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Abstract: Mineral particle size is an important parameter in the mineral beneficiation process. In
industrial processes, the grinding process produces pulp with qualified particle size for subsequent
flotation processes. In this paper, a hierarchical intelligent control method for mineral particle size
based on machine learning is proposed. In the machine learning layer, artificial intelligence tech-
nologies such as long and short memory neural networks (LSTM) and convolution neural networks
(CNN) are used to solve the multi-source ore blending prediction and intelligent classification of dry
and rainy season conditions, and then the ore-feeding intelligent expert control system and grinding
process intelligent expert system are used to coordinate the production of semi-autogenous mill and
Ball mill and Hydrocyclone (SAB) process and intelligently adjust the control parameters of DCS
layer. This paper presents the practical application of the method in the SAB production process of
an international mine to realize automation and intelligence. The process throughput is increased
by 6.05%, the power consumption is reduced by 7.25%, and the annual economic benefit has been
significantly improved.

Keywords: machine learning; mineral particle size; hierarchical intelligent control; LSTM; CNN

1. Introduction

With the continuous depletion of resources and the increasing pressure of environ-
mental protection and production costs, the production mode of mining enterprises is
changing from an extensive production mode driven by human experience to an intelligent
production mode driven by knowledge and data. The popularization of basic industrial
process automation technology and the rapid development of big data and intelligent
control technology also provide basic conditions and technical support for the intelligent
operation of mineral processing [1,2]. More and more production problems that are difficult
to solve by traditional methods need to be solved by artificial intelligence methods such as
machine learning [3,4].

In recent years, with the improvement of computer performance, the rise of intelligent
computing, and the development of AI algorithms such as machine learning and intelligent
perception, machine learning technology has become a universal technology that can be
used in all fields [5]. Machine learning, big data, expert systems, industrial internet, and
other artificial intelligence have achieved practical applications from theoretical research,
and the integration of applications in industrial scenarios shows great potential [6–10]. The
industrial artificial intelligence technology represented by machine learning and intelligent
perception has made breakthroughs and has been successfully applied in many fields,
especially the image processing technology based on deep convolution networks, which has
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been increasingly applied in industrial process control, fault detection, key parameter ac-
quisition of complex industrial systems [11–18] and other fields. Mou et al. introduced the
generation antagonism network (GAN) for soft sensor modeling, established an innovative
hybrid mechanism based on GAN and a data-driven soft sensor framework, and evaluated
the effectiveness of the method in the industrial case of predicting the thermal deformation
of the air preheater rotor of power plant boilers [19]. Wensi Ke et al. developed an LSTM-
based deep neural network structure as a soft sensing method with strong nonlinearity
and dynamics in the processing process and verified the effectiveness of the improved
modeling method through the benchmark test of the sulfur recovery unit [20]. Yan pro-
posed a Bayesian network (BN) based modeling and operational adjustment method is
investigated [21].

Africa is rich in copper, cobalt, and other mineral resources. Because most of them
are open-pit mining, the climate characteristics in the dry season and rainy season are
obviously different, leading to large fluctuations in raw material properties, such as particle
size and mineral composition. The existing control methods based on the determination of
models and parameters have problems such as large parameter drift and weak applicability,
which pose challenges to the production control of the SAB process. This is also a common
problem facing the resource development of the African continent.

This paper focuses on the control problems for particle size in the SAB process of a
copper concentrator in Africa. The layered intelligent control method based on machine
learning is used to solve the above control problems. In the machine-learning layer, the
long short memory neural network (LSTM), convolutional neural network (CNN), and
other artificial intelligence technologies are used to solve the multi-source ore blending
prediction and the intelligent classification of working conditions in dry and rainy seasons,
Then, the intelligent expert control system for ore feeding and the intelligent expert system
for semi-autogenous ball mill are used to coordinate the control of SAB process production
and intelligently adjust the control parameters of DCS layer. This method has successfully
improved SAB process production indicators and increased economic benefits.

2. SAB Process
2.1. SAB Process in Africa

Plant M is located in Africa, with a daily processing capacity of 10,000 tons. The SAB
process is adopted for ore grinding and classification. As shown in Figure 1, The coarse
ore pile is transported to the semi-autogenous mill (SAG mill). SAG mill ore discharge is
screened by drum screen, and the hard stones on the screen are transported to the SAG
mill by belt. The undersized slurry enters the grinding pump tank and is pumped to one
group of hydrocyclones. The hydrocyclone grit returns to the ball mill for grinding. The
ball mill discharge enters the grinding pump tank, and the hydrocyclone group finally
forms a closed circuit. The cyclone overflows into the flotation operation. The fineness of
the grinding product is −0.074 mm, accounting for 66%, and the pulp concentration is 32%,
entering the downstream production process. The stability of the SAB process product
production index seriously affects the production of downstream production processes
and even affects the production efficiency of the entire concentrator. SAB process urgently
needs to adopt automation and intelligent technology to control production stably.
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Figure 1. SAB process flowchart of Plant M.

2.2. Analysis of Operation Problems

For the SAB process of Plant M, due to the variable operating conditions of SAG
grinding equipment, the operating parameters, such as power and axial pressure, vary
greatly with different operating conditions. During the process operation, it is necessary
to make targeted adjustments according to the change of working conditions in time to
ensure that the main equipment operates in the best state. The operator is inexperienced,
so it is difficult for the operator to accurately judge the operation status of the grinding
production process, and cannot make correct production decisions and operate at the
correct time point in time, thus affecting the overall operation efficiency and stability of the
process. Different experiences and habits of different production operators will also lead to
fluctuations in process indicators and equipment status between different production shifts,
affecting the overall stability of the concentrator production. Due to the complex source,
the raw ore obtained in the mining process is a mixture of copper sulfide and copper oxide.
The mixing ratio of the two changes rapidly, resulting in large changes in hardness, lump
powder ratio, and grindability of raw ore. The local climate conditions lead to obvious
differences between the precipitation in the dry season and rainy season, and the open-air
configuration of the grinding material pile leads to a large fluctuation of the raw ore water
content with the seasons. If the ore-feeding fluctuation is not controlled, it will bring great
disturbance to the system operation, making the grinding and classification process and
grinding product quality fluctuate in a large range.

Due to the above characteristics, especially the problems caused by multi-source ore
blending, such as the fluctuation of ore properties and the change of working conditions in
dry and rainy seasons, which are difficult to solve by traditional control methods. It is also
difficult to operate large equipment such as the SAG mill/ball mill stably in Plant M. As
shown in Figure 2, the throughput of the SAG mill changes greatly, the main motor current
of the SAG mill fluctuates frequently, and the main bearing pressure changes constantly,
reflecting that the production of the SAG mill is difficult to stabilize. Production indicators
such as particle size distribution and concentration of mill product will fluctuate violently,
seriously affecting the production of downstream processes.
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Figure 2. Difficulty in stabilizing the industrial grinding process. (a) Throughput of SAG Mill.
(b) Current of SAG mill. (c) Pressure of bearing. (d) Percentage of mesh size (−200). (e) Concentration
of cyclone overflow.

3. SAB Process Hierarchical Intelligent Control Method
3.1. Hierarchical Intelligent Control Structure

Machine learning is a research hotspot of industrial artificial intelligence. Its theory
and method have been widely used to solve complex problems in engineering applications
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and scientific fields. Aiming at the problems that are difficult to solve by traditional control
methods, such as the change of ore property of this process and the different working
conditions in dry and rainy seasons, a layered intelligent control method of the SAB process
based on machine learning is proposed, as shown in Figure 3.
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In the machine-learning layer, the subsequent semi-autogenous grinding and ball
milling processes fluctuate dramatically due to the change of ore-feeding properties due to
multi-source ore blending. In this paper, the LSTM-based semi-autogenous grinding ore-
feeding block size prediction method is used to provide block size prediction information
for intelligent expert control of ore. As the dry and rainy seasons lead to the change of
mineral moisture, which affects the control parameters of semi-autogenous grinding and
ball milling, the CNN-based intelligent classification of dry and rainy season working
conditions is adopted to predict the classification of current working conditions online,
adjust the current working condition parameters intelligently, and provide them to the
semi-autogenous grinding expert control system and ball milling expert control system.

In the expert system layer, the intelligent expert control of ore feeding adopts the
expert control method based on fuzzy rules. According to the prediction information
of mineral property, the system intelligently adjusts the ore-feeding block size and ore
quantity. The semi-autogenous grinding expert control and ball milling expert control
adopt the CBR expert control method based on real-time compensation. According to the
working condition parameters intelligently adjusted, the SAG mill and ball mill loads are
intelligently coordinated, and the control parameters of the DCS layer are adjusted.

3.2. Machine Learning Layer
3.2.1. LSTM-Based Prediction Method for Feeding Lump Size of SAG

The precise control of ore feeding is the premise of efficient and stable operation of
SAG and also the basis of the whole grinding intelligent control. For semi-autogenous
grinding ore feeding, its specific control objectives include the stability of the ore-feeding
amount and the stability of the ore-feeding lump size. Due to ore blending at multiple
sources, the rock size in feed ore to the SAG mill will fluctuate, affecting the production
stability of subsequent ball milling equipment. If the fragmentation of SAG mill input
ore can be predicted according to the production data, the fragmentation change can be
predicted in time when the working conditions are shifted due to multi-source ore, and the
expert control system of the SAG mill can be guided to quickly adjust and reach the new
set value, which is conducive to the stability of the whole system.
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There are four ore feeders at the bottom of the raw ore bin. The location of each
feeder is different. The corresponding storage height and ore fragmentation from feeders
are also different and will change with the production process. The ore fragmentation
shows obvious time-varying and nonlinear features. According to experts’ experience and
knowledge, the variables that can be detected online and have a great impact on the block
size are selected, as shown in Table 1.

Table 1. Online detection variables of SAG.

No. Variable Name

1 1# Belt frequency
2 2# Belt frequency
3 3# Belt frequency
4 4# Belt frequency
5 Feedrate of SAG mill
6 Current of SAG mill
7 Water feedrate of SAG mill
8 Pressure of SAG mill bearing
9 SAG mill 2# Belt current

Through the combination and verification of manual belt sampling and screening + video
image manual marking division, the actual ore lump size on the semi-autogenous grinding
feeding belt in a period of time can be quickly obtained. The long short memory neural
network is used to train the prediction model of the ore block size for semi-autogenous
grinding. The LSTM training network used in this paper is shown in Figure 4.
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In the process of LSTM modeling, the problem of overfitting often occurs. The model
network structure is too complex, which exceeds the actual problem. It performs well in
the training set but performs poorly in the test set and has poor generalization performance.
Therefore, Dropout is used to reduce the overfitting phenomenon when training the net-
work. Adam optimizer is selected for updating model parameters. The RMSE and ARGE
are calculated by the formulas in [22–24].

The LSTM network is a deep neural network with many superparameters for pre-
dicting the feeding lump size of the SAG mill. Since all neural networks have an input
layer and an output layer, the complexity of the deep learning model mainly depends
on the number of hidden neurons and the number of neurons in each layer, which is the
main superparameter of the deep learning model. In addition to the network structure, the
LSTM network model also has this time window size, which is more parameters and more
complex to optimize than the general deep neural network. The superparameter learning
method with the following structure is used to optimize the network parameters.
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As shown in Figure 5. SQP algorithm is used to optimize the superparameters of the
prediction model for the feed size of the SAG mill. The optimization problem is expressed
as follows [25]: 

min f (x)
subject to gi(x) ≤ 0 (i = 1, 2, . . . , mp)

gi(x) = 0 (i = mp + 1, . . . , m)
(1)Minerals 2023, 13, x FOR PEER REVIEW 7 of 14 
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Figure 5. Optimization of LSTM parameters based on hybrid genetic algorithm.

For the soft-sensing detection of the feeding lump size of the SAG mill, GA and HGA
are used to optimize the hidden layer of the LSTM network, the unit number of the hidden
layer, and the Dropout probability. In order to ensure the validity of the comparison of
model performance results, the superparameter settings that do not involve optimization
should be the same. In the HGA optimization experiment, the modeling based on GA-
LSTM is first carried out. The initial population size of the genetic algorithm [1] is set to
30, the crossover rate is 0.5, the mutation rate is 0.1, and the total number of iterations
is set to 20. When the genetic algorithm is used to optimize the super parameters of the
LSTM network, the optimal fitness function of the optimal chromosome in the population,
namely the RMSE value of the LSTM network on the test set, gradually converges with
the increase of iteration times. The lump size prediction effect of SAG based on LSTM is
shown in Figure 6.
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3.2.2. Classification of Moisture Content in Dry and Rainy Seasons Based on CNN

Due to the local climate conditions, the precipitation in the dry season is obviously
different from that in the rainy season, while the open pit configuration of the grinding
material pile results in a large fluctuation of the raw ore water content with different
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seasons. In the dry season, the water content of raw ore is about 8%–10%, while in the rainy
season, when the precipitation is large, the water content of raw ore can reach about 15%.
This brings great interference to the grinding production control and affects the control
effect of the optimal control system in the rainy season. In order to improve the adaptability
of the control system, it is necessary to realize the adaptive control algorithm parameters.

A total of 24,500 pieces of data covering 24 months, as shown in Table 2, including
the dry season and rainy season. Moreover, 15,000 pieces of data were used for modeling
training, 5000 pieces of data were used for modeling testing, and 4500 pieces of data were
used for modeling validation.

Table 2. Data variables for CNN training.

No. Variable Name

1 Mesh size (Video extraction)
2 Feedrate of SAG mill
3 Water feedrate of SAG mill
4 Current of SAG mill
5 Bearing pressure of SAG mill
6 Current of ball mill
7 Bearing pressure of ball mill
8 Water feedrate to sump
9 Pressure of cyclone
10 Flow of cyclone
11 Concentration of cyclone
12 Particle size of cyclone overflow

A CNN network using VGG-16 structure [26,27], with five segments connected in
series by multiple 3 × 3 convolutional kernels. The maximum pooling layer with a size
of 2 × 2 is connected after each convolutional segment. The network scales the feature
map through the pooling layer, with three fully connected layers and one softmax layer
connected at the end [28]. The network structure in Figure 7 is used to classify the data
during the dry and rainy seasons, and the classification results are combined with manual
labeling, as shown in Figure 8.
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3.3. Expert Control Layer
3.3.1. Feeding Expert Control

The precise control of ore feeding is the premise of efficient and stable operation of
the SAG mill as shown in the Table 3 and also the basis of the whole grinding intelligent
control. For semi-autogenous grinding ore feeding, its specific control objectives include
two aspects: the stability of the ore-feeding amount and the stability of ore-feeding particle
size distribution. In detail, one is to maintain the stability of mineral feeding materials
under normal working conditions, and another is to quickly adjust and reach the new
set value when working conditions migrate, which is conducive to the stability of the
entire system.

Table 3. Online detection variables of SAG mill.

IF THEN

LL Parameter Group 1 of Expert control layer
L Parameter Group 2 of Expert control layer
M Parameter Group 3 of Expert control layer
H Parameter Group 4 of Expert control layer

HH Parameter Group 5 of Expert control layer

Difficulties of intelligent feeding include large system lag, sometimes variable storage
and measuring tools in the silo, differences among feeders, and sudden occurrence of
various abnormal conditions on-site. As for Plant M, there are four feeders at the bottom of
the raw ore bin. The location of each feeder is different, and its corresponding storage height
and ore block size are different and change with the production process. The ore-feeding
capacity and ore block size show obvious time variation and difference. The distance
between the feeder and the belt scale (measuring mechanism) is about 200 m, with a delay
of about 2 min. In the rainy season, the feeder downport is easy to be blocked. At this time,
the operators must stop the corresponding feeder immediately and start a new feeder to
ensure the continuity of production. In actual production, materials in raw ore are mixed
with various ores with different copper grades and particle sizes according to the feedback
scheduling of the flotation process. Aiming at the actual problems on-site, the feeding
expert control system compensates for the dynamic changes of the feeding process through
the LSTM-based model of the feeding process and conducts real-time control on the amount
and fragmentation of SAG mill feed to ensure the stability of grinding production as shown
in Figure 9.
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If the ore-feeding capacity of the ith feeder (1 ≤ i ≤ 4) is ki, the proportion of large
blocks is pi, its frequency value is ui, the prediction value of ore-feeding amount is Wcal ,
and the prediction value of the proportion of large blocks is Pcal , then: ∑4

i=1 ki·ui = Wcal
∑4

i=1 pi·ki·ui = Pcal ·Wcal
umin ≤ ui ≤ umax

(2)

When there is a deviation between the actual value Wmeans of the ore-feeding amount
measured by the ore-feeding belt scale and the Pmeas measured by the ore lump analyzer
and the set value Wset of the ore-feeding amount and the set value Pset of the ore-feeding
lump proportion given by the grinding and classification expert control, the adjustment
amount of the feeder frequency can be calculated by the increment method:

∑4
i=1 ki·∆ui = Wmeas − Wset

∑4
i=1 pi·ki·∆ui = Pmeas·Wmeas − Pset·Wset

−umax ≤ ∆ui ≤ umax
umin ≤ ui + ∆ui ≤ umax

(3)

In the actual control, according to the coarse and fine classification of the ore feeder’s
blanking block size, the frequency of one coarse and one fine pair of ore feeders can be
adjusted each time, so the above equation can be degenerated into a two-dimensional linear
equation, which can be solved quickly. When the ore-feeding frequency is lower than the
lower limit or higher than the upper limit, poll other ore-feeding port matching schemes or
turn on/off the feeder.

When it is necessary to open or close the feeder, in order to ensure that the belt
materials are not stacked and empty, the physical position of the ore-feeding mouth and the
speed of the transmission belt are measured, and the switching sequence and time of the
feeder at each ore-feeding mouth are precisely controlled, so as to realize the continuous
and stable transmission of the mineral material flow on the ore-feeding belt.

In view of the large delay (2 min) of feeding machine blanking and belt weigher
measurement value, a large interval sampling control is adopted. The cycle of the controller
is greater than the maximum lag time of each feeder with state change in the last control
cycle plus the maximum adjustment time of the feeder (5 s~10 s). Because the control effect
of the regulator output is unknown within the lag time. The basic idea of large interval
sampling is to wait for a period of time after one adjustment until the end of the adjustment
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process, and the measurement result of the belt scale can fully reflect the real ore-feeding
amount before the next adjustment so as to avoid false adjustment due to misjudgment,
resulting in closed-loop system oscillation or instability. Through large interval sampling
control, it can realize stable ore feeding when switching feeder and adjust in place as soon
as possible in case of error.

The effect after the expert control system is shown in Figure 10. The fluctuation
range of fragmentation is reduced, and the production process is more stable, meeting the
production index requirements.
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3.3.2. CBR Expert Control Method

According to the characteristics of the new problem, the case-based reasoning process
first compares the relevance of the historical cases in the case base and then selects one
or several cases that meet a certain degree of similarity from the case base. Similar case
solutions are modified to be the solutions to new problems. And through the effect of
solving the problem, it is decided whether to store the case of the new problem into the case
base so as to solve the following problems. Some edge conditions cause similar cases to be
found in the case retrieval process, or the case matching similarity is low. So, these cases
need to be translated and interpreted through the previously set production rule base and
solved through the pre-chain rules, which are applied to the scene, solving the production
misoperation when the case matching similarity is not high.

Because there is a certain difference between the retrieved case and the current working
condition, there is also a certain difference between the case solutions. Therefore, the case
solution cannot be directly used as the solution to the current working condition. In order
to further improve the accuracy of the model, the RBF neural network method is used to
establish an incremental compensation model to compensate for the retrieved case solution.

4. Application Effect and Analysis
4.1. Intelligent Control System

As shown in Figure 11. The Grinding Process Master software(BPM-G v1.0) has been
developed by using the above technologies. In this SAB process, the closed-loop control and
intelligent optimization of operating variables such as ore feed rate, water feed rate, and
sand pump frequency have been realized, ensuring the safe, stable, and efficient operation
of the entire production process. At present, the SAB process has been in actual operation
for more than one year.
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4.2. Application Effect

After the application of the grinding optimization control system, the closed-loop
automatic control of the grinding and classification process is realized, the intensity of
manual operation is reduced, the dependence on operating experience is reduced, and
labor productivity is improved. Based on stabilizing the production process and reducing
the abnormal disturbance in the production process, the system processing capacity is
increased, and the production unit consumption is reduced.

Through real-time intelligent diagnosis of production process operation status, the
system timely and reasonably adjusts production operation variables to ensure the stability
of production equipment operation status and production process parameters. After the
system is put into use, the fluctuations of key production process indicators are reduced by
more than 20%. The grinding expert system stabilizes the operation parameters of each
piece of equipment in the SAB process within a reasonable range according to different
ore sources. The stability of the process operation ensures the stability of the grinding and
classification of product quality. The grinding particle size is more concentrated in the
optimal mesh size area, as shown in Figure 12.
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As shown in Table 4, after the system is put into use, the grinding expert system can
sensitively capture the changing trend of the key operating parameters of the SAG mill, ad-
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just the efficiency in time when the working conditions change, and ensure the SAG mill to
operate in a reasonable load state range to the greatest extent. On the premise of stabilizing
the working conditions and ensuring the process indicators, the production efficiency of
the process is improved. The average processing capacity of grinding production increased
by 6.05%.

Table 4. Statistical comparison of production parameters on 6 months data.

Variable Name Unit Before After Improve

Throughput fluctuation rate % 33.81% 17.72% −47.6%
Current fluctuation rate of main motor % 10.39% 5.89% −43.3%

Bearing pressure fluctuation rate % 10.78% 7.01% −35.0%
−200 mesh fluctuation rate % 6.72% 3.45% −48.7%

Concentration fluctuation rate % 12.93% 8.39% −35.1%

By stabilizing the operation state of the production process, the system ensures that the
process always operates in a state of high economic benefits under different ore properties,
reduces the unit production consumption, and reduces the wear of the lining plate. Accord-
ing to the statistical data of the grinding system, including process parameter indicators
such as unit efficiency and energy consumption (power consumption, ball consumption),
the power consumption per ton of mill ore decreased by 7.25% on average, increasing the
total amount of ore processing within the service life of a single set of liner plates.

5. Conclusions

Aiming at the control problems of mineral particle size in the SABC grinding process,
this paper proposes an intelligent expert control method of the SABC process based on a
hybrid model. A hybrid model of SVR and mechanism model is adopted to realize the
online perception of overflow fineness. The adaptability of the expert rule base is improved
by intelligent correction of uncertainty, and then combined with the experience of field
operation experts, intelligent optimization control of overflow fineness and unit power
consumption is realized.
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