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Abstract: The Mugagangri Group (MG), located at the southern margin of the Qiangtang terrane
in Tibet, is a crucial research target for understanding the subduction and accretion history of the
Meso-Tethys Ocean. Extensional crack-seal veins restricted within sandstone blocks from the broken
formation in the MG (Gaize) formed synchronously in the mélange formation. The primary inclusions
trapped in the veins recorded multiple pieces of information during the formation of the accretionary
wedge. To precisely constrain the MG subduction–accretion processes, we investigated the trapping
temperature, salinity, density, and composition of the fluid inclusions within the crack-seal veins
derived from the broken formation in the MG (Gaize). The primary inclusions indicate that the
crack was sealed at ~151–178 ◦C. The salinity of the primary inclusions exhibited a well-defined
average of 3.3 ± 0.7 wt% NaCl equivalent, slightly lower than the average of seawater (3.5 wt%).
There were no nonpolar gases, and only H2O (low salinity) was detectable in the primary inclusions.
These characteristics suggest that the syn-mélange fluids were a type of pore fluid in the shallow
subduction zone, with the principal source being pore water from sediments overlying the oceanic
crust. Because of mineral dehydration and compaction, the pore fluids became more diluted with H2O
and fluid overpressure owing to a pore fluid pressure that was greater than the hydrostatic pressure.
Subsequently, the creation of cracks through hydraulic fracturing provided a novel pathway for the
flow of fluids which, in turn, contributed to the décollement step-down and underthrusting processes.
These fractures acted as conduits for fluid movement and played a crucial role in facilitating these
peculiar occurrences of quartz veins. The depth (~5 km) and temperature estimates of the fluid
expulsion align with the conditions of the décollement step-down, thereby leading to the trapping of
fluids within the sandstone blocks and their subsequent underplating to the accretionary complex. In
our preferred model, such syn-mélange fluids have the potential to provide valuable constraints on
the subduction–accretion processes occurring in other accretionary complexes.

Keywords: fluid inclusion; fluid migration; mélange; accretionary complex; subduction

1. Introduction

Fluids often play a pivotal role in subduction zones because of their potent transport
capacity. Throughout the subduction process, these fluids significantly impact on rock–fluid
interactions, accretive wedge structure, diagenesis, and seismogenic behavior along the
subduction interface [1–5]. In subduction zones, obtaining accurate information about
the depths and pressure–temperature (P–T) conditions of the subduction environment
is of the utmost importance [1,6–9] (Table 1). Various methods have been developed for
controlling the pressure–temperature (P–T) conditions and depths of subduction zones,
including microthermometry, vitrinite reflectance, and illite crystallinity. Therein, vitrinite
reflectance, as a classic method for determining the evolution of regional thermal history,

Minerals 2023, 13, 1196. https://doi.org/10.3390/min13091196 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min13091196
https://doi.org/10.3390/min13091196
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0003-3381-1873
https://doi.org/10.3390/min13091196
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min13091196?type=check_update&version=1


Minerals 2023, 13, 1196 2 of 19

is usually combined with other methods [9–12] (Table 1). Other methods of thermometry,
such as Raman spectroscopy of carbonaceous materials (RSCMs), thermobarometry, and
pseudosection modeling, are also widely used with metamorphic rocks of high-pressure
(HP) metamorphic belts from paleo-subduction zones [13–19] (Table 1). Fluid inclusion
is a carrier of paleo-geofluids, which directly provide the specific pressure–temperature
(P–T) conditions of the fluids in capture [20]. Therefore, the microthermometry of fluid
inclusions is widely applicable to the constraints of subduction environments and in the
deduction of subduction–accretion processes [1,8,21–28] (Table 1).

Accretionary orogens typically represent a type of orogenic belt formed in an oceanic
environment or the margins of a continental crust. As the trench recedes, the material of the
upper oceanic crust is eroded by subduction and accretes to the continental margin [29–32].
Accretionary wedges are usually formed by trench fillings and fragments of the oceanic
crust on the upper part of the subduction channel, referred to as accretionary complexes
because of the material source’s complex composition, structure, and metamorphism [33,34].
Therefore, accretionary complexes systematically record plate subduction and accretionary
growth and provide crucial and compelling evidence for the evolution of accretionary
orogens [35–38].

The Bangong–Nujiang suture zone (BNSZ), located between the south margin of the
Qiangtang terrane and the north margin of the Lhasa terrane, spans the central Tibetan
Plateau (Figure 1). It is very important for understanding the accretion and evolution of the
subduction zone, as well as the evolution of the Meso-Tethyan Ocean and the north margin
of the Gondwana continent, and it has garnered widespread attention from geologists
globally in recent decades [33,39–41]. The MG, an important accretionary complex, emerges
from the west of the BNSZ and is generally denoted as an assemblage of flysch sediments,
and it has been used as a marker of the BNSZ in prior studies [33,39–41].

Our previous study suggests that broken formations and tectonic mélanges in the
Mugagangri accretionary complex (MAC) were subducted into a shallow seismogenic zone
(>5 km, 150–200 ◦C). On this basis, the nature of the fluids in the subduction zone needs
further study, which will contribute to an understanding of the rock–fluid interactions and
fluid behavior, as well as provide referential values for other accretionary complexes. Thus,
the characteristics, compositions, and origins of the subduction zone fluids are integral to
studying the accretion of the MAC within the BNSZ.

This study explored the distribution of crack-seal veins and mélanges in the MAC of
the Gaize area (Figure 1). We systematically analyzed the fluid inclusions from the broken
formation and present the characteristics of these fluids. Based on a new data set for the
broken formation, we aimed at constraining the source of these fluids and determining
how these fluids affected the subduction–accretion processes of the Meso-Tethyan Ocean in
migration. These syn-mélange fluids may contribute to an understanding of the accretion
of the MAC and the evolution of the Meso-Tethyan Ocean.
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Table 1. Summary of information about the P–T conditions and depths of the subduction zones
[1,6–19,21–28].

Locality Depth (km) T (◦C) P (Mpa) Method Data
References

Shimanto Belt Mugi mélange >3 Cementation of
sandstone blocks [43]

Shimanto Belt Mugi mélange 4–6 125–245 92–149 Microthermometry of
fluid inclusion [6]

Shimanto Belt Mugi mélange 4–6 130–180 Microthermometry of
fluid inclusion [27]

Shimanto Belt Mugi mélange 4–6 185–260 Chlorite geothermometry [44]

Shimanto Belt Mugi mélange 6–7 150–200
Vitrinite reflectance;

microthermometry of
fluid inclusion

[11]

Shimanto Belt Hyuga tectonic
mélange 312–372 Raman spectroscopy of

carbonaceous materials [45]

Shimanto Belt Hyuga tectonic
mélange 6–10 140–250 150–210

Vitrinite reflectance;
microthermometry of

fluid inclusion
[25]

Shimanto Belt Hyuga tectonic
mélange 8.6–14.4 260–340 235–250 Microthermometry of

fluid inclusion [25]

Shimanto Belt Makimine mélange 10–15 150–340 Microthermometry of
fluid inclusion [8]

Shimanto Belt Miyama assemblage 190–312 140–304 Microthermometry of
fluid inclusion [23]

Shimanto Belt Miyama assemblage 125–251 81–253 Microthermometry of
fluid inclusion [22]

Shimanto Belt Yokonami mélange 175–225 143–215 Microthermometry of
fluid inclusion [1]

Shimanto Belt Otaki Group 270–300 140–190 Microthermometry of
fluid inclusion [46]

Kodiak accre-
tionary complex Tectonic mélange 10–14 215–290 Microthermometry of

fluid inclusion [28]

Sanbagawa Belt Chlorize zone 10–20 320–450 370–650 Microthermometry of
fluid inclusion [7]

Nacimiento block of
Central California Franciscan complex ~20 180–360 Raman spectroscopy of

carbonaceous materials [47]

Nacimiento block of
Central California Franciscan complex 100–250 200–800 Metamorphic mineral

assemblages [48]

Hellenides–
Taurides belt

Cycladic
blueschist unit 10–30 440–540 300–1000 Microthermometry of

fluid inclusion [21]

Southwest Japan Shikoku 30–35 ~425 Thermal model [9]
Southwest Japan Kii Peninsula 30–40 ~325 Thermal model [9]

Rio San
Juan complex

Jagua Clara
serpentinite mélange 30–50 360–500 Microthermometry of

fluid inclusion [24]

Sistan suture zone Ratuk complex 65–80 1900–2300 Thermobarometry [12]

Indus suture zone Shergol ophiolitic
mélange ~470 ~1900 Microthermometry of

fluid inclusion [26]

Northern Thailand Inthanon zone 246–295 Illite crystallinity [10]
Western Alps Sesia-Lanzo Zone 3.5–7 700–750 Thermobarometry [19]
Western Alps Zermatt Saas unit ~75 Zr-in-rutile thermometry [13]

Eastern Alps Austroalpine nappes 800–850 ≥3500 Microthermometry of
fluid inclusion [15]

New Caledonia Eclogite-facies
mélange belt

400–650
~800

Oxygen and
carbon isotope [16]

New Caledonia Northern
metamorphic belt ~35 300–550 800–2400

Raman spectroscopy of
carbonaceous materials;

thermobarometry
[17]

West Kunlun Kangxiwar khondalite 700 680 Electron microprobe [18]
Nordfjord Western gneiss 550–650 2000–2600 Pseudosection modelling [14]
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2. Geological Setting

The BNSZ is located in central Tibet and has an east–west strike with a width of
10~200 km. The structural elements within the zone exhibit significant changes along its
strike [39,49–51]. The formation of the BNSZ experienced the process of the opening and
the closing of the Meso-Tethyan Ocean [42,52,53], recording the collision and amalgamation
of the Qiangtang and Lhasa terranes. Consequently, there is ongoing debate regarding the
evolution of the Wilson cycle of the Meso-Tethyan Ocean, including the time, nature, and
tectonic processes involved in the different stages [42,54–56]. The northward subduction
initiation of the Meso-Tethyan Ocean occurred in the Late Triassic (~220 Ma) [42,56,57],
while the timing of the initial collision between the Lhasa and Qiangtang terranes is hotly
debated [58–60].

Along the BNSZ, there are extensive outcrops of discontinuous ophiolitic mélanges
(Figure 1). In the Gaize area, the Mugagangri Group (MG) is a distinctive unit characterized
by well-ordered sedimentary strata and packages of ophiolitic mélange that form a series
of south-vergent thrust sheets (Figure 2) [57]. Based on studies of sedimentology, structure,
and provenance, the MG was interpreted as an accretionary complex that was accreted to
the Qiangtang terrane during the northward Meso-Tethyan subduction [32,61]. The well-
ordered strata are mainly characterized by well-bedded coherent flysch sequences, partially
intermixed with olistostrome, conglomerate, and mudstone [62]. The area of provenance of
these sediments is located in the Qiangtang terrane, north of the BNSZ [61]. In contrast, the
mélanges exhibit a typical block-in-matrix fabric, with the blocks comprising sandstone,
limestone, siliceous rock, and basalt [32]. The matrix among the blocks is predominantly
composed of sandstone, mudstone, and volcanic rock (grain size < 1 cm), formed through
mechanical fragmentation during the mélange formation [57].
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3. Occurrences of Mélanges and Veins

The MG (Gaize) is characterized in strata that are deformed into fold nappes bounded
by south-vergent thrust faults (Figure 3A–C). Therein, the stratigraphic order of four
subunits was identified, termed as Trma, Trmb, TrJmc, and Jmd in ascending order, which
overlie the mélanges structurally [61,63].
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Figure 3. (A–C) Cross-sections through the MAC (Gaize) showing prominent lithological and
structural features. Trma, Trmb, TrJmc, and Jmd denote the four lithological subunits. Note that
folds and thrusts are mainly south-vergent, subdivided into three deformation domains (modified
from [64]). Three type of mélanges: broken formation, tectonic mélange, and mélange (olistostrome).
(D,E) The quartz veins in Domain II-8 fill extension cracks that are subperpendicular to the long axes
of the blocks or in a web-like pattern.

Based on the field geological observation and section measurement, the MG (Gaize) is
subdivided into three deformation domains (Figure 3A–C): (1) Domains I and III consist
mainly of thrust sheets with coherent bedding that have not undergone mélange forma-
tion. These domains exhibit numerous paleo-flow markers, such as inclined bedding
and groove casts, indicating a north to south sediment source from the Qiangtang ter-
rane [64]; (2) Domain II is predominantly mélange and underlies Domains I and III. It
exhibits a block-in-matrix fabric, with the blocks often wrapped within the matrix in a
lens-like type [32].

The mélanges can be classified into three types based on the lithology and gene-
sis: (1) Broken formation, which constitutes a major portion of the mélanges, primarily
composed of “native blocks” and consisting of sandstone, symbolizing tectonically dis-
rupted trench fills [64]. (2) Tectonic mélanges, containing oceanic crust materials (exotic
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blocks) [65], which are mainly volcanic rocks, such as siliceous rock and basalt below the
broken formation, only occurring in Domains II-1 and -2 (Figure 3A,B) [32]. The mélanges
mentioned above, were initially developed in the subduction and can be used to restore the
ocean-plate stratigraphy. (3) Mélanges (olistostrome), which have a sedimentary origin and
are differentiated by poorly developed shear fabric [66], blocks with low aspect ratios, and
local transition to conglomerate, and they cannot be restored for the olistostromes [64].

A large number of crack-seal veins can be observed in the broken formation of Do-
main II-8, primarily within the sandstone blocks (Figure 3D,E). These veins become more
abundant toward the boundary faults between the thrust sheets. The presence of these
veins in association with the thrust faults suggests that they developed through hydraulic
fracturing [67]. Additionally, these veins fill extension cracks that are oriented subperpen-
dicular to the long axes of the blocks or in a web-like pattern, similar to the syn-mélange
veins observed in the Shimanto Belt, SW Japan [68]. Matsumura et al. [6] propose that
these veins developed synchronously with the mélange formation and slightly prior to the
underplating of the mélange. Therefore, the fluid characteristics of these veins can provide
insight into the condition of the mélange formation and underplating.

4. Materials and Methods

In this study, six crack-seal vein samples were collected from the broken formation of
Domain II-8 in the MAC. The samples were prepared into double-polished sections with
a thickness of about 300 µm [69] for further analysis through petrography, mineralogy,
microthermometry, and Raman spectroscopy of fluid inclusions.

4.1. Petrography and Mineralogy

Mineralogic analysis can be conducted to identify the various host minerals. The
petrographic analysis can record the petrographic characteristics of fluid inclusions, includ-
ing size, abundance, and distribution [70]. Moreover, the types of fluid inclusions were
identified, and primary inclusions of appropriate size were selected for microthermometry.

4.2. Microthermometry

Microthermometric measurements of fluid inclusions were performed with the British-
made instrument, Linkam THMS600, at the Laboratory of Fluid Inclusion, Chengdu Uni-
versity of Technology. The cooling–heating stage had a temperature range of −196 ◦C
to 600 ◦C, with an analysis accuracy of ±0.5 ◦C for the temperature range of −196 ◦C
to 0 ◦C and ±2 ◦C for 0 ◦C to 600 ◦C. All experiments were performed following the
correction of the synthetic inclusion standard sample. The rate of the temperature change
was maintained at 10 ◦C/min until it approached the phase change, and then the rate
was controlled at approximately 1~5 ◦C/min. Observing the phase change is challenging,
given the instantaneous transition of fluid inclusions from liquid to solid, which exhibits
metastable equilibrium characteristics. We adopted the method of cooling before heating to
measure the temperature of the fluid inclusions [71].

4.3. Raman Spectroscopy

The Raman spectroscopic analysis was performed at the Chengdu Institute of Mul-
tipurpose Utilization of Mineral Resources using an XploRA PLUS Raman Spectrometer
(HORIBA France SAS, Palaiseau, France). According to the type of sample, the instrument
was calibrated using a standard sample before the experiment. To enhance the reliability of
the data and accurately capture the spectrum characteristic, fluid inclusions were selected
from the uppermost layer of the section. This aimed to minimize the potential influence of
the host on the overall characteristics [72].
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5. Results
5.1. Fluid Inclusion Characteristics

The quartz minerals in the six samples contained abundant fluid inclusions at room
temperature (Figures 4 and 5), with sizes ranging from 5 to 15 µm and gas-to-liquid ratios of
5%~40%. Fluid inclusions typically exhibit irregular, elongated columnar and oval shapes.
They are often isolated, clumped, or linearly distributed in the mineral’s interior. The
majority are primary and secondary inclusions, with pseudosecondary inclusions rarely
linearly distributed along the mineral’s interior fractures [73]. Based on the petrographic
characteristics at room temperature, they can be divided into two types: biphase (type I)
and monophase (type II) inclusions.
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Figure 4. Photomicrographs of thin sections of veins from this study: (A–F) inclusion-rich quartz of
six crack-seal veins (crossed polars). The sections of fluid inclusion are too thick, causing the anomaly
of interference colors. Minerals in the crossed polars are characterized by no cleavage, conchoidal
fracture, and protuberances on top of the quartz grains, indicating only quartz grains in the samples.

The biphase inclusions (type I) predominantly consisted of water, with the gas phase
comprising a smaller proportion compared to the liquid phase. Specifically, the gas phase
accounted for approximately 5% to 30% of the inclusions. These biphase inclusions, which
were mostly ~5–15 µm in size, constituted 70% of the total fluid inclusions. They exhibited
irregular and oval shapes, occasionally appearing as elongated columnar and negative-
crystal formations. The primary inclusions were often randomly dispersed within the
quartz or linearly distributed on the quartz growth surfaces [74]. The gas and liquid phases
in the inclusions were colorless and translucent, exhibiting no discernible dark or other
colors, and their boundaries were sharply defined.

The monophase inclusions (type II) shared a similar composition, consisting solely of
a colorless and translucent liquid phase. These inclusions were typically smaller, ranging
from approximately 2 to 10 µm in size, and constituting around 30% of the total inclusions.
They commonly exhibited elongated columnar and oval shapes, and they were often found
in isolated formations or linearly distributed on the growth surface of the quartz.

5.2. Microthermometry of Fluid Inclusions

Based on the petrographic studies, we mainly conducted microthermometric measure-
ments on the biphase-aqueous fluid inclusions (type I) in quartz veins. To preliminarily
determine the composition and system of fluid inclusions, we carefully selected representa-
tive primary inclusions from the samples and measured the initial melting temperature [75].
The biphase-aqueous fluid inclusions at room temperature were cooled to below the eu-
tectic temperature (−80 ◦C) and then slowly warmed up. The biphase-aqueous fluid
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inclusions were cooled below the eutectic temperature (−80 ◦C) and then slowly warmed
up. At −20.2 ◦C, a bubble in the inclusion appeared, indicating the melting of ice crystals.
These changes in the inclusion were observed during the microthermometric measure-
ment process (Figure 6). The initial melting temperature range of the fluid inclusions in
the six samples was approximately −21.5~−19.1 ◦C, indicating that they belonged to the
NaCl-H2O system [75].
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The salinity of the biphase-aqueous fluid inclusions can be determined by calculating
the freezing point temperature (Tm) [76–78]. Additionally, the density of the inclusions can
be obtained from the formula of the NaCl-H2O system using the salinity and homogeniza-
tion temperature (Th) [78].

The results are shown in Table 2 and Figure 7. The average homogenization
temperatures of the biphase-aqueous fluid inclusions in the six samples were as follows:
163 ◦C, 178 ◦C, 151 ◦C, 178 ◦C, 173 ◦C, and 174 ◦C. This shows that the homogenization
temperature of the six samples in the broken formation was concentrated in the range
of 150~200 ◦C. The average salinity of the six samples was measured as 2.64 wt%,
2.86 wt%, 3.48 wt%, 4.05 wt%, 3.43 wt%, and 3.43 wt%, corresponding to densities of
0.85~1.03 g/cm3.

5.3. Composition of Fluid Inclusions

We selected large and well-formed primary inclusions (type I) from six samples for
Raman spectroscopic analysis and processed the data into Raman spectra. To accurately
identify the peak of the host mineral and fluid inclusion components, we set the Raman
shifts between 1000 and 4000 cm−1.

Table 2. Results of the fluid inclusion analysis.

Sample Host
Mineral

Type Diameter Gas–Liquid Th Tm Salinity Density

(µm) Ratio (%) (◦C) (◦C) (NaCl wt%) (g/cm3)

GZ-411-S1 Quartz I 5.2~12.3 5~30 124.9~192.4 −5.8~−0.2 0.35~8.95 0.88~0.97
GZ-411-S2 Quartz I 5.5~12.7 5~40 143.8~216.3 −5.8~−0.4 0.7~8.95 0.85~0.95
GZ-411-S3 Quartz I 5.5~12.7 5~20 122.7~187.2 −8.7~−0.2 0.35~12.51 0.92~1.03
GZ-411-S4 Quartz I 5.5~10.5 5~20 142.5~220.3 −7.1~−0.5 0.88~10.61 0.88~0.95
GZ-411-S5 Quartz I 5.4~10.7 5~30 142.6~199.5 −6.4~−0.5 0.88~9.73 0.88~1.00
GZ-411-S6 Quartz I 5.4~11.2 5~15 128.7~201.5 −4.5~−0.2 0.35~7.17 0.89~0.95

The Raman spectroscopic analysis revealed distinct features of the gas and liquid
components inside the inclusions, as shown in Figure 8. Strong Raman peaks were observed
at 1160 cm−1 and 1230 cm−1, which are attributed to the quartz [79]. Weak peaks were
also observed in the range of 1595~1630 cm−1, which are typically associated with a weak
band of H2O [72]. Furthermore, wide and distinct peaks were observed in the range of
2750~3900 cm−1, indicating the presence of a strong H2O band (low salinity) consisting of
several large overlapping bands [72,80]. No nonpolar gases, such as CO2 and CH4, were
observed in the spectra. CH4 was found in some but not all fluid inclusions reported from
the mélanges. For example, only H2O but no CH4 was reported from the fluid inclusions in
the Makimine mélange from the Shimanto accretionary complex [8,24]. CH4 can be formed
in reducing conditions if there is carbon available. As depicted in Figure 8, the local weak
peaks were not clearly visible. This is a common occurrence where the fluorescence from the
sample overwhelms the weak Raman features of the fluid inclusions during analysis [72].
However, this does not affect the overall data obtained from the samples. Therefore, based
on the Raman spectroscopic analysis of the inclusions in the broken formation of the MG, it
can be concluded that fluid inclusions primarily consist of H2O (low salinity), indicating
the absence of carbon.



Minerals 2023, 13, 1196 10 of 19
 

 

 

 
Minerals 2023, 13, x. https://doi.org/10.3390/xxxxx www.mdpi.com/journal/minerals 

 
Figure 7. Histograms showing the variation in the homogenization temperature and salinity in the
fluid inclusions.



Minerals 2023, 13, 1196 11 of 19Minerals 2023, 13, x FOR PEER REVIEW 12 of 20 
 

 

 

Figure 8. Raman spectra of biphase-aqueous fluid inclusions in crack-seal veins. Raman spectra of
gas and liquid are shown on the left and right, respectively.



Minerals 2023, 13, 1196 12 of 19

6. Discussion
6.1. Characteristics of Shallow Fluids

The characterization of fluid inclusions is crucial for understanding the migration
of fluids in the subduction zone. However, the interpretation of salinity data for fluid
inclusions requires caution, as it is essential to differentiate between “primary inclusions”
and “secondary inclusions” [24]. Bakker [81] conducted numerous experiments under
controlled external conditions, such as temperature and pressure, and pointed out that
water-rich fluid inclusions can sometimes leak or absorb water through host mineral
crystals. Here, the salinity data ranges of the six samples presented in Table 2 were
relatively concentrated and consistent, indicating NaCl was, indeed, preserved in the
primary fluid inclusions and can be considered as valid salinity data [24].

Based on the analysis of the fluid inclusions using microthermometry and Raman
spectroscopy, the fluids in the broken formation predominantly consist of the NaCl-H2O
system. No nonpolar gases, such as CO2 and CH4, were detected, and the fluids exhibited
low temperature (151~178 ◦C) and low salinity (3.3 ± 0.7 wt%). The average fluid density
(0.94 ± 0.09 g/cm3) was similar to that of pure water (1 g/cm3) (Table 2; Figure 7). This
type of fluid, characterized by low temperature, low salinity, and the absence of nonpolar
gases, such as CO2 and CH4, is commonly found in subduction zone environments [8,24].
The lack of nonpolar gases, including CO2 and CH4, in the crack-seal veins within the
broken formation may be attributed to their origin, which is typically associated with (1) the
decomposition of organic matter and (2) the decarbonization of carbonate [82].

The former is known to occur through thermal cracking, which typically initiates
within the temperature range of 100–150 ◦C. This process is commonly observed in the
décollement zone at a depth domain exceeding 10 km [83]. The latter is related to the
decarbonization of limestone in subduction zones. These limestone formations are typically
found at the base of sedimentary sequences, just above the oceanic crust, and serve as a
significant source of CO2 [84].

The temperature required for decarbonization in the deep subduction zone will be
reduced by fluids [84]. Although these limestones often have the potential for decarboniza-
tion, the reactions are not expected to occur until depths of 85~100 km [85]. Herein, the
crack-seal veins with low temperature (151–178 ◦C) only developed in the sandstone blocks,
which were dragged down by low-relief seamount to the updip limit of the seismogenic
depth (>5 km) [64] (Figure 9B). These features suggest that CH4 was not significantly
expelled, because the thermal cracking had just begun. The concentration of CH4 in the
fluids is not expected to exceed the fluid saturation, indicating that it does not exist as an
independent phase in the fluids [86]. It is also worth noting that, the low-relief seamount
may have hindered the migration of deep fluids along the subduction channel toward
the trench.

At shallow levels in subduction zones (<20 km), a large volume of pore fluids is
expelled by diagenesis and mineral dehydration [87]. At greater depths, the presence of
fluids in subduction zones is relatively lower compared to those observed in accretionary
complexes at relatively shallower depths [87]. Increases in burial depth and P–T conditions
drive metamorphic devolatilization reactions, which provide the primary source of fluids
in subduction zones [84]. These reactions result in a transition of the fluid from being dilute
and water rich to having higher concentrations of rock components, salts, and nonpolar
gases [87,88]. Herein, the characteristics of the fluid inclusions indicate that these fluids
belonged to the NaCl-H2O system and were dilute in nature. Typically, these fluids are
expelled at low temperatures and shallower depths compared to pure H2O or CO2-H2O
fluids [89]. Therefore, these features suggest that syn-mélange fluids are more likely a type
of pore fluid present at shallow depths.
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6.2. Sources of Fluids Associated with Low Salinity

Generally, there are two sources of fluids in subduction zones. The first source is the
pore water contained in the sediments that lie on top of the oceanic crust. The second source
is the bound water released by the dehydration reaction of water-bearing minerals [9].

Fluid-rich sediments that lie above the subduction plate can either be scraped off
to form an accretionary wedge or be underthrusted beneath the upper plate. As these
sediments are buried and heated, both pore water and bound water are expelled by
compaction and dehydration [90]. Sediments carried on the subducting plate gradually
increase in hardness, and become more compacted, leading to a decrease in porosity and
a slower rate of compaction-driven dewatering [91] (Figure 9A). With the lithification of
sediments, the expulsion rate of pore water reaches a maximum depth of ~3–7 km [92,93].
It can be commonly observed that pore water from sediments overlying the oceanic crust is
commonly expelled at a shallow depth of ~5 km (e.g., [94,95]).

In contrast, the dehydration reaction of clay minerals typically occurs at temperatures
ranging from 60 to 150 ◦C, resulting in the formation of hydrocarbons as the primary source
of fluids [96]. As the subduction depth increases, the overlying sediments are gradually
exposed to higher temperature and pressure conditions, causing the bound water released
from the dehydration of clay minerals to become the dominant fluid source [91]. However,
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the trapping temperature (151~178 ◦C) estimated from the fluid inclusions indicates that
only a small amount of bound water has been produced.

The pore water expelled through compaction processes often has a composition similar
to seawater. However, the bound water released from the dehydration of clay minerals
tends to have unique characteristics, such as a higher hydrocarbon content [91,97,98]. As
a result, the pore water in the subduction zone tends to undergo freshening due to the
addition of this distinct bound water, which is usually used to explain the pore water
anomaly at the convergent plate boundary [3,99–101]. In the Cascadia subduction zone,
pore fluids have been observed to contain additional freshwater as a result of mineral dehy-
dration reactions, which has led to a dilution of chloride concentrations to approximately
62% of seawater [102]. Herein, fluids present in the fractured formation exhibited distinct
characteristics, including low temperature and salinity levels (3.3 ± 0.7 wt%), which were
lower than that of seawater (~3.5 wt% [103]). Furthermore, the absence of hydrocarbons
suggests that the primary source of these fluids is the pore water within the water-rich
sediments located above the subduction plate. Additionally, the slightly lower salinity of
the pore water compared to average seawater can be attributed to the addition of freshwater
resulting from mineral dehydration reactions.

6.3. Migration of Fluids in the Broken Formation

The transport of halogen element (chlorine) in the subduction zone primarily occurs
through plate dehydration. This element is subsequently transferred through the generated
fluids, acting as carriers for their transportation [104]. The characteristics of fluid inclusions
suggest that the average salinity of fluids in broken formation is 3.3 ± 0.7 wt%, slightly
lower than seawater (~3.5 wt% [103]). Generally, chlorine concentrations in the pore water
are often close to the seawater, more than 50% [98,105]. If not replenished for a long time,
chlorine anomalies typically undergo gradual diffusion and eventually disappear within
several hundred thousand years. To maintain the concentration levels, fluids often flow
along the sedimentary layers [82] (Figure 9D).

The temperature condition estimated for the crack-seal veins in the broken formation
of Domain II ranges from approximately 151 to 178 ◦C, and these veins are mainly filled
with extension cracks developed in the sandstone blocks. These characteristics suggest
that the broken formation experienced the ductile–brittle transition zone in the shallower
subduction zone (<5 km), which is comparable in the Mugi mélange of the Shimanto Belt
(southwest Japan) (e.g., [6,106]). Furthermore, the transition observed in the shallow sub-
duction zones is likely associated with lithification, and compaction plays a significant role
in the lithification of sandstone [22]. This suggests that the lithification of sandstone blocks
is likely completed prior to mélange formation [43]. In addition, the broken formations in
Domain II have the deformation features of the brittle–ductile transition zone (>5 km) that
is characterized by the cataclasis and pressure solution of sandstone blocks and phyllitic
matrixes. These matrixes have a typical scaly cleavage and are pervasively overprinted
by post-phyllitic cleavage. These features indicate that the broken formations reach the
maximum lithification at ~5 km [64].

The characteristic of the crack-seal veins had an increased abundance toward the
boundary faults between the thrust sheets. These crack-seal textures within the veins in the
exhumed fault zones provide evidence of repeated hydraulic fracturing [91]. Pore fluid
overpressure can be driven by mechanical loading or mineral dehydration during subduc-
tion. Because of overpressure, the fluid flow is expected to occur wherever sufficiently
permeable pathways exist, which contributes to the production of fracture networks via
hydraulic fracturing [67]. The ability of rocks to undergo cracking is also significantly
affected by progressive diagenesis [107]. Additionally, the fracture networks usually de-
velop near the thrust faults and do not simply develop near continuous planar sheets in
the décollement zone for accretionary wedge stability [108].

Accordingly, pore fluids are expelled by the lithification of sandstone blocks because
of mechanical compaction. At a depth of approximately 5 km, the sandstone becomes
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sufficiently lithified, resulting in pore fluids overpressure and the development of ex-
tension cracks. This process contributes to the development of quartz veins [106]. The
MAC exhibits a characteristic pattern of south-vergent, indicating that the mélange has
undergone décollement steps down and subsequent underplating [64] (Figure 3A–C and
Figure 9C). The depth of the oceanic crust underplating is similar to the depth at which
the décollement step-down occurs in the modern Nankai subduction zone [6]. Pore fluid
overpressure causes cracks to develop near thrust faults, which weakens the interplate
thrust faults and potentially contributes to the décollement step-down and underthrust-
ing [109]. Pseudotachylite, a type of rock formed during earthquakes, is typically observed
in seismogenic faults within accretionary complexes [106]. However, the absence of pseu-
dotachylite in the broken formation suggests that it may accrete without experiencing
significant subduction-zone earthquakes, likely due to the cracks that relieve the pressure.

7. Conclusions

1. The analysis of fluid inclusions in the broken formation of the MG revealed two
types: biphase (type I) and monophase (type II) aqueous fluid inclusions. These fluid
inclusions primarily consisted of H2O and did not contain nonpolar gases such as
CO2 or CH4.

2. The characteristics of the fluid inclusions in the crack-seal veins suggest the fluids
trapped in the mélange formation are pore fluids with low temperature, low salinity,
and low density. The presence of a salinity anomaly suggests clay mineral dehydration,
which leads to freshening of the pore fluids.

3. The pore water in sediment over the oceanic crust is a major fluid source in the
broken formation, flowing along the sediment layer during subduction. Compaction
and dehydration expel pore fluids, relieving excess pressure and creating cracks via
hydraulic fracturing. Crack-seal textures weaken interplate thrust faults, promoting
décollement step-down and underthrusting. Pore fluids become trapped in veins
within sandstone cracks at ~5 km depth. The décollement can subsequently break
through and step-down, with veins underplating as pervasive broken formation
within block-in-matrix fabrics.
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