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Abstract: The petrogenesis of late Ordovician–early Silurian adakitic plutons in the North Qilian
suture zone (NQSZ) and their copper mineralization potential remain poorly understood. Here
we present a detailed study of the Heishishan (HSS) granodiorite–granite pluton, spatially associ-
ated with Cu–Au mineralization in the eastern section of the NQSZ. Zircon U–Pb dating confirms
that the granodiorite–granite were formed at ca. 438–435 Ma, in association with a continental
collision. Geochemically, the granitoids resemble low-Mg adakitic rocks featured by elevated Sr/Y
and (La/Yb)N ratios with depleted MgO, Cr, and Ni concentrations, suggesting minimal mantle
contribution. They are sodium rich with K2O/Na2O < 1, and have higher and more varied Sr/Y,
but lower La/Yb than those from the continental lower crust. The εHf(t) values of zircon grains are
positive and vary in a wide range of +2.0–12.7, indicating a heterogeneous source rather than a single
arc basaltic source. They show moderately radiogenic Sr and Nd isotope compositions with initial
87Sr/86Sr ratios of 0.705101–0.706312 and εNd(t) values of +0.5–1.0, most likely a mixed source of
the oceanic basaltic crust plus ca. 15–20% overlying sediments. The magmatic oxygen fugacity was
relatively low as indicated by zircon Ce(IV)/Ce(III) ratios of 32–156, which is unfavorable for a large
copper mineralization.

Keywords: adakite; porphyry Cu mineralization; zircon Hf isotope; syn-collisional granitoids; north
qilian suture zone

1. Introduction

The origin of adakite has received great attention for decades since it was proposed
by Defant and Drummond [1]. Adakite was initially recognized as a type of arc lava
and represents slab melts derived from young (≤25 Ma) and hot subducted oceanic
crust [1], the origin of which then gained strong support from natural [2] and experi-
mental studies [3–5]. It is defined by geochemical compositions (e.g., SiO2 ≥ 56 wt.%,
Al2O3 ≥ 15 wt.%, Y ≤ 18 ppm, Yb ≤ 1.9 ppm, Sr ≥ 400 ppm, Sr/Y > 40, and La/Yb > 20)
without detailed petrographic constraints. Therefore, igneous rocks with adakitic signa-
tures, also termed “adakitic rocks”, are found not only in modern subduction zones but also
in ancient orogenic belts and cratons, and can also be generated by (1) the decompression
melting of exhumated eclogites [6,7], (2) the melting/delamination of thickened lower con-
tinental crust (LCC) [8–13], (3) the fractional crystallization (FC) of normal basaltic/mafic
andesitic magma with or without crustal assimilation [14–16], and (4) the magma mixing
of mantle- and crust-derived melts [17].

Research on adakite/adakitic rocks has also been one of the hottest subjects in research
on mineral deposits due to their strong connection to porphyry copper deposits [18–21].
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In copper deposits where both adakites and non-adakitic rocks existed, mineralization is
usually associated with adakites [18]. Several different explanations, i.e., the oxygen fugac-
ity (oxidized), the source (initial enrichment of Cu in the oceanic crust) and composition
(felsic and water rich) of the magma, and the compression tectonic environment, for the
fertility of adakitic slab melts have been proposed, among which high oxygen fugacity and
a derivation of the oceanic crust are thought to be two key factors [21–23].

The North Qilian suture zone (NQSZ) in northwest China is a typical Early Paleozoic
suture zone that is composed of subduction-zone complexes including ophiolitic melanges,
blueschists and eclogites, arc volcanic rocks, granitic intrusions, Silurian flysch formations,
Devonian molasse, and post-Devonian sedimentary cover sequences [24–27] (Figure 1a).
Recent studies have shown that adakitic granitoids in the NQSZ were mainly formed
at ca. 457–430 Ma [16,28–31]. These adakitic rocks, e.g., the Heishishan and Quwushan
plutons, are of great importance as they spatially show a close association with Cu–Au
mineralization [32,33], and may offer essential clues to the prospecting of regional Cu–Au
mineralization. However, their petrogenesis, particularly their derivations (i.e., the oceanic
basaltic crust or the continental lower crust), is still controversial [16,28–30], which hinders
our understanding of the potential of Cu–Au mineralization in the NQSZ.
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[33]), and (b) sketch map of the HSS granitic complex in the eastern NQSZ (modified after 1:50,000 
geological map). Data sources include Chen et al., 2012 [6], Chen et al., 2016 [16], Tseng et al., 2009 
[28], Yu et al., 2015 [29], Chen et al., 2023 [30], and Yang et al., 2020 [31]. 
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and Fangfuya) dominated by granodiorite and trondhjemite with a total area of ~10 km2 
[32] (Figure 1b). These intrusions occur as stocks, apophyses, and dykes and intrude into 
the Cambrian–Ordovician arc volcanic rocks that are bimodal with predominantly felsic 
units of 467‒446 Ma [43,44] and minor mafic units of 465 Ma as indicated by zircon U‒Pb 
ages [45,46]. The studied granodiorites were collected from the Haoquangou (HQG) and 
Baimawa (BMW) plutons (Figure 1b). The HQG pluton, located in ca. 3 km north of Baiyin 
City, is composed of medium-grained granodiorite and porphyritic trondhjemite that 
show a close relationship with Au–Cu mineralization based on element concentrations 
[32] (Figure 2a,b). Mafic microgranitoid enclaves (MMEs) are occasionally hosted by the 
granodiorite with transitional contacts (Figure 2b), and show a similar mineral assemblage 
of plagioclase, quartz, K-feldspar, and biotite, but a higher modal biotite with the gran-
odiorite host. The BMW pluton lies ca. 1 km northeast of the HQG pluton and is domi-
nated by medium-grained granodiorite (Figure 2c,d). The HQG and BMW granodiorites 
are composed of plagioclase (40‒50%), quartz (35‒25%), K-feldspar (5‒10%), and biotite 
(<5%) (Figure 2e,f), and accessory minerals such as apatite, titanite, and zircon. Biotite is 
dark brown and partly replaced by muscovite or chlorite. Plagioclase is slightly sericitized 
with translucent cores surrounded by Na-rich, transparent rims. K-feldspar is mainly mi-
croline with gridiron twinning and occurs as anhedral grains between euhedral plagio-
clase crystals, indicating its crystallization in a late stage. Most muscovite is of secondary 
origin according to its occurrence (i.e., the replacement of the core of plagioclase and rim 
of biotite) and an overgrowth with epidote (Figure 2g,h). Overall, an overprint of 
greenschist facies metamorphism characterized by muscovite, chlorite, and epidote is ev-
ident in the HQG case, which is tightly associated with chalcopyrite (Figure 2g,h). 

Figure 1. (a) Geological map of the North Qilian suture zone (NQSZ) showing major tectonic units and
the Heishishan (HSS) pluton (modified after [30], the location of copper mineralization is after [33]),
and (b) sketch map of the HSS granitic complex in the eastern NQSZ (modified after 1:50,000 geo-
logical map). Data sources include Chen et al., 2012 [6], Chen et al., 2016 [16], Tseng et al., 2009 [28],
Yu et al., 2015 [29], Chen et al., 2023 [30], and Yang et al., 2020 [31].

In this study, we choose the Heishishan (HSS) pluton as it shows a close association in
space with Haoquangou Cu (Au) mineralization [32]. We conduct U–Pb geochronology,
trace element, and Lu–Hf isotope analyses of zircon grains, and bulk-rock geochemistry for
the HSS adakitic granitoids, and discuss their petrogenesis and potential for Cu mineraliza-
tion. We suggest that early Silurian adakitic granitoids in the NQSZ could be successfully
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addressed by the partial melting of the oceanic basaltic slab, but the low-oxygen- fugacity
of magmas is unfavorable for large copper mineralization.

2. Geological Setting and Petrography

The northwest-trending NQSZ is situated in the northern part of the Qinghai–Tibet
Plateau, located between the Alashan block to the north and the Qilian block to the south
and offset by the Altun Tagh fault to the west (Figure 1a). It has long been recognized as a
typical Early Paleozoic suture zone that records a complete Wilson cycle from continental
rifting to seafloor spreading, oceanic subduction, the extension of the back-arc basin, and
to ultimately a continental collision and mountain collapse in the Neoproterozoic to early
Paleozoic era [25,34,35]. It has been subdivided into three tectonic-magmatic subunits,
i.e., the southern mid-ocean ridge (MOR)-type ophiolite belt (ca. 550–495 Ma), the middle
arc magmatic belt (ca. 530–440 Ma), and the northern back-arc basin ophiolite–volcanic belt
(ca. 517–450 Ma) (Figure 1a) [25,34–36].

Granitic plutons with zircon U–Pb ages of ca. 530–380 Ma are widespread in the
NQSZ. They are characterized by a peraluminous granitic batholith and many medium-
/high-K calc-alkaline I-type diorite–granodiorite–granite intrusions with minor tonalite–
trondhjemite associations [37–42]. The Chaidanuo granitic batholith consists predom-
inantly of peraluminous biotite monzogranite with biotite gneiss restites and mantle-
derived enclaves, which was formed through the partial melting of Neoproterozoic granitic
rocks with a minor contribution of mantle-derived magma during subduction initia-
tion (~516–505 Ma) [40]. In addition, there are many adakitic plutons including the ca.
453–430 Ma Leigongshan tonalite [28,30], ca. 438 Ma Aoyougou trondhjemite [6], ca.
457–430 Ma Quwushan granodiorite [16,29], and ca. 436–435 Ma HSS granodiorite–
trondhjemite [31], suggesting an extensive pulse of adakitic magmatism ca. 457–430 Ma in
the NQSZ. Among them, the HSS and QWS adakitic plutons are spatially associated with
porphyry Cu–Au deposits [32,33].

The HSS granitic complex is located ~10 km southwest of the Baiyin Cu–polymetallic
ore field and comprises several intrusions (e.g., Haoquangou, Baimawa, Heishishangou,
and Fangfuya) dominated by granodiorite and trondhjemite with a total area of ~10 km2 [32]
(Figure 1b). These intrusions occur as stocks, apophyses, and dykes and intrude into the
Cambrian–Ordovician arc volcanic rocks that are bimodal with predominantly felsic units of
467–446 Ma [43,44] and minor mafic units of 465 Ma as indicated by zircon U–Pb ages [45,46].
The studied granodiorites were collected from the Haoquangou (HQG) and Baimawa
(BMW) plutons (Figure 1b). The HQG pluton, located in ca. 3 km north of Baiyin City, is
composed of medium-grained granodiorite and porphyritic trondhjemite that show a close
relationship with Au–Cu mineralization based on element concentrations [32] (Figure 2a,b).
Mafic microgranitoid enclaves (MMEs) are occasionally hosted by the granodiorite with
transitional contacts (Figure 2b), and show a similar mineral assemblage of plagioclase,
quartz, K-feldspar, and biotite, but a higher modal biotite with the granodiorite host. The
BMW pluton lies ca. 1 km northeast of the HQG pluton and is dominated by medium-
grained granodiorite (Figure 2c,d). The HQG and BMW granodiorites are composed of
plagioclase (40–50%), quartz (35–25%), K-feldspar (5–10%), and biotite (<5%) (Figure 2e,f),
and accessory minerals such as apatite, titanite, and zircon. Biotite is dark brown and partly
replaced by muscovite or chlorite. Plagioclase is slightly sericitized with translucent cores
surrounded by Na-rich, transparent rims. K-feldspar is mainly microline with gridiron
twinning and occurs as anhedral grains between euhedral plagioclase crystals, indicating
its crystallization in a late stage. Most muscovite is of secondary origin according to
its occurrence (i.e., the replacement of the core of plagioclase and rim of biotite) and
an overgrowth with epidote (Figure 2g,h). Overall, an overprint of greenschist facies
metamorphism characterized by muscovite, chlorite, and epidote is evident in the HQG
case, which is tightly associated with chalcopyrite (Figure 2g,h).
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Figure 2. Field photos and microphotographs for the HQG (a,b,e,g,h) and BMW (c,d,f) granodiorites
from the HSS granitic complex in the NQSZ. (g,h) Sample 12QL-183. Mineral abbreviations: biotite,
bi; plagioclase, pl; K-feldspar, kfs; quartz, q; muscovite, mus; chlorite, chl; epidotite, ep; chalcopyrite,
ccp. Please see the text for a description.

3. Analytical Methods

Zircons were separated from crushed rocks using conventional heavy liquid and
magnetic techniques, then handpicked under a binocular microscope, mounted in an
epoxy disc, and polished to half-sections. The internal zoning was examined using a
cathodoluminescence (CL) spectrometer (Garton Mono CL3+) equipped on a Quanta 200F
ESEM with a 2-min scanning time at conditions of 15 kV and 120 nA at the School of
Physics, Peking University.

Measurements of U, Th, and Pb contents and isotopic ratios in zircons were conducted
using an Agilient 7500ce ICP-MS equipped with a 193 nm laser housed at the Ministry
of Education (MOE) Key Laboratory of Orogenic Belts and Crustal Evolution, School of
Earth and Space Sciences, Peking University. The beam size of the analytic laser spot is
approximately 32 × 32 µm. The calibrations for elemental concentration were carried out
using NIST 610 glass as an external standard and 29Si as an internal standard. The detailed
analytical procedure of LA-ICP-MS, the method for the corrections of the U–Pb isotope
fractionation effect and common lead, and the calculation of 207Pb/206Pb and 206Pb/238U
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ratios are similar to those described by Xia et al. [47]. Individual analyses are presented
with 1σ errors in the data tables and in concordia diagrams. The uncertainties in mean ages
are quoted at the 95% level. The analytical data are shown in Table S1.

Fresh rock samples were crushed into powders of 200 mesh in an agate mill. The
major elements were analyzed using Leeman Prodigy inductively coupled plasma-optical
emission spectroscopy (ICP-OES) at the Chinese University of Geosciences, Beijing (CUGB).
The accuracy of the major elements is generally better than 2%. Trace element analysis was
performed on an Agilent-7500a inductively coupled plasma mass spectrometry (ICP-MS) at
Peking University, Beijing. The analytical accuracy indicated by the relative difference (RE)
between the measured and recommended values is better than 5% for most elements. The
analytical procedures for the major and trace elements were described by Song et al. [48]
and Zhang et al. [49], respectively. The data are given in Table S2.

The separation and purification of Sr and Nd were conducted using conventional two-
column ion exchange procedures in the ultraclean laboratory of the MOE Key Laboratory
of Orogenic Belts and Crustal Evolution, School of Earth and Space Sciences, Peking
University. The detailed procedure is the same as that described in Chen et al. [41]. The
analysis was then conducted using a Triton Thermal Ionization Mass Spectrometer at the
Institute of Geology and Mineral Resources, Tianjin. The detailed procedure follows that
of Jahn et al. [50]. During the course of this study, the mean 87Sr/86Sr ratios for NBS-987
and BCR-2 were 0.710238 ± 0.000005 (2σ, n = 3) and 0.705016 ± 0.000003 (2σ, n = 2),
respectively; the mean 143Nd/144Nd ratios were 0.512118 ± 0.000006 (2σ, n = 5) for JNDI
and 0.512637 ± 0.000006 (2σ, n = 2) for BCR-2. The analytical data are shown in Table S3.

The in situ zircon Hf isotopic analysis was conducted using a Neptune multi-collector
ICP-MS equipped with a Newwave UP213 laser in the MLR Key Laboratory of Metallogeny
and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological
Sciences (Beijing). In total, 15 analyses on the reference standard of zircon GJ1 yielded
a weighted mean 176Hf/177Hf ratio of 0.282007 ± 0.000007 (2σ), in good agreement with
the recommended 176Hf/177Hf ratio of 0.282000 ± 0.000013 (2σ) using a solution analysis
method by Morel et al. [51]. The detailed procedure of analysis is similar to those described
by Chen et al. [41]. The results are given in Table S4.

4. Results
4.1. Zircon U–Pb Geochronology

The granodiorite samples from the HQG (12QL-181) and BMW (12QL-190) plutons
were chosen for LA-ICP MS zircon U–Pb dating. The zircon grains from both samples are
colorless and euhedral to subhedral crystals with 100–200 µm in length and have length to
width ratios of 2:1–4:1. They exhibit perfect oscillatory zoning in CL images, interpreted
as a magmatic origin (Figure 3). Occasionally, they have oval, magmatic cores. In total,
25 spots on the rims of the zircon grains were analyzed for each sample. One date of
517 ± 6 Ma for the sample 12QL-181 could be affected by the old core of the zircon grain
as indicated by CL images and, thus, is geologically insignificant. The 24 data-points for
the sample 12QL-181 display Th contents of 155–446 ppm, U contents of 411–829 ppm,
and Th/U ratios of 0.38–0.74, and yield 206Pb/238U ages of 428–443 Ma with a weighted
mean 206Pb/238U age of 435 ± 2 Ma (MSWD = 3.7) (Table S1, Figure 3a), the same as the
literature data of 436 ± 2 Ma within errors [31], interpreted as the crystallization age of the
HQG pluton. The zircon grains from the granodiorite sample (12QL-190) give Th contents
of 206–463 ppm, U contents of 306–692 ppm, and corresponding Th/U ratios of 0.49–0.78.
They yield a weighted mean 206Pb/238U age of 438 ± 3 Ma (MSWD = 7.0, n = 25), slightly
older than the date of 430 ± 2 Ma [31], representing the emplacement age of the BMW
pluton (Table S1, Figure 3b). Therefore, the HSS granitic complex is suggested to have been
emplaced at ca. 438–435 Ma.
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Figure 4. TAS diagram (a) and plot of K2O versus SiO2 (b) for the HQG and BMW granitoids. Refer-
ence data for the HQG (shown as HQG Ref.) and BMW (shown as BMW Ref.) are from [31,32]. 

Figure 3. Representative CL images of zircon grains showing spots for LA-ICPMS U-Pb dating
and concordia diagrams of zircon U-Pb age for the HQG (a) and BMW (b) granodiorite from the
HSS pluton.

4.2. Whole-Rock Major and Trace Elements

Representative bulk-rock chemical compositions for the HQG and BMW granodiorites
are listed in Table S2. The reference data are also shown for comparison [31,32]. Major
element compositions are normalized to 100% on a volatile-free basis.

The HQG and BMW samples share great similarities in geochemical compositions
(Table S2; Figures 4 and 5). They are characterized by high SiO2 (68.9–72.3 wt.%), low
MgO (0.96–1.36 wt.%), and a medium content of total alkali, plotting in the granodiorite
field in the TAS diagram (Figure 4a). These granodiorites are sodic with high Na2O
(3.43–4.06 wt.%), low K2O contents (1.48–3.01 wt.%), and K2O/Na2O ratios (0.38–0.85),
and belong to the middle-K calc–alkaline series (Figure 4b). They also have high Al2O3
contents (14.36–16.49 wt.%) and are weakly to strongly peraluminous with A/CNK values
of 1.01–1.20 (not shown).
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Reference data for the HQG (shown as HQG Ref.) and BMW (shown as BMW Ref.) are from [31,32].

The HQG and BMW granodiorites also show similarly fractionated chondrite-normalized
REE patterns, i.e., enriched in light rare earth elements (LREEs) but depleted in heavy
REEs (HREEs) with [La/Yb]N of 14–41, with positive Eu anomalies (Eu/Eu* = 1.01–1.68)
(Figure 5a). In the primitive mantle-normalized spider diagram, they are characterized
by the enrichment of large ion lithophile elements (LILEs) with Rb, Ba, Sr, and Pb peaks,
and the depletion of high field strength elements (HFSEs) with Nb, Ta, and Ti troughs
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(Figure 5b). The granodiorites both exhibit adakitic signatures, e.g., high Sr (407–561 ppm),
low Y (3.74–8.61 ppm) and HREE concentrations (e.g., Yb = 0.34–0.69 ppm), with high Sr/Y
(56–119) and [La/Yb]N ratios (Figure 6a,b) [1].
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Figure 6. Diagrams of Sr/Y versus Y (a) and Sr/Y versus La/YbN (b) for the HSS adakitic
granitoids. Panel (a) is after Defant and Drummond [1] and (b) after Liu et al. [53]. Data
sources: Fields of slab-derived adakites include those in modern arcs from the GeoRoc database
(https://doi.org/10.25625/2JETOA/FDAI5K), and LCC-derived adakitic rocks include those in the
Tibet Plateau [10,13], Dabie Orogen [12] (Wang et al., 2007) and North China Craton (NCC) [9,17].
Adakitic plutons in the NQSZ including the LGS tonalite [28,30], AYG trondhjemite [6], QWS
granodiorite–MME [16,29], and others, the same as in Figure 4.

https://doi.org/10.25625/2JETOA/FDAI5K
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4.3. Whole-Rock Sr and Nd Isotopes

The HQG granodiorites have initial 87Sr/86Sr ratios of 0.705177, and positive εNd(t) val-
ues of +0.8–+1.0, with two-stage depleted mantle Nd model ages [TDM2(Nd)] of 1094–1105 Ma.
Similarly, the BMW granodiorites have initial 87Sr/86Sr ratios of 0.705101–0.706312 and pos-
itive εNd(t) values of +0.5–+0.9, with two-stage depleted mantle Nd model ages [TDM2(Nd)]
of 1103–1135 Ma (Table S3; Figure 7). These data also resemble the literature data [31]
(Figure 7).
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4.4. Zircon Hf Isotopes

Zircon Hf isotopic compositions for the HSS granitoids are calculated using their
crystallization ages (Table S4; Figure 8). The zircon grains from the HQG and BMW gran-
odiorites exhibit nearly identical but variable Hf isotopic compositions. In detail, the initial
176Hf/177Hf ratios, εHf(t) values, and [TDM2(Hf)] are 0.282581–0.282860, +2.8–+12.7, and
609–1240 Ma for the HQG granodiorite, and 0.282555–0.282775, +2.0–+9.8, and 801–1297 Ma
for the BMW granodiorite (Table S4; Figure 8).
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represents the slab-derived trondhjemite in the NQSZ (unpublished data). The others are the same as
those in Figure 6.
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5. Discussion
5.1. Adakitic Signature Obtained through Partial Melting

Intermediate to felsic rocks with adakitic signatures, e.g., high Sr/Y and La/Yb ratios,
can be generated through or modified by (1) the fractional crystallization of basaltic-
andesitic magmas [14–16], (2) the partial melting controlled by source compositions and
melting conditions [1,9,12,54], or (3) mixing of mantle- and crust-derived melts [17].

The mantle contribution is suggested to be insignificant for the HSS adakitic granitoids
based on the three lines of evidence below. First, field investigations show that MMEs are
locally hosted by the HQG granodiorites with transitional contacts, and have indistinguish-
able mineral assemblages but with higher mode volumes of biotite than the hosts (Figure 2).
This indicates that they are probably biotite aggregates or cumulates [16,40] rather than
mixed products of crust- and mantle-derived magmas [17]. Second, the HSS adakitic grani-
toids including the HQG granodiorite and trondhjemite, and BMW granodiorite [31,32]
show low MgO contents (0.96–1.36 wt%) and Mg numbers (48–51), resembling those of
experimental melts from metabasalts at 1–4 GPa [4,5] and sediment melts at 2–4 GPa [55]
(Figure 9a), precluding an important role of the mantle input through magma mixing [17]
or mantle metasomatism during the magma ascent [56].

Minerals 2021, 11, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 9. Plots of (a) Mg# versus SiO2 and (b) K2O versus Na2O for the HSS adakitic granitoids. Data 
sources: experimental melts from sediments [55] and meta-basaltic rocks at 1‒4 GPa [4,5]; fractional 
crystallization (FC) of arc basaltic magma from [14,15]; others are the same as in Figure 6. Symbols 
are the same as in Figures. 4 and 6. 

To discriminate the partial melting/magma mixing processes from fractional crystal-
lization, graphic models of highly (H) and moderately (M) incompatible elements (DH 
<<0.2‒0.5, H = Rb, K, Th, and La; DM<< 1, M = Nd and Sm) that have been considered as 
one of the most effective and robust tools were introduced [57,58] (Figure 11). The HSS 
adakitic granitoids generally have steep, straight lines in the plots of La/Sm versus La 
(CH/M vs. CH) and a straight line that does not pass through origin 0 in the plot of K2O 
versus Rb (CH1 vs. CH2) (Figure 11). These incompatible element diagrams suggest that 
in terms of incompatible elements, the HSS adakitic granitoids are largely controlled by 
the partial melting/magma mixing process rather than crystal fractionation. Based on the 
observations mentioned above, the HSS adakitic granitoids were probably produced by 
the partial melting of crustal rocks (also see below for discussion). 

5.2. Partial Melting of the Oceanic Crust 
For the partial melting model, the possible candidate includes basaltic protoliths 

from (1) the ancient lower continental crust (LCC), (2) the newly underplated lower crust 
(NLC), and (3) the subducted oceanic crust. Low-Mg adakitic granitoids (ca. 457‒435 Ma), 
including the LGS tonalite, the studied HSS granodiorite–trondhjemite, and the QWS 
granodiorite, have been previously considered as partial melts of the thickened NLC 
[29,31,32,59], which then experienced thinning through delamination to generate the QWS 
MME-bearing high-Mg adakitic granodiorite (ca. 430 Ma) in a post-collisional setting 
[29,31]. Although this model seems plausible and applicable to the HSS adakitic granit-
oids, it has more difficulties than certainties. 

Tectonically, the Paleo–Qilian ocean is suggested to have begun its subduction at ca. 
530 Ma, and to have closed at ca. 445 Ma followed by the continental collision, as indicated 
by the ophiolites, eclogites, and arc basaltic–andesitic lava in the NQSZ [25,35]. Accord-
ingly, the ca. 438‒435 Ma HSS adakitic granitoids, together with the ca. 438 Ma AYG 
trondjemite and ca. 430 Ma QWS granodiorite [6,16], are best explained as a magmatic 
activity in response to continental collision rather than in a post-collisional setting [29,31]. 
In fact, a continuous lithospheric extension and orogenic collapse (e.g., delamination) in 
the NQSZ would not have occurred at >400 Ma, which was responsible for the generation 
of a series of diorite–granodiorite–granite plutons with ages of ca. 400‒360 Ma [60,61]. 

Figure 9. Plots of (a) Mg# versus SiO2 and (b) K2O versus Na2O for the HSS adakitic granitoids. Data
sources: experimental melts from sediments [55] and meta-basaltic rocks at 1–4 GPa [4,5]; fractional
crystallization (FC) of arc basaltic magma from [14,15]; others are the same as in Figure 6. Symbols
are the same as in Figures 4 and 6.

Third, the fractional crystallization model of mantle-derived basaltic–andesitic mag-
mas involving an amphibole-/garnet-dominant mineral assemblage is also unlikely.

The FC model requires tectonically voluminous basic associations derived from the
metasomatized mantle wedge in arc settings or abundant MMEs of cumulate origin hosted
in plutons [14–16]. The HSS adakitic granitoids lack a complete compositional spectrum
from normal arc basic rocks to high Sr/Y intermediate-felsic rocks (Figure 10a) and are
characterized by high SiO2 (67.52–70.37 wt.%) and low to moderate K2O (1.48–3.01 wt.%)
(Figure 4b), distinct from those generated through an FC of arc basaltic parental magmas
that are generally low in SiO2 and middle to high K calc–alkaline [14,15]. On the other hand,
the role of garnet or amphibole in fractionation is insignificant as manifested by the absence
of either mineral (Figure 2) and trends of element concentrations (e.g., La, Dy, and Yb) and
ratios (e.g., Sr/Y, La/Yb, and Dy/Yb) with increasing silica content (Figure 10). Except for
one sample, the HSS adakitic granodiorites show a trend of decreasing Sr/Y, La/Yb and
Dy/Yb with increasing silica content, accompanied by an increase in Dy and Yb. This could
reflect the fractionation of minor plagioclase but not amphibole or garnet as the removal
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of amphibole or garnet would lower the Dy and Yb in the derivative melt. Plagioclase
fractionation is also supported by the wide range of Eu* ratios and their positive correlation
with the Sr concentration (Figure 10d). The Eu* ratio also decreases with decreasing P
(not shown), indicating that apatite fractionation is unimportant in the HSS case (also see
Figure 9d in [16]).
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To discriminate the partial melting/magma mixing processes from fractional crys-
tallization, graphic models of highly (H) and moderately (M) incompatible elements
(DH << 0.2–0.5, H = Rb, K, Th, and La; DM << 1, M = Nd and Sm) that have been consid-
ered as one of the most effective and robust tools were introduced [57,58] (Figure 11). The
HSS adakitic granitoids generally have steep, straight lines in the plots of La/Sm versus La
(CH/M vs. CH) and a straight line that does not pass through origin 0 in the plot of K2O
versus Rb (CH1 vs. CH2) (Figure 11). These incompatible element diagrams suggest that
in terms of incompatible elements, the HSS adakitic granitoids are largely controlled by
the partial melting/magma mixing process rather than crystal fractionation. Based on the
observations mentioned above, the HSS adakitic granitoids were probably produced by the
partial melting of crustal rocks (also see below for discussion).
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5.2. Partial Melting of the Oceanic Crust

For the partial melting model, the possible candidate includes basaltic protoliths from
(1) the ancient lower continental crust (LCC), (2) the newly underplated lower crust (NLC),
and (3) the subducted oceanic crust. Low-Mg adakitic granitoids (ca. 457–435 Ma), includ-
ing the LGS tonalite, the studied HSS granodiorite–trondhjemite, and the QWS granodiorite,
have been previously considered as partial melts of the thickened NLC [29,31,32,59], which
then experienced thinning through delamination to generate the QWS MME-bearing high-
Mg adakitic granodiorite (ca. 430 Ma) in a post-collisional setting [29,31]. Although this
model seems plausible and applicable to the HSS adakitic granitoids, it has more difficulties
than certainties.

Tectonically, the Paleo–Qilian ocean is suggested to have begun its subduction at
ca. 530 Ma, and to have closed at ca. 445 Ma followed by the continental collision, as
indicated by the ophiolites, eclogites, and arc basaltic–andesitic lava in the NQSZ [25,35].
Accordingly, the ca. 438–435 Ma HSS adakitic granitoids, together with the ca. 438 Ma AYG
trondjemite and ca. 430 Ma QWS granodiorite [6,16], are best explained as a magmatic
activity in response to continental collision rather than in a post-collisional setting [29,31].
In fact, a continuous lithospheric extension and orogenic collapse (e.g., delamination) in
the NQSZ would not have occurred at >400 Ma, which was responsible for the generation
of a series of diorite–granodiorite–granite plutons with ages of ca. 400–360 Ma [60,61].

Geochemically, the HSS adakitic granitoids display low K2O concentrations and
K2O/Na2O ratios (0.38–0.85) averaged at 0.55, obviously different from the old LCC-
derived adakitic rocks defined by those in the North China Craton and Dabie orogen [9,12,17]
(Figure 9b). The sodium-rich feature in adakitic granitoids generated in a continental
arc setting has also been explained as a derivation from an NLC [11], which has led
researchers to propose the partial melting model of thickened NLCs for the Neogene
adakitic rocks in Tibet [10]. As shown in Figure 9b, adakitic rocks in Tibet contain both
sodic and potassic types, and the latter also show high K2O with K2O/Na2O ratios >1
that plot in the field of LCC-derived adakitic rocks [10,13]. This suggests a partial melt-
ing of the different components, including either an ancient or a newly underplated
basaltic protolith, in a thickened continental crust setting. However, the HSS adakitic
granitoids, together with other adakitic rocks (e.g., LGS, AYG, and QWS) in the NQSZ,
roughly agree with the classic slab-derived adakites in the circum-Pacific subduction
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zones (http://georoc.mpch-mainz.gwdg.de/georoc/), suggesting their derivation from
an oceanic basaltic slab. Moreover, compared with LCC-derived adakitic rocks, the slab-
derived adakites have systematically higher and more varied Sr/Y coupled with lower
La/Yb in the Sr/Y versus [La/Yb]N diagram [53] (Figure 6b). This is mainly because
(1) the altered oceanic crust usually has a high Sr content, (2) the average La/Yb of the
lower continental crust (5.3) is more than six times higher than that of the average MORB
(0.8), and (3) La is several times more mobile than Yb during plate subduction, such that
the subducted slab has even lower La/Yb [62]. In this respect, adakitic granitoids in the
NQSZ are characterized by a relatively low La/Yb but a variable and high Sr/Y, which
are comparable to classic slab-derived adakites (Figure 6b). This further suggests their
derivation from an oceanic basaltic slab rather than the thickened LCC.

In terms of Sr–Nd isotopes, the HSS adakitic granitoids partly overlap with arc
basaltic lavas in the NQSZ, which has been considered as evidence for the thickened
NLC model [31]. However, it should be noted that the zircon Hf isotopes of the HSS
adakitic granitoids vary in a wide range with eHf(t) values of +2.0–+12.7 (Figure 8), suggest-
ing their derivation from a mixed source rather than a single basaltic protolith ultimately
from an enriched subarc mantle. In addition, comparisons of adakitic rocks, ophiolites,
and arc basaltic rocks in the NQSZ using bulk-rock Sr–Nd and zircon Hf isotope data
provide important insights into the protolith of adakitic rocks. The HSS and other adakitic
granitoids in the NQSZ display isotopes that are significantly less radiogenic than those of
arc high-K and high-Mg calc–alkaline I-type granitoids (Figures 7 and 8), the latter of which
are mainly sourced from the sub-arc lithospheric mantle with continental materials [41].
In the Sr–Nd diagram, the adakitic rocks are obviously different from the enriched arc
basaltic lavas (Cambrian–Ordovician) or the depleted basaltic protoliths from ophiolites,
eclogites, and blueschists. Instead, they define a curved trend between the Qilian MORB
and GLOSS end members, which can be explained as a mixture of basaltic oceanic crust
and sediments (Figure 7). Convincingly, the ca. 450 Ma LGS adakitic tonalites are charac-
terized by abundant inherited cores with old ages of 470–2733 Ma in zircon grains. The
short time interval (<20 Ma) between the formation of adakitic toanlites and deposition
of sediments (<470 Ma) suggests the contribution of subducted sediments to the melting
source region at depths of >40 km for adakitic melts [30]. Therefore, the Sr–Nd–Hf isotope
evidence points to a significant input of a depleted mantle with a sediment contribution
rather than an NLC originating from an enriched sub-arc lithospheric mantle with/without
continental materials. Calculations based on the two-component mixing model of Sr–Nd
isotopes indicate ca. 5–10% and ca. 15–20% of sediment contribution to the AYG [6] and
HSS, respectively.

5.3. Implication for Copper Mineralization in the NQSZ

Porphyry Cu–Au deposits around the world are mostly distributed in active con-
vergent margins, e.g., the circum-Pacific, Paleo–Asian and Tethis–Himalaya metallogenic
belts [63]. Previous studies have shown that high oxygen fugacity and slab melting are two
key factors controlling the formation of porphyry Cu mineralization [20,21,64–66]. Slab
melting is favorable for porphyry Cu mineralization because (1) the contents of Cu, Au,
and S in the oceanic basaltic crust are much higher than those in the LCC and mantle,
which are inherited by the derivative melt, and (2) the oxygen fugacity of the subduction
zone is approximately two orders of magnitude higher than that of the mantle and LCC.
High oxygen fugacity can greatly improve the solubility of sulfur in magma, which is
conducive to the transformation from sulfide in the source to sulfate in the melt, thus
greatly increasing the Cu content in the initial magma. On the other hand, as a moderately
incompatible element, Cu in the melt can be further enhanced during magmatic evolution
as sulfide remains unsaturated in an oxidized magma [21–23].

The HSS and QWS adakitic plutons have been invoked to be associated with porphyry
Cu–Au mineralization [32,33]. In this study, the finding of chalcopyrite in the HQG
granitoids that are overprinted by a greenschist facies metamorphism also support a genetic

http://georoc.mpch-mainz.gwdg.de/georoc/
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link between porphyry Cu (Au) mineralization and adakitic rocks in the NQSZ. However,
the metallogenic potential of the adakitic rocks is still unclear. As mentioned above, recent
studies show that the adakitic rocks in the NQSZ more likely represent partial melts of the
oceanic basaltic slab [6,16,30], which is favorable for porphyry Cu mineralization [32,33].

To further assess the metallogenic potential of these adakitic plutons, we estimate the
oxygen fugacity of the magma using the zircon Ce(IV)/Ce(III) ratio following the method
of [64]. The zircon grains from the HQG and BMW granodiorites have Ce(IV)/Ce(III) ratios
of 64–156 and 32–128, respectively (Table S1). These Ce(IV)/Ce(III) ratios of zircons are
similar to those in the A-type granitic plutons (2–198) that are related to the W–Sn miner-
alization in the Nanling Range [67], but significantly lower than those in the Dabaoshan
Cu-bearing porphyry (300–800) [23,68], suggesting a low magmatic oxygen fugacity. The
reduced nature of the HSS adakitic melt may be related to a small amount of sediment input
(ca. 15–20%) into the melting source as manifested by Sr–Nd isotope modeling. As the form
of sulfur in the melt is controlled by the oxygen fugacity, copper precipitates prematurely
from the magmatic system with the crystallization of sulfide under low-oxygen-fugacity
conditions, which hinders the further enrichment of copper during magmatic evolution
and ultimately the formation of large-scale mineralization.

6. Conclusions

(1) The HSS adakitic pluton was formed ca. 438–435 Ma in response to a continental
collision.

(2) Bulk-rock geochemistry, Sr–Nd isotopes, and zircon Hf isotopes indicate its deriva-
tion from the oceanic basaltic crust with minor contribution of subducted sediments
(ca. 15–20%).

(3) The zircon Ce(IV)/Ce(III) ratio indicates a low oxygen fugacity for the adakitic
melt, which is unfavorable for large copper mineralization.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/min13070892/s1, Table S1: LA-ICP MS zircon U–Pb data for the HSS
adakitic granitoids; Table S2: Major and trace element data for the HSS adakitic granitoids; Table S3:
Whole-rock Sr–Nd isotopic composition for the HSS adakitic granitoids in the NQSZ; Table S4: Zircon
Lu–Hf isotopes for the HSS adakitic granitoids.
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