1)), these rocks follow the
geochemical trend of partial melting or magma mixing processes. Additionally, previous
studies have shown that the magma mixing process tends to be expressed by an almost
straight line in one compatible vs. one incompatible element diagram [88]. In the 1/V
vs. Rb/V diagram, the biotite granodiorites define a straight line with a slop, which is
consistent with the magma mixing process. Therefore, the geochemical features of trace
elements further support the inference of magma mixing.

The mafic enclaves likely approached the composition of the mafic end member,
although they were influenced by the host biotite granodiorites. The felsic end member
was probably sourced from the juvenile lower crust. In the zircon EHf(t) vs. whole-rock
ENd(t) diagram (Figure 12(2)), the biotite granodiorites lie on or above the terrestrial array.
As discussed in Section 5.1.2, several factors, including the effect of garnet, zircon, and
oceanic sediments, can lead to higher EHf(t) at given ENd(t) values [100]. First, the effect
of garnet can be ruled out based on the high Y contents (14.0–19.6 ppm) and flat HREE
patterns ((La/Yb)N = 3.7 to 11.2). Second, the effect of zircon is also improbable. These
rocks have high Zr contents (106–142 ppm) and positive Zr-Hf anomalies, which do not
indicate the substantial occurrence of residual zircons during the process of crustal partial
melting. Therefore, we infer that the juvenile lower crust was probably sourced from
oceanic sediment-modified mantle materials. In summary, the magma mixing process
played a vital role in the formation of the southern Qingshan biotite granodiorites. Two
end member magmas were involved as follows: one derived from an enriched mantle and
the other from a preexisting juvenile lower crust.

5.2. Implications for the Early Permian Geodynamic Setting in the Southern Beishan

The Shibanshan unit, situated at the southernmost end of the Beishan orogen, occupies
a key location for understanding the final amalgamation of this orogen [8]. Permian
igneous rocks are widely developed, and their compositions range from mafic to felsic
(Figure 2) (Supplementary Table S1). Previous studies propose that the early Permian
mafic–ultramafic rocks in the Beishan orogen formed in a rifting tectonic setting related to
the early Permian Tarim mantle plume [18,101]. However, the distribution pattern of early
Permian mafic rocks in the Shibanshan unit, along the Liuyuan ophiolitic mélange belt
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(Figure 2), contradicts the planar distribution typically observed in mantle plume-associated
igneous rocks [16,102]. Furthermore, some authors argue that these rocks exhibit distinct
whole-rock trace element characteristics from those in the Tarim Large Igneous Province
(LIP) [16]. Additionally, Permian (281–265 Ma) mafic igneous rocks in the Shibanshan unit
were considered to be sourced from mantle materials influenced by subduction-related
fluids/melts [103]. Collectively, these data do not support the existence of a mantle plume
during the early Permian in the Shibanshan unit.

Additionally, a post-collisional setting [20,31] or continental arc setting [16,33] was
suggested to account for the formation of the early Permian igneous rocks in southern
Beishan. We preclude the possibility of a post-collisional setting based on several reasons.
First, the Liuyuan complex to the north of the Shibanshan unit developed a large volume
of MORB-type ophiolitic blocks during the early Permian to Late Triassic, which means
that the Liuyuan Ocean still existed in that period [17,33]. Second, the high-Mg diorite
and gabbro dikes showing arc-like geochemical features, along with adakitic-like granites,
suggest the ongoing southward subduction of the Liuyuan Ocean during the middle
Permian (269–267 Ma) [16]. Third, our study reveals that the early Permian intermediate–
felsic rocks in the Shibanshan unit exhibit geochemical signatures of arc igneous rocks, and
subduction-related components were involved in their generation. Finally, zircon trace
element-based diagrams were constructed to discriminate the mid-ocean ridge, plume-
influenced ocean island, and subduction-related arc environments [58]. All the analyzed
zircons from the three plutons in the Shibanshan unit plot were within and/or near the
continental arc-type zircon field (Figure 14). These findings suggest that a continental arc
setting is more feasible for the early Permian magmatism in the Shibanshan unit.
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Figure 14. Tectonic discrimination diagrams based on zircon trace elements [76]. (1) U/Yb vs. Nb/Yb,
(2) Sc/Yb vs. Nb/Yb, and (3) U/Yb vs. Sc/Yb. Con.Arc-type: continental arc-type; MOR-type: mid-
ocean ridge-type; OI-type: ocean island-type.

Furthermore, our study reveals the involvement of different magma components in
the formation of early Permian intermediate–felsic rocks, indicating the interaction be-
tween crustal- and mantle-derived magma. Early-mid Permian (295–273 Ma) granitoids
with A-type affinities were documented in the Shibanshan unit [19,72]. The occurrence of
A-type granitoids most likely indicates an extensional setting, where crustal source rocks
experienced partial melting under relatively high temperatures and low pressures [94,104].
These A-type granitoids show many variable whole-rock Sr-Nd and zircon Hf isotope
compositions (Figures 10 and 12), suggesting strong interaction between the depleted
mantle and/or juvenile lower crust and ancient crustal rocks. Here, we propose a retreat-
ing subduction zone developed in the Shibanshan unit during the early Permian period
(Figure 15). Retreating subduction occurs where the rate of rollback of the subducted slab
is greater than the rate of advance of the overriding plate, leading to crustal extension
in the latter [105]. The extensional regime within the overriding continental arc likely
facilitated the generation of A-type granitoids in the Shibanshan unit (Figure 15) [106].
Additionally, during retreating subduction, the upwelling hot asthenospheric mantle can
cause the partial melting of overriding crustal rocks, in which mantle materials can be
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involved, producing the strong crust–mantle interaction discussed above. In summary, it is
inferred that the retreating subduction of the Liuyuan Ocean produced the early Permian
intermediate–felsic magmatism in the Shibanshan unit (Figure 15).
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Figure 15. A tectonic model for early Permian magmatism in southern Beishan. High-Mg diorites
and adakitic granites are from [16]. A-type granitoids are from [19,72]. Abbreviations: SCLM—
subcontinental lithospheric mantle.

The Beishan orogen comprises five tectonic units separated by four east–west oriented
ophiolitic mélange belts (Figure 1(2)). The nature and timing of these mélange belts remain
under debate, and different tectonic models have been proposed to account for the forma-
tion of the Beishan orogen [35,107]. Primarily based on studies of volcano–sedimentary
successions, some authors argue that the Jijitaizi–Xiaohuangshan mélange belt may repre-
sent a major branch of the PAO and that the Beishan orogen evolved into a continental rift
setting following the closure of this ocean around the Early Devonian [108,109]. However,
this mélange belt formed in the Ordovician-early Carboniferous period (480 to 321 Ma),
as revealed by LA-ICP-MS zircon U-Pb dating results [35,110], and is thought to have
formed in a back-arc setting [14,32]. The Hongliuhe–Niujuanzi–Xichangjing mélange belt
shows zircon U-Pb ages ranging from 536 to 426 Ma [35], and the ocean it represents is
thought to have closed before the Early Devonian [111,112]. The development of the Early
Devonian S- and A-type granites in central Beishan orogen further supports this infer-
ence [113]. Additionally, the Hongshishan mélange belt, situated in the northernmost part
of the Beishan orogen, was formed in the Carboniferous-early Permian period (357–297 Ma)
according to zircon U-Pb dating results [35]. Coeval arc calc-alkaline magmatism in the
Heiyingshan–Hanshan unit also indicates the existence of the southward subduction of
the ocean represented by the Hongshishan mélange belt [114,115]. The early Permian
(289 Ma) alkali feldspar granites in the Hongshishan area are considered to have formed
in a post-collisional setting [116], implying that the Hongshishan Ocean probably closed
before the middle Permian [117,118]. Furthermore, the oceanic blocks from the Liuyuan
mélange belt, located in the southernmost part of the Beishan orogen, show zircon U-Pb
ages spanning the Cambrian–Permian period (540–270 Ma) [17,33]. Our study also demon-
strates that the Liuyuan Ocean still existed during the early Permian. The final closure of
this ocean may be later than 234 Ma, as indicated by the age of the sedimentary matrix
from the Liuyuan complex [33]. To summarize, the existence of the late Paleozoic ophi-
olitic mélanges and arc magmatism likely implies that the Beishan orogen formed through
multiple accretionary–collisional processes during the Paleozoic. The Liuyuan ophiolitic
mélange belts may represent the site of the final closure of the PAO in the Beishan orogen.

6. Conclusions

(1) Intermediate–felsic igneous rocks are widespread in the Shibanshan unit, the south-
ernmost end of the Beishan orogen. New LA–ICP–MS zircon U–Pb results reveal
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ages of 300 Ma for the northern Qingshan diorites, 294 Ma for the Heishantou quartz
diorites, and 291–286 Ma for the southern Qingshan biotite granodiorites. The diorites
were likely sourced from an enriched mantle influenced by subduction fluids and/or
melts. The quartz diorites originated from the partial melting of the juvenile lower
crustal rocks with input from the enriched mantle. The biotite granodiorites are I-type
granitoids and originated from a mixing process between the enriched mantle-derived
and preexisting juvenile lower crust-derived magmas.

(2) The early Permian intermediate–felsic rocks exhibit geochemical signatures of arc mag-
matism, and their generation involved subduction-related materials. Different magma
components, including the enriched mantle and juvenile lower crust, participated
in the generation of these rocks, implying a strong interaction between crustal- and
mantle-derived magmas. Additionally, all analyzed zircons in this study exhibit trace
element characteristics typical of continental arc-type zircons. In conjunction with
previous studies, we infer that an early Permian retreating subduction of the Liuyuan
Ocean developed in the Shibanshan unit, the southernmost part of the Beishan orogen.
Moreover, the Beishan orogen likely experienced multiple accretionary–collisional
processes during the Paleozoic.
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