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Abstract: Differential evolution (DE) is a stochastic optimization technique that imitates the evolution
process in nature. This paper uses an improved adaptive differential evolution to solve gravity
inversion with multiplicative regularization. Compared with additive regularization, the advantage
of multiplicative regularization is that it does not require the regularization parameter in the search
process. The contributions in this paper mainly focus on two aspects: accelerating the convergence
speed of adaptive DE and balancing the effect of model and data misfits in the objective function.
The effectiveness of the proposed inversion method is verified by synthetic and field cases. For the
synthetic cases, it is concluded that, based on the obtained results and analysis, the presented DE
method is superior and competitive with its original version. Additionally, the designed parameter
adaptation for multiplicative regularization is useful for trading off the effect of data and model misfits.
For the field cases, two successful applications from China were conducted, and the obtained density
source distributions were in accordance with those obtained from drilling wells. The synthetic and
practical examples demonstrate that high-quality inversion results can be obtained using improved
adaptive differential evolution and multiplicative regularization.

Keywords: differential evolution; gravity inversion; multiplicative regularization; stochastic
optimization

1. Introduction

The gravity method is a simple yet effective geophysics technology that has been
widely used in various fields such as discovering mineral deposits, petroleum, and geother-
mal resources [1,2]. In our view, the inversion method of gravity data can be divided up
into two types: parametric inversion and physical property inversion. Generally, paramet-
ric inversion is used to determine the geometric parameters of a simple source including
depth, position, shape, etc. [3–5], while the purpose of physical property inversion is to
simulate the density distribution without relying on manual interference [6–9]. As for the
physical property inversion, in most cases, the number of optimized parameters is more
than the number of observed data. It implies that there exist an infinite number of solutions
that can fit the observed data well. So, to reduce the multiplicity, model misfit (also called
regularization term) must be introduced [10–12]. At the moment, the inversion objective
function comprised of data and model misfit can be solved by local optimization and global
optimization. As we know, the local optimization methods (i.e., the conjugate gradient

Minerals 2023, 13, 1027. https://doi.org/10.3390/min13081027 https://www.mdpi.com/journal/minerals

https://doi.org/10.3390/min13081027
https://doi.org/10.3390/min13081027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/minerals
https://www.mdpi.com
https://orcid.org/0000-0003-4902-6300
https://orcid.org/0000-0002-5895-2632
https://doi.org/10.3390/min13081027
https://www.mdpi.com/journal/minerals
https://www.mdpi.com/article/10.3390/min13081027?type=check_update&version=1


Minerals 2023, 13, 1027 2 of 23

method [13], Newton’s method [14], etc.) have been widely employed. For example,
Qin et al. [15] used the non-linear conjugate gradient (NLCG) method to reconstruct the
density image of the anomalous body. Using the same method, Feng et al. [16] estimated
the basement relief of a rift basin with gravity data. However, the local optimization is
easy to fall into the local minima due to its dependence on the initial guess. In contrast,
the global optimization starts the search process without requiring good initialization,
and can stably converge to a reliable solution [17]. For example, in [17], a particle swarm
optimization (PSO) was applied for inverting the basement of the basin; in [18], a modified
adaptive differential evolution (DE) was developed for calculating the density of gravity
anomaly under the constraint of Lp-norm with p ∈ [1,+∞); and, in [19], an efficient
genetic algorithm (GA) was developed by Montesinos et al. for efficiently estimating the
distribution of density. Apart from PSO, DE, and GA, many global methods are suitable
for solving the gravity inversion problem, for example, very fast simulated annealing
(VFSA) [20], ant colony optimization (ACO) [21], bat algorithm (BA) [22], etc. From these
studies, it can be clearly found that global methods are mainly used for estimating the
geometric parameters of field sources. The possible reason is that the physical property
inversion is time-consuming. However, compared with geometric inversion, the physical
property inversion is more promising since it can recover the shapes of complex sources
and depths [23].

Differential evolution (DE) is a population-based meta-heuristic algorithm presented
by Storn and Price [24] for solving Chebyshev polynomial problems. Similar to the genetic
algorithm (GA) [25], the individuals in DE are updated in terms of Darwin’s theory. In
recent decades, due to its evident advantages (i.e., simplicity, robustness, speed, etc.), it has
been extended to solve optimization problems in many scientific and engineering fields
(see [26–28] for more details). In recent years, DE variants have been introduced to invert
the geophysical data [18,29–31]. Particularly, the work of [31] indicated that, compared
with PSO, DE can achieve slightly better solutions based on robustness, computation cost,
and convergence speed. Anyway, as stated by [31], the DE algorithm has not attracted wide
attention in the field of geophysical inversion. In addition, these research works indicate
that there are few state-of-the-art DE algorithms to be applied in solving physical property
inversion. In DE’s population, each individual is named as a target vector. Generally, at
the first generation, all target vectors of DE are created randomly within the predefined
boundary constraints. Then, these vectors are updated through repeatedly conducting
mutation, crossover, and selection operations. Usually, mutation and crossover play a
vital role in improving the optimization performance. Moreover, the intrinsic parameters
including population size (NP), crossover rate (CR), and scale factor (F) also have sig-
nificant influence on DE’s performance since these parameters are capable of balancing
the population diversity and the search ability between exploration and exploitation [32].
For the above reasons, a robust and excellent DE algorithm named JADE was designed
by Zhang and Sanderson in [33]. Currently, a large number of DE variants inspired by
JADE have beaten other evolution algorithms in CEC competitions of single-objective
optimization [34]. Hence, this paper will improve JADE for solving the objective function
of gravity inversion.

According to the description in [23,35], the data misfit and model misfit in the objective
function of gravity inversion are combined together by a regularization factor. So, a proper
choice of the regularization factor plays a key role in obtaining a satisfactory solution.
Currently, the L-curve method [36], Morozov’s discrepancy principle [37], the Unbiased
Predictive Risk Estimator [38], and the Bayesian estimator [39] have been developed
to estimate the value of the regularization factor. From the literature [36–39], it can be
found that all these methods consume intensive computations [40]. In order to overcome
the above-mentioned problem, multiplicative regularization was proposed in [41] for
the inversion of the contrast source. Later, this method is extended for the inversion of
geophysical data in [42–44]. Recently, a general form of multiplicative regularization was
proposed by Aucejo and Smet for estimating mechanical loads [45]. The advantage of
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multiplicative regularization is that it does not require the regularization parameter in the
search process. In this work, the general form of multiplicative regularization is introduced
to invert the density distribution of gravity data.

Based on the above reviews and discussions, our main focuses in this paper are
twofold: Designing a novel adaptive DE algorithm and inverting gravity data with general
multiplicative regularization. For the DE algorithm, the JADE is selected here since it has
been proven efficient in solving inverse problems [33]. Considering that the convergence
speed is important compared with the global exploration, a new mutation strategy is
presented according to the rank value of each vector. In addition, the CR value in JADE
is randomly calculated under the control of Normal distribution, which ignores the fact
that the better information contained in the better individuals is useful for generating
superior offspring. Inspired by this observation, a novel CR generation scheme in terms
of the objective value of each individual is proposed. Furthermore, as discussed in [45],
the authors introduced an extra parameter to balance the effect of data misfit and model
misfit by using a fixed-point iteration. However, the iteration method is unsuitable for the
global search algorithm. Thus, an adaptive selection for the extra parameter is presented.
In summary, according to the above discussions, there are three main contributions in
this paper: The first direction is accelerating the convergence speed by proposing a novel
mutation strategy with rank information. Another direction of this article is introducing
a novel CR scheme based on objective values in the current population, which can retain
the better information of individuals with high rank. Our third direction is developing an
adaptive manner to adjust the extra parameter of multiplicative regularization.

2. Theory and Method
2.1. Enhancement of Differential Evolution
2.1.1. Classic Differential Evolution

In DE, an optimization problem is usually denoted as Φ(m) where m is a vector with
M entries such as m = (m1, m2, · · · , mM). For a DE population P, it contains NP target
vectors with size M. In the population matrix P, a target vector with index i is denoted
as mi = (mi,1, mi,2, · · · , mi,M). As soon as the initialization is fulfilled, the vectors in P
are updated by repeatedly conducting the DE operations including mutation, crossover,
and selection.

• Initialization:

Similar to other meta-heuristic algorithms (MHs), the DE randomly initializes the tar-
get vectors within the predefined boundary constraints. For example, if the upper boundary
and lower boundary are represented as mu = (mu,1, mu,2, · · · , mu,M) and
ml = (ml,1, ml,2, · · · , ml,M), respectively, then the jth entry of ith vector is obtained by
the following:

m1
i,j = ml,j + rand(0, 1) ·

(
mu,j −ml,j

)
, (1)

where rand(0, 1) represents a random number uniformly distributed in the range of (0, 1).

• Mutation:

As a critical operation of DE, the mutation operation is responsible for the generation
of the mutant vector. There are several commonly used mutation strategies in [27,46],
which can be summarized as the following:

DE/rand/1 : vG
i = mG

r1
+ F ·

(
mG

r2
−mG

r3

)
DE/best/1 : vG

i = mG
best + F ·

(
mG

r1
−mG

r2

)
DE/rand/2 : vG

i = mG
r1 + F ·

(
mG

r2
−mG

r3
+ mG

r4
−mG

r5

)
DE/best/2 : vG

i = mG
best + F ·

(
mG

r1
−mG

r2
+ mG

r3
−mG

r4

)
DE/current-to-rand/1 : vG

i = mG
i + F ·

(
mG

r1
−mG

i + mG
r2
−mG

r3

)
DE/current-to-best/1 : vG

i = mG
i + F ·

(
mG

best −mG
i + mG

r1
−mG

r2

)
(2)
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where subindices r1, r2, r3, r4, and r5 are random integers different from each other within
the range of [1, NP], and each of them is not equal to the subindex of mi. mG

best represents
the optimal vector according to the fitness value at the Gth generation.

• Crossover:

For a given vector mi, its trial vector ui is obtained by using the following
crossover operation:

uG
ij =

{
vG

ij , if rand(0, 1) ≤ CR or j = jrand

mG
ij , otherwise

, (3)

where jrand is an integer sampled uniformly from 1 to M.

• Selection:

The selection operation of DE is a greedy selection strategy. Generally, the selection
operation can be written as:

mG+1
i =

{
uG

i , if Φ
(
uG

i
)
≤ Φ

(
mG

i
)

mG
i , otherwise

, (4)

2.1.2. JADE Algorithm

• DE/current-to-pbest/1 mutation strategy:

In Equation (2), several mutation strategies are listed. Among these mutation strate-
gies, the DE/rand/1 prefers global search over local exploitation, and DE/best/1 is the
local exploitive. Inspired by this observation, Zhang and Sanderson proposed the muta-
tion strategy named “DE/current-to-pbest/1” [33]. The DE/current-to-pbest/1 mutation
strategy can be expressed as:

vG
i = mG

i + Fi ·
(

mG
pbest −mG

i + mG
r1
−mG

r2

)
, (5)

where mG
pbest is selected from the pbest set formed by the top 100p% vectors, where Fi is a

scale factor associated with the target vector mG
i .

In order to maintain the population diversity, an archive operation is introduced into
the JADE algorithm. Then, another mutation strategy named “DE/current-to-pbest/1 with
archive” was designed in [33], and can be described as:

vG
i = mG

i + Fi ·
(

mG
pbest −mG

i + mG
r1
− ∼m

G
r2

)
, (6)

where
∼
m

G
r2

is a randomly selected vector from the expanded population P∪A. The set A is
an optional archive used to store the inferior target vectors in selection. When the size of A
is more than the predefined number, some vectors are randomly removed.

• Adaptation of control parameters:

In JADE, the F and CR values are obtained from the Cauchy and Normal distribu-
tions. For the target vector mG

i at Gth iteration, its CR value is calculated based on the
following formula:

CRG
i = randni

(
µG

CR, 0.1
)

, (7)

where randni(·) returns a Normal distribution number with mean value µG
CR and standard

deviation 0.1. If CRG
i is outside of the range of [0, 1], it is truncated as 0 or 1. At each

iteration, the parameter µG
CR is adapted with the following equation:

µG
CR = (1− c)µG−1

CR + c meanA(SCR) , (8)



Minerals 2023, 13, 1027 5 of 23

where meanA(·) returns the arithmetic mean of input data, SCR is a set used to store the
good CR values in the last iteration. c is the learning rate in the 0 and 1 range. Similarly,
the generation of F and adaptation of µF are fulfilled according to the following:

FG
i = randc

(
µG

F , 0.1
)

µG
F = (1− c)µG−1

F + c c

meanL(SF) =
∑F∈SF

F2

∑F∈SF
F

, (9)

where randci(·) returns a Cauchy distribution number with location parameter µG
F and

scale factor 0.1. meanL(·) is Lehmer mean. The set SF stores the successful F values, which
produce better trial vectors at the last iteration.

2.1.3. The Proposed JADE

• The CR generation mechanism;

As stated by Zheng et al. in [47], embedding the high-quality vectors into the mutation
strategy are more likely to generate preferable directions for the search. In this work, a
CR generation strategy is designed to maintain the information of high-quality vectors
according to the following formulas:

CRG
i = µG

CR + 0.1 · δG
i ,

δG
i =

Φ(mG
i )−meanA(Φ)

meanA(|Φ−meanA(Φ)|) ,
(10)

where Φ =
[
Φ
(
mG

1
)
, Φ
(
mG

2
)
, · · · , Φ

(
mG

NP
)]

is a set of all objective values in P. From
Equation (10), for a minimization problem, a vector with fitness value less than meanA(Φ)
will obtain a CR value smaller than µG

CR. Assume that all vectors in P are sorted in
an ascending manner according to fitness values, then the proposed CR scheme can be
illustrated as Figure 1.
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• Rank-based mutation strategy:

In JADE, the perturbation direction is a difference vector toward mG
r1

. Zhang and

Sanderson believed that the difference between mG
r1

and
∼
m

G
r2

carries the information to-

ward the optimum [48]. Therefore, a proper choice of
∼
m

G
r2

is beneficial to accelerate the
convergence speed. In this work, the rank of each individual is employed to calculate the
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selection probability. If the rank of the ith vector in the set P∪A is rank
(
∼
m

G
i

)
, the selection

probability pi is obtained by the following formula:

pG
i =

NP + NA − rank
(
∼
m

G
i

)
NP + NA


2

, (11)

where NA represents the size of archive A. The details of the selection for
∼
m

G
r2

are pre-
sented in Algorithm 1. From Equation (11) and Algorithm 1, we can see that a vector
with an inferior objective value is more easily selected. Then, a possible direction to-

ward the optimum is obtained with high probability by the difference vector mG
r1
− ∼m

G
r2

.

Algorithm 1 The selection of
∼
m

G
r2

Input: The index i and terminal vector index r1
Output: The selected vector index r2
1: randomly generate an integer r2 in the range of 0 and NP + NA
2: while rand(0, 1) ≤ pG

r2
or r2 == i or r2 == r1

3: randomly generate an integer r2 in the range [1, NP + NA]
4: end while

2.2. Forward Modeling of Gravity

In this subsection, the forward modeling of gravity anomalies is simply described.
Traditionally, the gravity anomalies caused by the given density distribution are calculated
using integration derived from Newton’s law. For a simple gravity field source shown in
Figure 2, the gravity data gz(x, z) at a point (x, z) caused by density distribution ∆ρ(x, z)
can be calculated according to the following [2]:

gz(x, z) = 2Γ
∫

S

∆ρ(x, z)
r2 dxdz , (12)

where Γ is called a universal gravitational constant. Generally, the values of gravity
anomalies are calculated using numerical integration [49,50]. Alternatively, if a proper
boundary condition is given, they are also obtained by solving the Poisson equation as
the following:

∇2u = −4πΓ · ∆ρ , (13)

where u represents the scalar gravity potential. Then, at a given point (x, z), its gravity data
are calculated by the following equation:

gz(x, z) = −∂u
∂z

, (14)
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In this work, the finite volume method [51] with rectangular elements (Figure 3) is
employed to solve Equation (13).
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Applying the divergence theorem to Equation (13) for all elements like Figure 3 will
result in a matrix equation:

Ku = b , (15)

where K is a sparse matrix formed by discretization coefficients, b is a vector related to the
density distribution, and u represents the unknown gravity potential values. After applying
proper boundary conditions (e.g., Dirichlet boundary [52], Neumann boundary [53], and
artificial boundary [54]), and modern direct solvers, the scalar gravity potential values
of given density distribution are obtained. In our work, the boundary condition in [54]
is employed. Then, the gravity anomaly is calculated by using the centered difference
scheme [55]. If we give the forward modeling process as operator G, and the discrete
density distribution as m with size M, the forward modeling of gravity can be denoted as:

gz = G(m) , (16)

where gz records the calculated gravity values.

2.3. Gravity Inversion with Multiplicative Regularization
2.3.1. Inversion Method

According to the studies shown in [10,15,56,57], the objective function for gravity
inversion is comprised of data misfit and model misfit. By introducing regularization factor
λ, the objective function is written as:

Φ = Φd + λΦm , (17)

where Φ denotes the objective function for inversion, Φd represents data misfit, and Φm
represents model misfit. In the literature [41,58], the authors called Equation (17) ad-
ditive regularization. In order to avoid the selection of λ, the following multiplicative
regularization technique was proposed [41]:

Φ = Φd ·Φm , (18)

Now, the Equation (18) was generalized by Aucejo and Smet to the following [45]:

Φ = Φd ·Φ
µ
m , (19)
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where µ is an extra tuning parameter in the range (0,+∞), which is determined using
a fixed-point iteration algorithm. For the gravity inversion of this paper, the following
objective function using multiplicative regularization is employed:

Φ(m) = (Φd(m))µ(Φm(m))1−µ ,

s.t. ml ≤ m ≤ mu ,
(20)

where µ is similar to Equation (19). Φd(m) represents data misfit, which is defined as:

Φd(m) =
‖Wd(gobs

z −G(m))‖1
1

‖Wdgobs
z ‖1

1

,

Wd = diag
(

1
|gobs

z,1 |+ε
, 1
|gobs

z,2 |+ε
, · · · , 1

|gobs
z,N |+ε

)
,

ε = std
(∣∣∣gobs

z

∣∣∣) ,

(21)

where gobs
z represents the observation data vector with size N. In gobs

z , the ith entry is gobs
z,i ,

ε is used to avoid the dominator being zero. It is noted that Φd(m) is a weighted L1-norm
formed by observed data gobs

z and predicted data G(m). The reason for employing L1-norm
in data misfit is that can suppress the outlier well in observation data [59]. In addition, In
Equation (20), the model misfit Φm(m) is calculated using the following L1-norm distance:

Φm(m) =
M

∑
i=1

Wm,i|mi −mref,i| , (22)

where mref = (mref,1, mref,2, · · · , mref,M) denotes the reference model, Wm,i is the weight
parameter of ith entry in vector m. As we know, the L1-norm model misfit is a good
approximation of L0 [60], which is effective to retain the sparseness of inverted models.
The Wm = (Wm,1, Wm,2, · · · , Wm,M) is obtained according to the following formula [57]:

Wm,i =
Wz,iVi

∑M
k=1 Wz,kVk

,

Wz,i =
1

Dα
z,i

,
(23)

where Vi represents the volume size of element i, Wz,i a parameter related to the depth of
ith element, and Dz,i denotes the depth of element i. α is a decreasing factor and set to 1
for the gravity inversion. Finally, according to the equations from (21) to (23), the objective
function can be rewritten as the following:

Φ(m) =


∥∥∥Wd

(
gobs

z − G(m)
)∥∥∥1

1∥∥Wdgobs
z
∥∥1

1


µ(

M

∑
i=1

Wm,i|mi −mref,i|
)1−µ

, (24)

Observations from Equations (19) and (24) show that the extra weight parameter is
designed to give a proper weight for the model misfit function. In Equation (24), if µ→ 0 ,
the Φ(m) is dominated by the model misfit. On the contrary, if µ→ 1 , the data misfit
will dominate the value of Φ(m). Compared with additive regularization, although both
regularization factor and weight parameter µ have an influence on the balance of model
misfit and data misfit, the parameter µ in (24) is independent of the values of data and
model misfit. So, it can be more easily adapted in the process of searching.

2.3.2. Adaptation of Extra Weight Parameter µ

Although swarm intelligence algorithms like DE and PSO are adept in global search,
an inappropriate selection of extra weight parameter µ or regularization factor still may
result in unreasonable solutions. In addition, according to the study in [61], the effect of
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model misfit should be added when the data misfit is less than a predefined tolerance. Here,
we design an adaptation scheme for parameter µ according to the following formulas:

µG =

{
min

(
1, 1.5 · µG−1), i f qG ≥ 1

max
(
0.95, qG) · µG−1, otherwise

qG =

(
ΦG−1

d,mean

ΦG−2
d,mean

)2
,

Φk
d,mean =

∑NP
i=1 Φd(mk

i )
NP , k = G− 1, G− 2 ,

(25)

where Φd,mean denotes the mean value of the obtained data misfit values in the DE popula-
tion, and qG is the ratio of ΦG−1

d,mean and ΦG−2
d,mean. According to Equation (25), if qG is more

than or equal to 1 it implies that the current parameter µ may fail to decrease the data
misfit. In this situation, decreasing the value of µ will accelerate the convergence speed. In
addition, when the mean of data misfit Φd,mean stably decease, increasing the parameter µ
will make the optimization algorithm prone to optimize the prior information in model
misfit. In this case, the qG is less than 1, which makes the µ in Equation (25) increase.
Moreover, the value of µ is initialized as 0.5 to ensure that the optimization algorithm
simultaneously optimizes the data and model misfits at the beginning of the search. In
summary, from the above discussion, the proposed adaptation of µ will balance the effect
of data and model misfits in the whole search process.

2.3.3. Smooth Strategy for Gravity Inversion

To obtain a smooth density distribution, it is better to smooth its perturbation direction
when using DE for inverting the physical property of a field source [18], such as:

vG
i = mG

i + Fi ·
(

mG
pbest −mG

i + S4
(

mG
r1
− ∼m

G
r2

))
, (26)

where S is a sparse matrix comprised of the weight parameters of the moving average (see
Figure 4).
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2.3.4. The Framework of Gravity Inversion

In this subsection, the framework of gravity inversion with multiplicative regulariza-
tion will be presented in detail, and its workflow is shown in Figure 5.
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Preparatory work: In this step, the preprocessing of gravity data should be performed
including data denoising, separation of local and global fields, etc. In particular, to de-
crease the multiplicity of gravity inversion, a reference model is significantly useful to
reduce the non-uniqueness of inversion results if it can be given. The extra weight pa-
rameter µ = 0.5. Moreover, the initial parameters for DE are µCR = 0.5, µF = 0.5, and
pbest = ceil(0.05 · NP).

1. Population initialization: if have no reference model, the initial solutions are generated
with the following formula:

m0
i,j = 0.001 · rand(0, 1) , (27)

Otherwise, the following equation is applied:

m0
i,j = mre f ,j + 0.001 · rand(0, 1). (28)

2. Fitness evaluation: calculate the initial values of data misfit and model misfit, then
obtain the objective value of each model according to Equation (20);

3. Stop criterion check: if the termination condition is met, output all models and
associated predicted gravity data;

4. Generation of control parameters: the CR values are obtained according to the formula
(10). For scale factor F, it is sampled from (0, 1] according to the Cauchy distribution
shown in Equation (9). Moreover, the extra weight factor is calculated by using
Equation (25);

5. Mutation: for the presented work, the subindex of mG
r2

is selected by Algorithm 1,
then the mutant vector is generated by Equation (26);

6. Crossover: in this step, the trial vector of target vector mG
i is formed through applying

the way of Equation (3);
7. Fitness evaluation: for each trial vector, its objective value is estimated by

Equation (20);
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8. Selection: the comparison is conducted between a trial vector and its target vector
according to Equation (4). The better one is saved into the new population. In addition,
the values of µCR and µF are updated with Equation (8) and Equation (9), respectively;

9. Return to 4: if the termination condition is not met, repeat steps 5 to 9.

3. Test and Application

In this section, the proposed method in the above section is tested and verified by
synthetic and field data. For the synthetic test, four models (shown in Figure 6) with a
density of 1 g/cm3 are designed. The noise-free gravity data are displayed in Figure 7. The
space distance and number of data are 5 m and 81, respectively. However, when inverting
the gravity data, the point space is set to 10 m, and the element size in the z direction
proportionally varies with the depth value.
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3.1. The Effectiveness of Proposed Modifications for JADE

For a fair comparison, the parameter NP in DE is set to 100, the termination condition
is maximum iterations (300). In addition, the ranges for the search are 0 g/cm3 for the
lower boundary and 1.1 g/cm3 for the upper boundary. According to the discussion in
previous sections, there are two modifications for improving JADE such as generation of
the CR value and selection of the index

∼
mr2 . In this subsection, the proposed modifications

are investigated and analyzed. Therefore, several variants of the proposed algorithm
are used:

Version 1: the JADE algorithm proposed by Zhang and Sanderson. In this version, the
proposed modifications are not applied. It is denoted by IADE-1.

Version 2: based on Version 1, the selection method in Algorithm 1 for the subindex of
∼
mr2 is used. This version is represented by IADE-2.

Version 3: based on Version 2, the generation scheme of CR proposed in Section 2.1.3
is added. This version is represented by IADE.

Considering that the forward modeling is time-consuming, each algorithm is inde-
pendently run 10 times using noise-free data, and the experimental results are reported
in Table 1 according to the obtained mean (Mean) and standard deviation (Std) from data
misfit values. The best results are illustrated with bold font. From Table 1, it is concluded
that the IADE algorithm with all modifications obtains the best results on four models,
which implies that IADE is superior to its variants. Moreover, IADE-2 defeats IADE-1 in
three cases, which means that the modified mutation strategy is beneficial to enhance the
solution quality. In Figure 8, the convergence curves of IADE, IADE-1, and IADE-2 are
displayed. It can be seen from Figure 8 that IADE converges much faster than IADE-1
and IADE-2, and obtains inversion solutions with higher accuracy. To draw a statistical
conclusion, the significant difference between IADE, IADE-1, and IADE-2 are evaluated
using the multi-problem Wilcoxon signed-rank test. The related results are reported in
Table 2. According to Table 2, it is seen that IADE is statistically better than IADE and
IADE-2 at a significance level α = 0.05. Simultaneously, IADE-1 performs better than
IADE-1 since it acquires a higher R+ value than R−. In [23], the authors used the standard
deviation of the inverted models to measure the uncertainty of inversion. In our view,
the standard deviation from inverted models is related to the mean model of all solutions.
Therefore, the uncertainty can be represented if we output the mean model as the final solu-
tion. From this point, the mean model of the obtained solutions is listed in Figures A1–A3
in Appendix A. From these graphs, we can conclude that that the IADE obtains superior
solutions than IADE-1 and IADE-2 according to the difference between the true density
distribution (drawn by a black polygon) and the inverted models.

Table 1. Experimental results of IADE-1, IADE-2, and IADE based on the obtained mean and standard
deviation calculated from data misfit on different models.

Models IADE-1
(Mean ± Std)

IADE-2
(Mean ± Std)

IADE
(Mean ± Std)

rectangular 5.01 × 10−3 ± 5.63 × 10−3 7.01 × 10−3 ± 4.36 × 10−3 2.78 × 10−3 ± 1.50 × 10−3

parallel
rectangular 5.40 × 10−2 ± 2.52 × 10−2 4.35 × 10−2 ± 1.56 × 10−2 4.75 × 10−3 ±1.58 × 10−3

U shape 3.10 × 10−2 ± 1.64 × 10−2 2.22 × 10−2 ± 1.37 × 10−2 1.84 × 10−3 ±1.05 × 10−3

parallelogram 2.24 × 10−2 ± 1.05 × 10−2 1.24 × 10−2 ± 8.64 × 10−3 4.95 × 10−3 ±9.32 × 10−3

In summary, based on the results in Tables 1 and 2, and solutions presented in Fig-
ures A1–A3 in Appendix A, we can conclude that the new algorithm with proposed
modifications is more powerful and stable than its variants. Therefore, according to the
solution quality and convergence speed, the proposed modifications are useful for im-
proving the optimization performance of DE, and the adaptive DE algorithm with these
improvements is superior and robust in comparison with its variants.
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Table 2. Results of multiple-problem Wilcoxon’s test of IADE, IADE-1, and IADE-2 on designed
models.

Algorithm R+ R− p-Value α = 0.05

IADE vs. IADE-1 10 0 0.04461 yes
IADE vs. IADE-2 10 0 0.04461 yes

IADE-2 vs. IADE-1 5 1 0.181449 no

3.2. Parameter Setting Study of µ

In Section 2.3.2, an extra parameter µ is introduced to balance the effect of data and
model misfit. The convergence curves of µ for IADE on different models are displayed in
Figure 9. In terms of Equation (24), the objective for inversion is dominated by the data
misfit function when the value of µ is more than 0.5. Then, Equation (25) reveals that the
parameter µ will increase with the increment of the data misfit. At the beginning of the
search, the values of data misfit in the DE population are large since the initial models are
far away from the true solution. In this case, optimizing the model misfit is not useful for
minimizing the errors between the observed data and the predicted. From Figure 9, one
can conclude that, in order to close the gap between the observed and the predicted, the
value of µ for all designed models rapidly increases at the early stage of the search. After
which, the µ converges to small values close to zero so as to make the obtained solutions fit
the prior information.

3.3. The Noise Effect in Gravity Data

Considering that the gravity data in practical examples are contaminated by noise
from the instrument and environment, it is therefore necessary to evaluate the influence
caused by noise on inverted models. In this work, the noise is added according to the
following formula,

gobs
z,i = gz,i + σ · std(|gz|) · randn(0, 1), (29)



Minerals 2023, 13, 1027 14 of 23Minerals 2023, 13, x FOR PEER REVIEW 14 of 23 
 

 

  
(a) rectangle (b) parallel rectangle 

  
(c) U shape (d) parallelogram 

Figure 9. Convergence curves of μ for IADE on different models with 10 independent runs. 

3.3. The Noise Effect in Gravity Data 

Considering that the gravity data in practical examples are contaminated by noise 

from the instrument and environment, it is therefore necessary to evaluate the influence 

caused by noise on inverted models. In this work, the noise is added according to the 

following formula, 

𝑔𝑧,𝑖
𝑜𝑏𝑠 = 𝑔𝑧,𝑖 + 𝜎 ⋅ 𝑠𝑡𝑑(|𝐠𝑧|) ⋅ 𝑟𝑎𝑛𝑑𝑛(0,1), (29) 

where 𝜎 represents the noise level (i.e., 1%, 5%, and 10%), 𝑔𝑖 is noise-free gravity data, 

and 𝑟𝑎𝑛𝑑𝑛(⋅) means a random number with Normal distribution. For each type of grav-

ity data with noise, 10 independent runs with a maximum iteration of 300 are conducted. 

In Figure 10, the gravity data calculated from the U shape with/without noise are pre-

sented. In Table 3, the mean data misfit and the associated standard deviation according 

to the obtained best models at each run are reported. We can see from Table 3 that data 

misfit values increase with the increment of noise level, which implies that the overfit of 

observation data is avoided when running the gravity inversion with the proposed opti-

mization algorithm and extra parameter adaptation. The inverted results with different 

noise levels are listed in Figure A4 in Appendix A. Compared with Figure A1c, the in-

verted models with noise data are in accord with the noise-free case, which indicates that 

the proposed inversion scheme with multiplicative regularization is robust and stable. 

 

Figure 10. The gravity data with different noise levels for the U-shape model. 

Figure 9. Convergence curves of µ for IADE on different models with 10 independent runs.

where σ represents the noise level (i.e., 1%, 5%, and 10%), gi is noise-free gravity
data, and randn(·) means a random number with Normal distribution. For each type
of gravity data with noise, 10 independent runs with a maximum iteration of 300 are
conducted. In Figure 10, the gravity data calculated from the U shape with/without
noise are presented. In Table 3, the mean data misfit and the associated standard deviation
according to the obtained best models at each run are reported. We can see from Table 3 that
data misfit values increase with the increment of noise level, which implies that the overfit
of observation data is avoided when running the gravity inversion with the proposed
optimization algorithm and extra parameter adaptation. The inverted results with different
noise levels are listed in Figure A4 in Appendix A. Compared with Figure A1c, the inverted
models with noise data are in accord with the noise-free case, which indicates that the
proposed inversion scheme with multiplicative regularization is robust and stable.
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Table 3. The mean and standard deviation of data misfit on different noise levels.

Model 1% Noise
(Mean ± Std)

5% Noise
(Mean ± Std)

10% Noise
(Mean ± Std)

U shape 2.59 × 10−3 ± 4.43 × 10−4 1.06 × 10−2 ± 3.50 × 10−4 2.27 × 10−2 ± 2.68 × 10−3
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3.4. Field Example 1: Prospecting Ultrabasic Rocks in the Poshi Cu–Ni Deposit, Xinjiang, China

In the Xinjiang region, Pobei rocks are sited at the Beishan rift belt in the northeast of
the Tarim platform, and is one of the most significant zones for exploring Cu-Ni metallogeny
(Figure 11). When searching for magmatic copper–nickel deposits, a significant premise
is discovering the basic–ultrabasic rocks of Pobei, which also are its main metallogenic
geology elements. So, it is significantly crucial to evaluate the spatial distribution so as to
prospect the Cu-Ni deposits in Pobei [62,63]. From Figure 11, Poshi basic–ultrabasic rocks
are a part of the Pobei rocks, which mainly are located at the center of the basic–ultrabasic
rocks. In addition, the ultrabasic rocks are distributed with an asymmetrical ellipse and
strike NE–SW.
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The density values measured from rock and drill core samples are listed by Liu et al.
in [65]. From their analysis, the largest density (i.e., >3.0 g/cm3) is achieved by olivine
gabbro. The peridotite has a similar density value to marble. The smallest density values
(i.e., <2.7 g/cm3) are found in biotite quartz schist, acid dioritic porphyrite, and biotite
potash feldspar granite. In addition, the density of ultrabasic rocks (i.e., 2.6–2.8 g/cm3) is
lower in comparison with that of ore-bearing basic–ultrabasic rocks, gabbro, serpentine,
and garnet skarn (i.e., 2.9–3.1 g/cm3). Consequently, the rock formation comprised of
gabbro will cause a positive anomaly. On the contrary, the contact region between different
rocks and ultrabasic rocks including peridotite and serpentinized pyroxene peridotite will
dominate the negative anomalies in gravity data.

In order to investigate the spatial distribution of ultrabasic rocks, Line 0 with a profile
length 2400 m is designed across the ultrabasic rocks as shown in Figure 11. The number
of gravity data along Line 0 is 60 as the data are sampled every 40 m. As displayed by
Figures 11 and 12a, the observed data at the area where the ultrabasic rocks are exposed are
lower than in other regions. Similar to [64,65], the prospecting depth is set to 1200 m. After
running the presented inversion algorithm, the calculated gravity data fit the observed well
(Figure 12a), and the inverted density distribution is presented in Figure 12b. Compared
with other previous studies ([64,65]), a good correlation can be found between ours and
these methods.
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Figure 12. The inversion results of Line L0 with geological section and drilling wells [65], where
A, B, C, D, E, and F represent granite, earlier gabbro, latter gabbro, schist, and diorite rock units,
respectively. Pink blocks denote Nickel ore bodies.

According to the inverted results, the obtained model makes a good approximation to
the information indicated by geology and drilling wells. Furthermore, from Figure 12b, it
is clear that the subsurface cross section is comprised of six regions with different lithology
units based on the geology map and inverted density distribution. More specifically, both
zone B and zone D possess high residual density values, but zone B is slightly higher than
that of D. Combining Figures 11 and 12b, the ultrabasic peridotite with lower residual
gravity anomaly is depicted as having lower density values by zone C. This means that the
lower residual gravity and lower density are the features of ultrabasic peridotite. For zone
A, which is located at the most NW area in Figure 11, its residual density value is slightly
lower than zones E and F. According to the mean density values of rock samples listed by
Liu et al. [65], the density of samples from granite in zone A has no noticeable difference
with the biotite plagioclase quartz schist at zone E and diorite in F, but it is significantly
different with zone B. Moreover, the gravity data at the proximity of A are lower than at
zone B. This implies that there may exist a source distribution with a density value lower
than the one of zone B. Thus, a relatively reasonable interpretation is that the negative
gravity anomalies of zone A are caused by the underground granite, although there exists
an over and underestimation near the border. For zones E and F, the intrusions of diorite at
F are slightly higher than the metamorphic rocks at E, although their difference is unclear.
In a word, according to the inversion results shown in Figure 12, one can conclude that
there exist six different rock units along Line 0, which are A—granite, B—earlier gabbro,
C—peridotite, D—latter gabbro, E—metamorphic rocks, and F—diorite. Moreover, the
density values of A and C are low, B and D are high, and a moderate density value is
obtained by E and F [65].

3.5. Field Example 2: Iron Deposit Prospection of Shihe, Shanxi, China

The Shihe iron deposit is situated in Shanxi, China. The outcropped rocks in this
mining area are entirely covered by Quaternary sediments of the Malan group, ranging



Minerals 2023, 13, 1027 17 of 23

in depth from 240 to 340 m (Figure 13). Geologically, the Shihe deposit is controlled by
the uplift of the Hengshan–Wutaishan in the Lvliang–Taihang fault block. The density
values of rock and drill core samples are presented in Table 4. From Table 4, the Quaternary
sediment samples exhibit the lowest density value (i.e., 1.42–1.58 g/cm3), while Plagio-
clase amphibolite, Hornblende–Plagioclase, Biotite leptynite, and Jinggang group have
similar moderate density values. The highest density value is found in magnetite quartzite
(i.e., >3.13 g/cm3), which is the iron mineral in our study area. Therefore, by combining
Table 4 and the observed data in Figure 14a, it is likely that the positive residual anomalies
are caused by magnetite quartzite.
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Figure 13. The simple geological map of Shihe deposit in Shanxi, China. Modified according to the
geology map provided by Shanxi Institute of Geophysical and Geochemical Exploration, China.

Table 4. Density measurements of rock samples collected from outcrop and boreholes in Shihe deposit.
Measured data are provided by Shanxi Institute of Geophysical and Geochemical Exploration, China.

Rocks Sample Number Rang ρ g/cm3 Mean ρ g/cm3

Magnetite quartzite 30 3.13–3.46 3.16
Plagioclase amphibolite 41 2.48–2.94 2.78
Hornblende-Plagioclase 7 2.43–2.81 2.65

Biotite leptynite 28 2.57–2.90 2.88
Quaternary sediments 6 1.42–1.58 1.53

Jinggang group 106 2.43–3.46 2.78
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Figure 14. The inversion results of gravity data with drilling wells in Shihe. Pink blocks denote iron
ore bodies.

In order to investigate the spatial distribution of magnetite quartzite, the ground
measurements of gravity data were acquired by the Shanxi Institute of Geophysical and
Geochemical Exploration. A gravity profile with a length of 1870 m and an azimuth
angle of 165◦ was designed across the study area, as shown in Figure 13. During the
gravity inversion process, the maximum prospecting depth was set as 0.5 times the profile
length. After running the proposed inversion algorithm, the calculated gravity data and the
inverted density distribution are displayed in Figure 14. It is clear that a good correlation
exists between the inverted model and the borehole in formation.

4. Conclusions

In this work, the main focuses are introducing multiplicative regularization and im-
proving adaptive differential evolution for the inversion of gravity data. Firstly, to accelerate
the convergence speed of DE, a new mutation strategy with inferior vector selection in
terms of the rank values of all vectors is proposed. In addition, the search abilities of local
and global are balanced by the designed crossover rate mechanism, which calculates the
CR value without relying on the probability distribution. Finally, the multiplicative with an
extra weight parameter is introduced since it does not require the regularization parameter
in the search process.

For our developed adaptive DE, the results of synthetic models indicate that, ac-
cording to the solution quality, convergence speed, and robustness, it is superior to the
original version. Additionally, by using an extra weight parameter, the optimization pro-
cess for the inversion objective is adapted by the change in data misfit. From the inverted
results, the proposed adaptation method is effective for solving gravity inversion. Fur-
thermore, the proposed algorithm is evaluated by two practical examples in China, the
obtained models show a high correlation with the known information, which indicates that
the multiplicative regularization inversion with adaptive differential evolution is stable
and robust.

Our future work will extend the proposed optimization algorithm and multiplicative
regularization for solving the inverse problems of other geophysical methods.

Author Contributions: Conceptualization, L.C.; methodology, L.C.; software, L.C.; Formal analysis,
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and X.H.; visualization, W.D.; funding acquisition, W.D. All authors have read and agreed to the
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