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Abstract: The Zhangbaling tectonic belt (ZTB), one of the most representative tectonic belts in
East China, has experienced uplift since the Early Cretaceous and is, thus, an excellent object for
understanding the tectonic uplift and topographical evolution of East China and the whole of East
Asia. On the basis of field observations, in this contribution to the literature, we carried out detrital
zircon LA-ICP-MS U–Pb dating for the Upper Cretaceous sediments in the basins adjacent to the
ZTB and zircon (U–Th)/He dating for the Early Cretaceous plutons along the western flank of this
belt. Detailed field observation showed that the orthogneiss of the Feidong Complex experienced
sinistral strike–slip activities, while the marbles underwent thrusting; thrust faults were developed in
the Early Cretaceous plutons and volcanic rocks, and normal faults were superimposed on thrust
or strike–slip faults. The detrital zircon dating results showed that the Upper Cretaceous sediments
are characterized by an Early Cretaceous major cluster with just a minor cluster from the middle
Neoproterozoic ages, indicating that the Zhangbaling Group and the Feidong Complex of the ZTB are
not their main provenance. Zircon (U–Th)/He dating results showed that the ZTB experienced rapid
uplifting during the mid-Cretaceous and recorded another rapid uplifting after 30 Ma. Combining
existing research with our new data, it can be concluded that the ZTB was characterized by thrust
activity in the mid-Cretaceous, which occurred under regional compression setting and was the basis
of the formation of a watershed after 30 Ma.

Keywords: Zhangbaling tectonic belt; zircon (U–Th)/He geochronology; detrital zircon U–Pb dating;
mid-Cretaceous compression

1. Introduction

The East Asian continent was sandwiched between several plates during the late
Mesozoic era, and its Cenozoic tectonic evolution was mainly controlled by the continent–
continent collision in the Neotethys tectonic domain to the west and the subduction of
the Paleo-Pacific Plate to the east [1–3]. Three topographic ladders developed from west
to east in China, indicating that the far-field stress generated by the Neotethys tectonic
domain was essential for the development of the current topography. A significant number
of low-temperature thermochronology results have shown that many mountains in East
China, away from the Neotethys tectonic domain and with different formation times,
such as the Wutai Mountain [4], Yanshan Mountain [5], Taishan Mountain [6], Dabie
Mountains [7], Huangshan Mountain [8], and Yunkai Mountains [9], have all experienced
rapid uplifting since the Paleocene. This corresponded to the beginning of the continent–
continent collision between the Indian and Eurasian plates [10,11], indicating that the
Neotethys tectonic domain has controlled the formation of the current topography since
the Paleocene. However, the late Mesozoic evolution of the East Asian continent was mainly
controlled by the subduction of the Paleo-Pacific Plate [12–15]. Regional angular unconformity
between the Upper and Lower Cretaceous occurred widely in East Asia [12,16–18], which was
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generally related to the mid-Cretaceous (~100 Ma) global plate reorganization event [19–21].
Although it is still controversial whether there was a plateau in East China during the
late Mesozoic era [22,23], the topographical pattern was obviously different from the
current one. Therefore, what role did the subduction of the Paleo-Pacific Plate play in the
development of the current topography of East Asia? Did the formation of the current
topography begin in the mid-Cretaceous? Was the tectonic setting of the mid-Cretaceous
compression or extension? Answers to these questions are helpful to better understand
the tectonic evolution and dynamic background of the East Asian continent since the late
Mesozoic era.

The NNE–SSW-striking Zhangbaling tectonic belt (ZTB) is located along the boundary
between the North China Block (NCB) and the South China Block (SCB), and sandwiched
between the Dabie Orogen and the Sulu Orogen (Figure 1); thus, it is one of most important
tectonic belts in East China [24]. Recent detrital zircon dating results showed that the Lower
Cretaceous Zhuxiang Formation to the west of the ZTB is mainly of the Early Cretaceous age
with just a few results from the Neoproterozoic age [25]. It is worth noting that the ZTB is
characterized by a major Neoproterozoic cluster in its detrital zircon age frequency [26–29].
Clearly, Neoproterozoic rocks in the ZTB are not the main provenance of the strata to
the west. Early Cretaceous magmatic rocks in the ZTB and surrounding areas, including
plutons along the Tan–Lu Fault Zone and volcanic rocks in the Chuzhou area (Figure 1),
may be other potential provenances. However, these plutons are closely linked with the
Zhangbaling Group and the Feidong Complex in the ZTB and, thus, do not only provide
Early Cretaceous minerals in sedimentary rocks. Therefore, the main provenance of the
Cretaceous strata in the eastern Hefei Basin should be Early Cretaceous volcanic rocks.
This further indicates that the ZTB may not show signs of a watershed in the earlier Late
Cretaceous, and this causes the Chuzhou volcanic rocks to provide source materials for
the sediments in the eastern Hefei Basin. On the basis of the above analysis, the ZTB is
an excellent object of study that can provide important information on the topographical
evolution of East China and East Asia since the Early Cretaceous.

In this contribution, on the basis of detailed field investigation, Upper Cretaceous
sedimentary rocks in basins to the east and west of the ZTB were collected to carry out
detailed detrital zircon LA-ICP-MS U–Pb dating, while Early Cretaceous plutons along the
Tan–Lu Fault Zone were collected to carry out zircon (U–Th)/He dating. These new data
provide new evidence regarding the tectonic uplift history of East Asia.
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Figure 1. Structural diagram of the ZTB and its surrounding areas. The black dashed line is the rock 
lineation trajectory of the Zhangbaling Group (after Zhang et al. [30]); the age of plutons is after Hu 
et al. [31], Jia et al. [32], Wang et al. [33], and Li et al. [34]). 
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Figure 1. (a,b) Structural diagram of the ZTB and its surrounding areas. The black dashed line is the
rock lineation trajectory of the Zhangbaling Group (after Zhang et al. [30]); the age of plutons is after
Hu et al. [31], Jia et al. [32], Wang et al. [33], and Li et al. [34]).

2. Geological Setting

The NNE–SSW-striking ZTB, also known as the Zhangbaling Uplift [24], is located
at the northwestern margin of the Lower Yangtze Region in the SCB (Figure 1). The
ZTB is wide in the north and narrow in the south, generally showing a wedge shape
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converging toward the SSW. It is separated from the Hefei Basin and the Bengbu Uplift
on the southeastern margin of the NCB by the NE–SW-striking Tan–Lu Fault Zone to the
west and adjacent to the Chaohu–Hanshan fold-and-thrust belt with the Chuhe Fault to the
east [35]. Although there have been many different understandings about its formation
mechanism [24,26,30,36,37], its formation time is generally believed to be the Triassic era,
and its development was closely related to the continent–continent collision between the
SCB and the NCB.

The ZTB is generally divided into two segments, namely, the northern Zhangbaling
and the southern Zhangbaling, by the line of 32◦ N (Figure 1) [26,32]. The northern Zhang-
baling is mainly composed of the Zhangbaling Group and the Sinian–Paleozoic sedimentary
cover, while the southern Zhangbaling consists of the Feidong Complex and the Zhangbal-
ing Group [27,29,35,37]. The Zhangbaling Group is mainly composed of metavolcanic rocks,
phyllites, and metasandstones with protolith ages of ca. 750 Ma [26], which experienced Tri-
assic greenschist–facies metamorphism and show gentle foliation in the outcrop [31,36,38].
The Feidong Complex is mainly made up of plagioclase amphibolite orthogneiss, biotite
plagioclase gneiss, marble, and mica schist and experienced amphibolite–facies metamor-
phism [27]. The protolith of those orthogneiss included mainly Neoproterozoic rocks
formed at 850~720 Ma [26,28,39] and a few Paleoproterozoic rocks [27,29].

The western margin of the northern Zhangbaling is cut by the NNE–SSW-striking
brittle fault or ductile shear zone in the Tan–Lu Fault Zone, and a series of Early Cretaceous
plutons developed along this zone [31–34]. The Sinian–Paleozoic sedimentary rocks cover
the eastern part of the northern Zhangbaling and are in contact with the Zhangbaling
Group through a large-scale detachment fault [26]. The Sinian rocks show relatively
weak deformation with SE-dipping foliation. The Paleozoic strata are mainly composed
of Cambrian and Ordovician rocks, which show intense folding, typically as comb-like
chevron folds with NW-dipping axial plane and limbs [26,30,38]. Volumes of Mesozoic
volcanic rocks crop out in the Chuzhou area (Figure 1), which cover the Sinian–Paleozoic
sedimentary rocks and erupted between 132 and 116 Ma [40,41]. Mylonites occur widely
in the orthogneiss of the Feidong Complex with steep foliation [42], while the marble
generally exhibits brittle deformation. Muscovite 40Ar/39Ar ages from 245 Ma to 236 Ma in
the orthogneiss indicate that the metamorphism and deformation mainly occurred during
the Triassic era [30].

The Hefei Basin is located to west of the ZTB and north of the Dabie Orogen. The
continent–continent collision of the NCB and the SCB resulted in the formation of a series
of thrust faults and the early development of the Hefei Basin [43,44]. During the Early
Cretaceous, these thrust faults were reactivated as normal faults, thus controlling deposition
of the Cretaceous sediments in the Hefei Basin. During these two stages of fault activity,
5000–7000 m of terrestrial clastic deposits with volcanic rocks or pyroclastic rocks developed
in the southern Hefei Basin [43–45]. The Tan–Lu Fault Zone, which cuts the western margin
of the ZTB, was shown to be a normal fault, controlling the development of Cretaceous
strata in the eastern Hefei Basin [46].

3. Field Characteristics and Sample Descriptions

Sedimentary rocks in the eastern Hefei Basin crop out mostly along the western flank
of the ZTB, where they are mainly composed of the Upper Cretaceous Zhangqiao Formation
and the Lower Cretaceous Zhuxiang Formation. Some rocks overlap above the Zhangbaling
Group. The Zhuxiang Formation consists of purple–brown sandstone with silty mudstone.
The Zhangqiao Formation includes two parts; the lower part is an alluvial fan deposit
and consists of thick, massive, gray–purple, and poorly sorted conglomerate and pebbly
sandstone [44], while the upper part is medium- to fine-grained sandstone with argillaceous
siltstone and dips to the W or NW at 30◦ (Figure 2a). The clasts in the conglomerate are
mainly composed of limestone, volcanic rock, gneiss, and phyllite, with sizes varying
from 1 cm to 10 cm. The Upper Cretaceous Chishan Formation crops out to the east of
the ZTB, which is also characterized by purple conglomerate with coarse-grain sandstone
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in the lower part and sandstone and siltstone in the upper part. In this contribution, six
sedimentary rock samples were collected, of which sample 1217 was taken from the Upper
Cretaceous Chishan Formation to the east of the ZTB, and another five samples were taken
from the Upper Cretaceous Zhangqiao Formation to the west (Figure 1).
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Figure 2. Field photos of the Zhangbaling tectonic belt. (a) Upper Cretaceous gravelly sandstone to
the west of the ZTB; (b) many groups of faults developed in the diorite of Qiaotouji pluton; (c) steep
ductile shear zones developed in the Feidong Complex; (d) fault activities in the marble exhibiting
thrust faults prior to normal faults; (e) Sinian sediments with foliation dipping toward SE; (f) earlier
normal slickensides and later thrust slickensides on the fault plane in the Sinian rocks; (g) SE-dipping
thrust fault cutting the NW-dipping foliation; (h) Early Cretaceous volcanic rocks unconformably
covering the Paleozoic strata; (i) thrust fault developed in Early Cretaceous pluton.

Several banded intrusion rocks are distributed in the northern Zhangbaling, which are
exposed between the Cretaceous sedimentary rocks and the Zhangbaling Group, namely,
from north to south, the Guandian, Wawuliu, and Wawuxue plutons (Figure 1). Volumes
of plutons intrude into the Feidong Complex in the southern Zhangbaling, including the
Qiaotouji pluton in the Feidong area and the Zhuyuanzhang, Sidingshan, Jimingshan,
and Zhannongcun plutons on the north bank of Chaohu Lake [31–34]. Similar lithological
characteristics are in these plutons, mainly monzogranite, granodiorite, quartz monzonite,
and diorite, with emplacement times between 130 and 128 Ma (Figure 1). These plutons
were cut by multiple groups of faults, resulting in the development of breccia and strong
weathering. It should be noted that the occurrence of faults is variable, and there are
significant differences in fault type at different outcrops. Moreover, each individual outcrop
does not show a significant dominance of a certain fault (Figure 2b). Specifically, the
Qiaotouji and Sidingshan plutons, intruding in the Feidong Complex, do not show the
sinistral shear zone or brittle fault that were widely developed in the orthogneiss of the
Feidong Complex. In addition, there are a few Early Cretaceous intrusion rocks in the
central region and to the east of the ZTB, where the Machang pluton intruded into the
Sinian rocks and the Huangdaoshan pluton exposed to the east of the ZTB (Figure 1). Seven
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samples were collected, including the Guandian (1608), Wawuliu (1605), Wawuxue (1603),
Qiaotouji (1618), Sidingshan (1619), Machang (1615), and Huangdaoshan (1614) plutons.

The Zhangbaling Group and the Feidong Complex exhibit different structural patterns.
The Zhangbaling Group is charactered by gentle foliation with a dip angle of less than
20◦ and exhibits overall open folds. The orientation of the lineation varies gradually
from NE-trending in the south to NW-trending in the north (Figure 1) [32]. Its dynamic
mechanism can be explained as the partitioning of the triaxial deformation along an oblique
convergent margin [33]. Steep ductile shear zones and brittle faults are widely developed
in orthogneiss of the Feidong Complex in the southern Zhangbaling (Figure 2c). Thrust
faults are generally developed in marble of the Feidong Complex (Figure 2d), and no steep
strike–slip faults are superimposed or rebuilt.

The lower Sinian is mainly composed of low-grade metamorphic sandstone and
phyllite, and the upper Sinian consists mainly of limestone and dolomite. The Sinian rocks
dip generally SE or E at an angle between 20◦ and 50◦, and there are detachment faults
with a shear sense of the top to the SE. Detailed field observation shows that these faults
occurred mostly along the foliation (Figure 2e), and two groups of slickensides show the
later thrust fault superimposed on the earlier normal fault. The thrust slickensides obliquely
cut the normal slickensides with angle of about 20◦ (Figure 2f). Paleozoic rocks are mainly
composed of dolomite and limestone, which are generally shown as tight folds with W-
or NW-dipping axial plane and limbs. A large number of thrust faults with NW-dipping
occurred in Paleozoic rocks, and some were superimposed with later normal faults. It is
worth noting that more SE-dipping thrust faults with shear sense of the top to the NW were
also developed, and these faults cutting the NW-dipping foliation can be often observed in
the outcrop (Figure 2g). In the Chuzhou area, large volumes of Early Cretaceous volcanic
rocks are distributed to the east of the ZTB. Sinian and Paleozoic rocks are covered by
volcanic rocks, and their boundary is nearly horizontal (Figure 2h). Thrust faults, with
shear sense above the NW, have developed in both Early Cretaceous volcanic and intrusion
rocks (Figure 2i).

4. Methodology and Analytical Results

Zircon crystals were separated at the Langfang Chengxin Geological Service Co., Ltd.,
Hebei, China. After crushing and heavy liquid separation, zircon separates were manually
selected by binoculars for detrital zircon U–Pb dating and zircon (U–Th)/He (ZHe) dating.

4.1. Detrital Zircon U–Pb Dating

In total, 250 zircons from each sample of the Cretaceous sedimentary rocks were
mounted on adhesive tape, then enclosed in epoxy resin, and polished to around half their
original thickness. Cathodoluminescence (CL) images were acquired for zircons with ideal
crystal shapes (Figure 3) using a JXA-8100 electron microprobe equipped with a CL3 + CL
detector. These images were then used to select high-quality zircons for U–Pb dating.

High-resolution U–Th–Pb and rare earth element zircon analyses were undertaken
using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) at the
Geological Laboratory of Hefei University of Technology, Hefei, China. The analyses
were conducted using an Agilent 7500a ICP-MS (Agilent Technologies, Santa Clara, CA,
USA) equipped with a 193 nm Geo-Las2005 laser. A 91500 zircon was used as a reference
standard with a NIST SRM 610 silicate glass standard used for calibration. The methodology
employed was the same as that described by Yan et al. [47], with uncertainties on individual
analyses quoted at the 1σ level. Common Pb corrections employed the approach outlined
by Andersen [48]. The U–Pb ages reported in this study are 207Pb/206Pb ages for zircons
older than 1.0 Ga and 206Pb/238U ages for zircons younger than 1.0 Ga. The resulting
data are given in the Supplementary Materials, Table S1, and were calculated using the
ICP-MS-Data Cal 8.0 [49] and Isoplot 3.14 [50] software packages.
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Zircons from the Cretaceous sandstone vary in size from 100 µm to 250 µm (Figure 3).
They have abraded and rounded shapes that are indicative of erosion and transportation
as detrital zircons. Most zircons show clear oscillatory zoning in CL images and have
Th/U ratios significantly greater than 0.1 (Supplementary Materials Table S1), except for
some Triassic zircons; thus, they are interpreted to be magmatic in origin [51]. A few
of these zircons have complex multiple core–mantle–rim textures with small relict cores
visible during imaging, and >95 zircons from each sample yielded age data with 90–100%
concordance (Figure 4).

The zircons from six samples gave similar ages that exhibit an Early Cretaceous major
cluster, with a few from the Neoproterozoic age. The early Cretaceous clusters were 127 Ma
(samples 9121, 9123, and 9124), 121 Ma (sample 9122), 124 Ma (sample 9125), and 125 Ma
(sample 1217), respectively; the Neoproterozoic clusters were between 754 Ma and 713 Ma
(Figure 4). Some differences are that some middle Paleoproterozoic ages were in sample
9124, while a few earlier Late Cretaceous ages were in sample 9122 with a cluster age of
92 Ma, and there were more Triassic ages in sample 1217 with cluster ages of 217 and
249 Ma (Figure 4).
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4.2. Zircon (U–Th)/He Geochronology and Thermal History Modeling

ZHe dating was undertaken at the 40Ar/39Ar and (U–Th)/He geochronology labora-
tory of the Institution of Geology and Geophysics, Chinese Academy of Sciences (IGGCAS),
Beijing, China. A fully automatic He extraction system, Alphachron Mk II (Australian
Scientific Instruments Pty Limited), was used to measure the He contents of zircon grains.
The system consists of a 970 nm diode laser and a Quadrupole PrismaPlus QMG 220
(Pfeiffer Vacuum). For this, 3–5 euhedral zircon grains, free of visible inclusions or internal
cracks (Figure 5), were selected from each sample and measured under a microscope. The
methodology employed was the same as that described by Wu et al. [52], with uncertainties
on individual analyses quoted at the 1σ level. The resulting data are given in Table 1.

A low helium content of one grain in sample 1603 resulted in an abnormal age result,
while the other two grains obtained ages of 95.9 ± 5.1 Ma and 83.4 ± 4.4 Ma, with a
weighted mean age of 89.0 ± 4.8 Ma (Table 1). Samples 1605 and 1618 all obtained age
results for four grains, with weighted mean ages of 112.0 ± 6.1 Ma and 79.2 ± 4.2 Ma,
respectively. Samples 1608, 1614, and 1619 obtained age results for three grains, with
weighted mean ages of 102.0 ± 5.5 Ma, 125.1 ± 6.6 Ma, and 103.7 ± 6.2 Ma, respectively
(Table 1). In this study, a sample was also collected from the Machang pluton for ZHe
dating, but the results of the three grains were abnormal due to either a low helium content
or a low thorium and uranium content; thus, these data are not listed in Table 1.
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Table 1. Zircon (U–Th)/He ages of the Early Cretaceous intrusion rocks in the ZTB.

Sample 238U (mol) Std. 238U (mol) 232Th (mol) Std. 232Th (mol) 4He (mol) Std. 4He (mol)
AgeRaw

Ma ± 1σ Ft AgeCor
Ma ± σ

Th/U

1603-1 6.9539 × 10−12 1.0991 × 10−13 6.7816 × 10−12 7.6333 × 10−14 8.0938 × 10−13 9.8184 × 10−15 73.6 ± 1.3 0.77 95.9 ± 5.1 1.0
1603-2 6.1666 × 10−12 9.8630 × 10−14 5.6123 × 10−12 6.0194 × 10−14 6.3447 × 10−13 7.8330 × 10−15 65.9 ± 1.2 0.79 83.4 ± 4.4 0.9
1603-3 5.4560 × 10−12 8.9991 × 10−14 5.2173 × 10−12 4.9895 × 10−14 7.4149 × 10−15 9.2885 × 10−17 0.87 ± 0.02 0.76 1.15 ± 0.06 0.9

Weighted mean age 89.0 ± 4.8
1605-1 5.0698 × 10−12 8.0805 × 10−14 3.4876 × 10−12 3.3286 × 10−14 5.8970 × 10−13 7.2903 × 10−15 77.8 ± 1.4 0.73 106.0 ± 5.6 0.7
1605-2 7.9180 × 10−12 1.2306 × 10−13 5.0780 × 10−12 4.1724 × 10−14 9.7828 × 10−13 1.1686 × 10−14 83.3 ± 1.5 0.74 112.2 ± 6.0 0.6
1605-3 4.3936 × 10−12 6.9728 × 10−14 4.2304 × 10−12 3.7144 × 10−14 5.3905 × 10−13 6.5139 × 10−15 77.8 ± 1.4 0.72 107.7 ± 5.7 1.0
1605-4 6.1658 × 10−12 1.6126 × 10−13 3.7717 × 10−12 1.1905 × 10−13 8.4511 × 10−13 1.0156 × 10−14 92.9 ± 2.4 0.72 128.4 ± 7.2 0.6

Weighted mean age 112.0 ± 6.1
1608-1 4.5010 × 10−12 7.5045 × 10−14 4.1332 × 10−12 7.8473 × 10−14 5.2204 × 10−13 6.1575 × 10−15 74.2 ± 1.4 0.74 100.5 ± 5.4 0.9
1608-2 5.9795 × 10−12 9.5895 × 10−14 4.8547 × 10−12 4.5224 × 10−14 6.6290 × 10−13 7.2182 × 10−15 72.4 ± 1.3 0.77 93.9 ± 5.0 0.8
1608-3 2.2334 × 10−12 3.6706 × 10−14 1.6076 × 10−12 1.4088 × 10−14 2.9619 × 10−13 3.5428 × 10−15 88.0 ± 1.6 0.75 117.1 ± 6.2 0.7

Weighted mean age 102.0 ± 5.5
1614-1 2.3177 × 10−12 3.8637 × 10−14 1.1829 × 10−12 1.5988 × 10−14 2.8215 × 10−13 3.4498 × 10−15 84.3 ± 1.6 0.69 123.1 ± 6.6 0.5
1614-2 2.7446 × 10−12 4.8454 × 10−14 1.2574 × 10−12 1.3731 × 10−14 3.2534 × 10−13 3.6368 × 10−15 83.0 ± 1.6 0.69 120.5 ± 6.5 0.5
1614-3 7.6191 × 10−12 1.1884 × 10−13 2.7176 × 10−12 2.4884 × 10−14 1.0598 × 10−12 1.2008 × 10−14 99.4 ± 1.8 0.77 129.4 ± 6.9 0.4
1614-4 4.0019 × 10−12 6.4119 × 10−14 1.6834 × 10−12 1.9378 × 10−14 5.0632 × 10−13 6.1193 × 10−15 89.3 ± 1.7 0.70 128.1 ± 6.8 0.4

Weighted mean age 125.1 ± 6.6
1618-1 2.4202 × 10−12 4.0810 × 10−14 2.4009 × 10−12 3.0478 × 10−14 2.4002 × 10−13 2.9021 × 10−15 62.6 ± 1.2 0.80 78.0 ± 4.2 1.0
1618-2 2.1072 × 10−12 3.4269 × 10−14 2.3479 × 10−12 2.4494 × 10−14 2.1578 × 10−13 2.3532 × 10−15 63.2 ± 1.1 0.81 78.1 ± 4.1 1.1
1618-3 2.9706 × 10−12 5.0201 × 10−14 3.2157 × 10−12 2.8955 × 10−14 3.1955 × 10−13 3.9428 × 10−15 66.8 ± 1.2 0.83 80.8 ± 4.3 1.1
1618-4 1.7310 × 10−12 2.7304 × 10−14 1.8712 × 10−12 1.8843 × 10−14 1.7529 × 10−13 2.1261 × 10−15 62.9 ± 1.1 0.78 80.3 ± 4.3 1.1

Weighted mean age 79.2 ± 4.2
1619-1 8.3687 × 10−12 1.3367 × 10−13 5.6124 × 10−12 4.9783 × 10−14 1.0769 × 10−12 1.3182 × 10−14 86.3 ± 1.6 0.79 108.9 ± 5.8 0.7
1619-2 3.3856 × 10−12 5.5237 × 10−14 2.7304 × 10−12 3.0972 × 10−14 4.0209 × 10−13 4.2709 × 10−15 77.6 ± 1.4 0.75 103.2 ± 5.5 0.8
1619-3 3.6062 × 10−12 5.8500 × 10−14 1.9031 × 10−12 3.2775 × 10−14 3.7676 × 10−13 4.2359 × 10−15 72.2 ± 1.3 0.72 99.8 ± 5.3 0.5

Weighted mean age 103.7 ± 6.2
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HeFTy version 1.90 [53] and a MonteCarlo method were used to invert for the low-
temperature thermal history of the ZTB. The weighted mean age from each sample was
used. In the thermal history modeling, 20 ◦C was set as the initial surface temperature,
and 180 ◦C, the closure temperature of zircon He systems [54], was set as the temperature
constraint. The models started with the emplacement of the intrusion rocks (~129 Ma) and
terminated when 300 good paths (goodness of fit >0.5) were found. The thermal history
inversion results are shown as path envelopes in Figure 6. All acceptable paths (goodness
of fit >0.05) constitute the green area, all good paths constitute the magenta area, and the
solid black line represents the best-fit path.
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Figure 6. Thermal histories of magmatic samples from the ZTB modeled using HeFTy version 1.90.
Here, 0 Ma and 20 ◦C are the present time and presumed surface temperature, respectively. The green
and magenta areas contain all the acceptable and good evolutionary paths, respectively. The black
line shows the best-fit evolutionary path. The measured age, the age modeled using HeFTy, and the
goodness of fit (GOF) are displayed in each figure. The GOF was used to assess the fit between the
modeled and measured ages, with values of >0.50 indicating a good fit.

The simulation results (Figure 6) show that samples 1603 and 1608 yielded rapid
cooling, followed by slow cooling, and finally rapid cooling. The difference is that sample
1603 showed relatively rapid cooling of 2.3 ◦C/Ma after 30 Ma, while sample 1608 exhibited
rapid cooling after 10 Ma with cooling rate of 4 ◦C/Ma. Samples 1605, 1614, and 1619
exhibited similar patterns, where rapid cooling was followed slow cooling. Sample 1618



Minerals 2023, 13, 1142 11 of 17

cooled rapidly at 100 Ma, followed by slow cooling, and then rapid cooling of 5 ◦C/Ma
after 20 Ma.

5. Discussion
5.1. Provenance Analysis of the Upper Cretaceous

The ZTB mainly crops out the Zhangbaling Group and the Feidong Complex, of which
protoliths of the Feidong Complex and metavolcanic rocks of the Zhangbaling Group
are mainly middle Neoproterozoic magmatic rocks [26,28,39] and a few Paleoproterozoic
rocks [27,29]. The metasediments of the Zhangbaling Group are also mainly derived from
the middle Neoproterozoic magmatic rocks [26]. Therefore, the ZTB exhibits a distinctive
age–frequency distribution with a major cluster of the middle Neoproterozoic (Figure 7).
The eruption time of Early Cretaceous volcanic rocks in the Chuzhou area to the east of
the ZTB range from 132 to 116 Ma [40,41], mainly around 125 Ma (Figure 7). The ages of
intrusion rocks along the Tan–Lu Fault Zone range from 132 Ma to 122 Ma, and most of
them range from 130 Ma to 128 Ma (Figure 1). The compilation of these ages provides the
basis for provenance analysis of the Cretaceous strata to the west and east of the ZTB.
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Data for the ZTB are from Zhao et al. [26], Shi [27], Cai et al. [28], and Yuan et al. [29]; data for the
Chuzhou volcanic rocks are from Xie et al. [40] and Ma and Xue [41].

The Upper Cretaceous Zhangqiao Formation is mainly distributed along the nearly
E–W Feizhong Fault and Lu’an Fault, and partly exposed in the northeastern Hefei Basin,
which were controlled by the normal fault activities of the Shouxian–Dingyuan Fault and
Tan–Lu Fault Zone [46]. Previous studies showed that the source materials of the Zhangqiao
Formation adjacent to the ZTB came from rocks within this belt [25,44]. Therefore, if the
source materials of samples came from the Zhangbaling Group and the Feidong Complex,
the age–frequency distributions of the sediments should show a distinctive major cluster
of the middle Neoproterozoic. However, our new detrital zircon age–frequency data
showed a single Early Cretaceous major cluster with a few middle Neoproterozoic ages
(Figure 4), although the Upper Cretaceous conglomerate contains clasts of gneiss and
phyllite. Moreover, the Upper Cretaceous showed similar age–frequency distributions
to those of the Lower Cretaceous, indicating that the rocks exposed in the ZTB during
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the whole Cretaceous did not change, thus providing the same source materials for the
sediments on the two sides.

Detailed field work showed that the Lower Cretaceous strata at the margin of the basin
were not directly covered on the Zhangbaling Group; rather, Early Cretaceous volcanic
rocks covered the Zhangbaling Group or the Paleozoic strata, and volcanic rocks were
then covered by the Cretaceous strata. Obviously, in the earlier Late Cretaceous, the Early
Cretaceous volcanic rocks covered the Feidong Complex and the Zhangbaling Group
and provided source materials for the Upper Cretaceous, which caused a single Early
Cretaceous cluster in sediments on both sides of the ZTB. In this work, the location of the
collected sediments to the west of ZTB covered the whole northern Zhangbaling (Figure 1);
hence, the similar age–frequency distributions of all samples indicate that the whole ZTB
was covered by volcanic rocks in the earlier Late Cretaceous. The Early Cretaceous plutons
on the western margin of the ZTB are one potential provenance for the Upper Cretaceous
strata [25], but the thermal history inversion results showed that these plutons may have
cooled to around 100 ◦C in the earlier Late Cretaceous and may not have been exposed
on the surface. Moreover, these plutons intruded into the Feidong Complex and the
Zhangbaling Group and were unable to provide single Early Cretaceous source materials
for sediments. On the basis of the above analysis, it can be concluded that source materials
of the Upper Cretaceous strata came mainly from the Early Cretaceous volcanic rocks.

5.2. Tectonic Uplift of the Zhangbaling Tectonic Belt

The 40Ar/39Ar age of the Wawuliu, Wawuxue, and Guandian plutons in the northern
Zhangbaling were between 127.8 Ma and 122.9 Ma, respectively [36], which are close to
their zircon U–Pb ages (Figure 1), indicating that these plutons were emplaced at relatively
shallow depths. Throughout the whole Lower Yangtze Region, the emplacement depth
of ore-forming plutons was all obviously shallow [55], and their wall rocks were mainly
the Paleozoic strata, which typically caused the 40Ar/39Ar results to be similar to their
zircon U–Pb ages [56]. Sample 1614 collected from the Huangdaoshan pluton to the east
of the ZTB yielded a (U–Th)/He age of 122.8 Ma, slightly younger than its zircon U–Pb
age (Figure 6). This pluton was located in the Lower Yangtze Region and may also have a
relatively shallow emplacement depth, resulting in its zircon (U–Th)/He age being close to
its zircon U–Pb age.

The Lower Cretaceous Zhuxiang Formation and Upper Cretaceous Zhangqiao For-
mation are widely developed in the eastern Hefei Basin, while the Lower Cretaceous
Xiangdaopu Formation, developing between these two strata, is only developed in the
northeast corner of the Hefei Basin [46]. During sedimentation of the Xiangdaopu For-
mation, certain uplift occurred in the northern Zhangbaling as the footwall of the normal
Tan–Lu Fault. The wall rocks of the Wawuxue pluton are the lower part of the Zhangbaling
Group, while those of the Wawuliu and Guandian plutons are the upper part [26,32], indi-
cating that the Wawuxue pluton (sample 1605) has a larger uplift, thus recording an earlier
cooling time (112.7 Ma). Correspondingly, the Qiaotouji pluton (sample 1618), intruding
into the orthogneiss of the Feidong Complex, obtained the minimum cooling age (80.5 Ma).
It was the unique diorite in all selected samples, and its smaller cooling age may be related
to the larger emplacement depth.

Samples 1608, 1603, and 1619, rapidly cooling at around 100 Ma, were distributed in
the northern, middle, and southern part of the ZTB (Figure 5), indicating that a rapid cooling
event occurred around 100 Ma throughout the ZTB. Usually, conglomerate sedimentation
is related to the uplifting of adjacent tectonic belt [57]. The lower part of the Upper
Cretaceous Zhangqiao Formation is an alluvial fan deposit [44] and distributed along the
west flank of the ZTB, which indicates that the ZTB experienced rapid uplift in the earlier
Late Cretaceous.

Detailed field observation showed that the southern Zhangbaling mainly recorded
three stages of late Mesozoic tectonic activities, namely, sinistral strike–slip, thrust, and
normal activity. The sinistral strike–slip shear zone developed mainly in the orthogneiss
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of the Feidong Complex, while the marble of the Feidong Complex usually shows brittle
thrusting and is not superimposed by the sinistral strike–slip fault. Because marbles are
mainly distributed to the south of the orthogneiss along the strike, it can be inferred that
development of the thrust fault should be after the sinistral strike–slip fault, and the marbles
exposed on the surface were more likely to be rocks overthrusted from the hanging wall.
Many of the 40Ar/39Ar ages of mylonite and the zircon U–Pb ages of undeformed dikes
indicate that the sinistral strike–slip shear zone in the Feidong Complex was formed in the
Early Cretaceous [42,46], which limits these thrust faults to being formed since the Early
Cretaceous. A thrust fault is also developed in the Machang pluton and Chuzhou volcanic
rocks (Figure 2), indicating that the thrusting in the Feidong Complex was not earlier than
about 128 Ma. In the ZTB, the normal fault was superimposed on the thrust fault or the
strike–slip fault, indicating that the normal fault activity was the latest activity. Given that
the Upper Cretaceous strata developed in the eastern Hefei Basin is a consequence of the
normal activity of the Tan–Lu Fault Zone, these normal faults should correspond to the
development of the Hefei Basin in the Late Cretaceous, and the earlier thrust fault may
occur in the mid-Cretaceous.

It is worth noting that samples 1603, 1608, and 1618 all experienced rapid cooling after
30 Ma (Figure 6), which corresponds to the Cenozoic uplifting in East China [8,9,58]. It is
held that this uplifting resulted from the E–W compressive stress field by the continent–
continent collision between the Indian Plate and the Eurasian Plate. The ZTB should be
exposed on the surface, and it formed a watershed after 30 Ma. Therefore, it is believed
that the ZTB should be characterized by tectonic uplift resulting from compression and
uplift from the 300 ◦C isothermal plane (closure temperature of biotite K–Ar system) to the
180 ◦C isothermal plane depth (zircon (U–Th)/He closure temperature), and the present
watershed landform was formed after 30 Ma.

5.3. Indications for Mid-Cretaceous Tectonic Evolution in East Asia

Since the Mesozoic, East Asia has been sandwiched by the Siberian Plate, the Indian
Plate, and the Paleo-Pacific Plate and has experienced a complex evolution history [2,3].
Many studies have shown that the tectonic evolution of East Asia was mainly controlled
by the subduction of the Paleo-Pacific Plate during the late Mesozoic, and large-scale
magmatism followed by explosive mineralization occurred in East China [2,13–15,59].

During the mid-Cretaceous, the movement direction of the Pacific Plate rotated about
75◦ clockwise, changed from SWW to NW, and kept this direction until now [19,21].
Regional angular unconformity between the Upper and Lower Cretaceous widely occurred
in the Korean peninsula [16], NE China [18], North China [17], and South China [12]. The
regional magmatism in all of East China was significantly weakened. Although the end of
the Early Cretaceous magmatism time period is still controversial, this magmatism formed
by the subduction of the Pacific Plate extends southward to Borneo, SE Asia, and shows
a huge magmatic belt in the eastern part of the Eurasia continent [13,60,61], for which
~100 Ma represents an obvious magmatic quiescence [60]. Our new data also show that the
ZTB was dominated by thrust activity in the mid-Cretaceous. Therefore, East Asia should
show regional compression in the mid-Cretaceous, and its dynamic mechanism may be
related to the low-angle subduction of the Philippines Plate [15] and the Izanagi Plate [46]
beneath the Eurasian Plate.

Recently, extensive low-temperature thermochronology work has been carried out in
East China. The zircon fission track ages are mainly between 120 and 85 Ma [9,58], and
the zircon (U–Th)/He ages are mainly between 100 and 75 Ma [52,62,63]. Although these
ages are closely related to the crustal extensional event which formed basin-and-range style
topography, the landscape pattern was already very similar to the present. In conclusion,
development of the present landscape pattern in East Asia began in the mid-Cretaceous.
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6. Conclusions

1. The ZTB was still covered by Early Cretaceous volcanic rocks in the earlier Late
Cretaceous and did not show a watershed landscape in East China. In the mid-
Cretaceous, the ZTB was characterized by compression uplift dominated by thrust
activity and experienced significant uplift. Rapid uplifting after 30 Ma led to the
formation of the current watershed landscape.

2. On the basis of the comprehensive analysis of the existing achievements and our new
data, it can be inferred that the formation of the current landscape pattern in East
Asia should have begun in the mid-Cretaceous, and it may be related to the low-angle
westward subduction of the Philippines Plate and the northward subduction of the
Izanagi Plate.
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