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Abstract: One method to accelerate carbon sequestration within mine tailings from remote mines
involves the injection of diesel generator exhaust into dry stack tailings. The techno-economic
feasibility of this approach heavily depends on understanding the flow characteristics inside the
perforated injection pipes embedded within the tailings. Two distinctive yet dynamically coupled
transport phenomena were identified and evaluated: (i) gas transport inside the pipe and (ii) gas
injection into the porous body of the tailings. This paper presents two models to investigate these
transport phenomena, a three-dimensional (3D) and a one-plus-one-dimensional (1 + 1)D model.
An experimental investigation of the pressure profile through the injection pipe was carried out
to validate the models at the experimental scale. To apply the (1 + 1)D model to larger scales, the
results were compared with those of the 3D model, as the (1 + 1)D model required significantly
less computational resources and time. To include the effect of the perforations in the pipe on the
pressure profile of the (1 + 1)D model, an analytical fluid velocity profile was developed in relation to
geometric and physical parameters. The performance of the (1 + 1)D model with an impact factor
was then evaluated against the 3D model results for the inlet pressure, pressure profile and gas
outflow distribution under various conditions than those investigated experimentally. The developed
(1 + 1)D model can be used to design an energy-efficient approach for large-scale implementation
with a wide range of desired operating parameters.

Keywords: decarbonized mining; CO2 injection; carbon sequestration; carbon mineralization in mine
tailings; tailing storage facility

1. Introduction

Many mines across the globe are categorized as remote due to their lack of access to the
electric grid or to natural gas pipelines [1]. Most of these mines rely on fossil fuels for heat
and power generation. This dependency on fossil fuels, mainly diesel, causes these mines
to emit substantial amounts of carbon dioxide (CO2) into the atmosphere [2,3]. Increasing
anthropogenic greenhouse gas concentrations contribute to the rise in the global surface
temperature [4]. As a result, there is an increasing global demand for large-scale solutions
to capture, transport, and safely store atmospheric carbon dioxide [5–7]. The sequestration
of carbon dioxide in the form of carbonate minerals offers a long-lasting, stable solution for
carbon capture and storage [8]. This can be carried out through the reaction of CO2 with an
alkalinity source, as found in ultramafic-hosted rocks [9]. These minerals react with carbon
dioxide relatively rapidly and form mineral carbonates when exposed to the surface. These
reactions can occur passively at the surface of mine tailings storage facilities (TSFs) [10,11].
Carbonation rates in ultramafic tailings are highly variable and are limited by several
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factors, including the mineralogy and availability of CO2 and water [12–15]. Field studies
of different ultramafic-hosted mines showed that the CO2 drawdown rates are largely
controlled by the centimeter-scale depth to which CO2 can diffuse, even when reactive
minerals are present [9,16,17]. This means that significant reactivity remains unrealized.
There are proposed technologies for enhancing the carbon dioxide supply to the tailings
to accelerate the carbonation rate [13,18]. A relatively inexpensive and viable solution
is injecting CO2-rich flue gas (~10% CO2 content) sourced from mine power generation
into the tailings [9,19–21]. The unsaturated tailings conditions needed for homogeneous
injection require the tailings to be filtered and stored as dry-stack tailings [22,23]. Flue
gas could be injected into the dry stack TSF through a network of embedded perforated
pipes [24].

Modeling simulations are necessary for optimizing the injection design. A perforated
pipe can be defined as a cylinder with holes that allow for a uniform distribution of flow
throughout the pipe [25,26]. Studies on perforated pipes can generally be categorized
into three types: discrete, analytical, and computational fluid dynamics (CFD) simula-
tions, based on their methodologies to investigate pressure drops and flow [27]. Several
studies have used either energy equations [28] or momentum conservation methods [29]
to investigate the pressure profile in perforated pipes. Acrivos et al. [30] conducted an
extensive experimental and theoretical evaluation by including an empirical alteration
of the Bernoulli equation to estimate the flow distribution and pressure variation in a
perforated pipe. These findings were later simplified by Greskovich and O’Bara [31] with
the assumption of uniform flow through the perforations [32]. Wang [27] explained the
pressure response of perforated pipes by deriving an energy balance of the fluid flow
in the boundary layer and the pipe center (see also [33]). Several studies have focused
on the application of perforated pipes for micro-irrigation applications. Vallesquino and
Luque-Escamilla [34] treated lateral irrigation outflow as a discrete event and employed
Taylor polynomials to calculate flow rates. Maynes et al. [35] proposed a theoretical solution
based on laboratory experiments to calculate the head loss coefficient across a perforated
pipe. Discrete models, also known as network models, have been employed by several
researchers due to their simplicity [36]. In these models, the perforated pipe or manifold
was represented as a combination of several intersections through which fluid traveled.
For each intersection, the conservation equation for mass and momentum was applied and
solved with the iteration of a set of differential equations. At the same time, the analytical
models provided an explicit analytical solution while considering a continuously branched
fluid flow throughout the manifold. Although widely accepted due to their simplistic
approach [29], both discrete and analytical approaches have limitations in terms of their
applicability to complex cases.

The application of CFD models has the potential to solve problems related to perfo-
rated pipes. The researchers in [37] conducted several parametric studies on the hydraulic
performance of a perforated pipe. They developed a numerical model [37,38] to investigate
the hydraulic characteristics of porous pipe underdrains. Minocha et al. [39] employed
three-dimensional (3D) CFD simulations to investigate potential design scenarios to op-
timize the pressure drops in a divided manifold system. Kulkarni et al. [32] performed
3D CFD simulations along with experimental work to investigate the pressure and flow
distribution in pipe and ring spargers to achieve a uniform pressure and flow distribution.
Though the application of CFD has been extremely useful in this research field, it demands
extensive computation resources, which makes it inconvenient for a preliminary analysis
where a significant number of iterations are required.

To the best of the authors’ knowledge, no study has undertaken the design of a large-
scale carbon sequestration system by injecting diesel flue gas into mine tailings through
perforated pipes. Analysing the strengths and weaknesses of each of the approaches men-
tioned earlier, a research framework was developed to obtain a reduced-order numerical
(ROM) model to achieve the most effective solution for the problem concerned. A ROM
provides similar accuracy as 3D CFD models in solving complex scenarios but requires
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significantly less computational resources and time [40]. This study aimed to develop
a (1 + 1)D reduced-order numerical model that could (1) be validated by the results of
an experimental investigation, (2) provide the same accuracy as a 3D finite element (FE)
model for different operating and design parameters and (3) be applied to establish an
energy-efficient large-scale design for injecting flue gas into mine tailings.

2. Methodology
2.1. Conceptual Design

The conceptual design proposed in Figure 1 would require cooling the exhaust with an
exhaust heat recovery system [41–43] and transporting the exhaust from the power plant to
the dry stack TSF through a pipeline (Transport-1). We propose that the exhaust could then
be injected into an array of perforated pipes buried in deposited filtered tailings to ensure
the consistent delivery of CO2. The proposed concept considers dividing the tailings into
a series of blocks with similar dimensions. Each block has an injection pipe buried at its
center, with each pipe having a certain volume of surrounding tailings. Two concurrent
phenomena will occur within the injection pipes: the transportation of the exhaust through
the injection pipes (Transport-2) and the injection of the exhaust into the tailings through
the pipe perforations (Transport-3). Once a layer of tailings has fully reacted, a new layer
of tailings can be built up with a new set of injection pipes.
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Figure 1. Schematic of the proposed carbon sequestration method implemented at remote mines.

In Transport-1 and 2, frictional pressure losses occur due to the viscosity of the exhaust
gas within the respective pipes. During Transport-2, the flue gas outflow creates a momen-
tum loss as the gas exits through the perforations into the tailings leading to a pressure
rise [44]. The total pressure drop in Transport-2 is the net value of the pressure losses
and gains and can be denoted as the transportation pressure losses (TPL). Simultaneously,
in Transport-3, the system is faced with another pressure drop due to the outflow of the
exhaust into the tailings [45]. This can be denoted as the injection pressure loss (IPL). A
compressor, a fan, or a blower will be necessary for flowing exhaust into the tailings and
providing a steady discharge throughout the entire length of the pipe to ensure a homo-
geneous reaction of the tailings with CO2. The major design challenge in the large-scale
implementation of this concept is to reduce the power required to overcome the pressure
drops. The first step to address this challenge is to study the gauge pressure and outflow
behavior of gas injected into a perforated injection pipe embedded in a porous medium.
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The methodology of this study involved an experimental investigation which was
used to validate a 3D FE numerical simulation and a (1 + 1)D ROM. To create the (1 + 1)D
model, the relationship between various perforation arrangements and the pressure profile
along the injection pipe was established through a parameter termed the m-factor. Making
the (1 + 1)D model independent avoids the use of the computationally demanding 3D
numerical model. To evaluate the performance of the (1 + 1)D ROM, the model was
compared against the 3D FE results under different design parameters to establish its ability
to aid independently in selecting an optimal design.

2.2. Perforated Injection Experimental Design

A meter-scale injection experimental set-up was built to validate the developed
(1 + 1)D model. This set-up comprised a perforated injection pipe (1.10 m in length and
0.029 m in diameter) nested within a larger, perforated cylinder (1.024 m in length and
0.15 m in diameter; shown in Figure 2). The perforations of the injection pipe and the exter-
nal cylinder were covered with a gray, breathable fabric membrane. Along the injection
pipe, eight precise, low-noise Bosch Sensortec BMP 388 pressure sensors (labeled as S1–S8 in
Figure 2b; relative accuracy of ±8 Pa) were installed in approximately equal intervals. The
sand was compacted in the larger cylinder, around the injection pipe, with the membrane
retaining the sand from exiting through the external perforations and from entering inside
the injection pipe. The sand was used as the porous material as it is more homogenous
and has a permeability range similar to the tailing’s permeability (10−9–10−14m2), as men-
tioned in reference [24]. Two particle size distributions (PSD) of sand were used to achieve
different permeabilities, termed coarse sand (CS; <2 mm and >425 µm) and fine sand (FS;
<425 µm). The PSD of the sand was assessed through the application of sieving and laser
diffraction, with further details and results included in the Supplementary Information (SI).
The cylinder was filled first with 26 kg of CS at 3% moisture content and then with 32 kg of
FS at 5% moisture content. As the column was filled, the sand was compacted every ~3 kg.
The physical conditions of the sand in the cylinder were simulated in a separate column
which allowed the permeability to be measured. Once full, the ends of the large cylinder
and injection pipe were sealed with epoxy.
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Figure 2. Experimental set-up for studying the outflow from a perforated pipe into a porous medium:
(a) entire experimental set-up; and (b) perforated pipe.

The system was connected to a compressed air cylinder, and a MASS-VIEW MV-306
flow regulator (accuracy of ±2% of the reading for >100 LPM and ±1% of the reading +
0.5% of full scale for <100 LPM) was used to control the flow rate into the injection pipe.
Gas flowed through the perforations of the injection pipe, into the porous medium of
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the sand and out through the perforations in the larger cylinder. Air was injected into
the CS at three flow rates: 100, 110 and 120 LPM. For the FS, the injection rates were 70,
85 and 100 LPM. Each injection rate was conducted twice to examine the experimental
repeatability. The entire surface of the cylinder discharged at ambient pressure (p0), and any
air entrapment was prevented by the well-distributed external perforations. The pressure
sensors were used to measure the gauge pressure along the injection pipe. The real-time
pressure monitoring and data collection were accomplished by a Raspberry Pi 3B+.

In measuring both the flow rate and pressure values, the experimental errors were
considered, and the ranges for these two parameters were calculated with the following
equations:

p = pm ± pe (1)

Q = Qm ±Qe (2)

Here, pm and Qm represent the measured values for the pressure and the flowrate,
respectively and pe and Qe are the associated error range for each measurement due to the
sensitivity accuracy of the devices were used. Combining the measured values with the
error range, we derived the actual values of the pressure and the flowrate, denoted by p
and Q, respectively.

Permeability Measurement

A centimeter-scale permeameter was used to measure the permeability of the two
sand samples at the same moisture content and density conditions as existed in the m-
scale injection pipe set-up. The potential variability in permeability for both samples
from different density conditions (1.4× 10−3–1.8× 10−3 kg/m3) was also assessed. The
permeameter consisted of a polycarbonate column manufactured by W.A. Hammond
Drierite, with two Bosch Sensortec BMP 280 pressure sensors (relative accuracy of ±12 Pa)
used to measure the gauge pressure at the column inlet and outlet (Figure 3). Sand at the
targeted moisture content was introduced and compacted to the targeted bulk density in
regular intervals. Test conditions can be found in the Supplementary Materials. Air was
injected using a Bronkhorst EL-Flow Prestige mass flow controller at flow rates ranging
from 0.5 to 8 LPM. From the pressure drop between the inlet and outlet, the permeability
of the sand was calculated using the following equation:

k =
2QµLp0

A
(

p2
in − p2

out
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Here, A
(
= 0.0025 m2) is the cross-sectional area of the column, L is the length of the

column filled with sand, µ
(
= 1.813× 10−5 Pa.s

)
is the dynamic viscosity of air, and Q is

the flow rate. p0 is the ambient pressure, and pin and pout are the measured pressures (in
Pa) at the inlet and outlet of the column, respectively. Three flow rates were used per test,
with the average permeability from the three tests being taken as the final value.
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2.3. 3D Model Development

To model the experiment, a 3D model was developed that coupled the fluid flow in
Transport-2 and 3 and solved the pressure distribution simultaneously. The governing equa-
tions describing the turbulent flow in the pipe (Transport-2) in terms of the time-averaged
and fluctuating components of the velocity field (Ui, u′i; i = 1− 3) are described in the form
of the Reynolds averaged Navier–Stokes equations. For steady-state incompressible flow
of Newtonian fluids, this equation can be written as follows:

ρUj
∂Ui
∂xj

=
∂

∂xj

[
−pδij + µ

(
∂Uj

∂xi
+

∂Ui
∂xj

)
− ρu′iu

′
j

]
(4)

In this equation, ρ is the density of the fluid, µ is the viscosity of the fluid, p is the
pressure, and −ρu′iu

′
j is the Reynolds stress tensor, which corresponds to the turbulent

fluctuations in the flow field. To close this problem and solve the momentum equation
given in Equation (4), the Reynolds stress tensor should be written in terms of the time-
averaging components of the velocity vector using a turbulence model. In this study, the
Algebraic yPlus model, which is based on Prandtl’s mixing-length theory, was used to
validate the numerical solution. This model was found to be less sensitive to the mesh size
and resulted in considerably lower computation times compared to other options.

The equation governing the flow of a fluid in a porous medium (Transport-3) follows
the Brinkman–Forchheimer representation given as [46,47]:

∇p = −µ

k
u +

−
µ∇2u− cFk−

1
2 ρu|u| (5)

The first term on the right-hand side in Equation (5) is Darcy’s law, the second term
is the Brinkman extension, which accounts for the viscous forces in the porous medium,
and the last term is the Forchheimer extension, which accounts for the turbulent flow
condition [48]. Here,

−
µ is the effective viscosity at the wall, which is assumed to be the

same as µ, and cF is a constant. For the simulations conducted in this research, the effect of
inertial forces has been considered to be insignificant ( Re < 1→ c F = 0).

The FE method was used to solve Equations (4) and (5) concurrently for the flow
of a fluid in a perforated pipe separated by a thin interface (pipe wall) from a porous
medium. The geometry of the domain and the boundary conditions implemented in the
FE simulations are shown in Figure 4. The symmetry of the model allows the simulations
to run over a quarter of the geometry. At the outer boundary of the geometry (r = rout),
the pore pressure is set to the ambient pressure (p = p0). Continuity conditions were
satisfied at the surface of the pipe where the perforations are located, and the Dirichlet
boundary condition was assigned at the fluid–pipe interface. The thickness of the pipe
was much smaller than the entire geometry and was therefore neglected in the simulations.
A mesh independency analysis was carried out to ensure that the numerical results were
independent of the mesh configuration.

2.4. (1 + 1)D Model Development

To accelerate the modeling iterations needed to select an optimal design, a (1 + 1)D
numerical model is proposed that can simulate the experimental results and match the
3D model results. The developed model carries forward the calculations for the flow field
iteratively through the direction of the flow (along the pipe) and concurrently towards
the direction of injection (to the porous media). Therefore, the model is referred to as the
(1 + 1)D model.

The developed numerical model divides the entire length of the pipe (L) into nz
sections of equal length [si = sz(i = 1, 2, . . . , n)], with each section receiving inputs from the
previous one. sz is the center-to-center distance between the perforations in the longitudinal
direction and is considered to be the smallest unit of discretization along a pipe of length
L(= nzsz). The discretization used in the (1 + 1)D ROM is shown in Figure 5. Qi is the
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amount of exhaust transported through the inflow into the ith section; ∆Qi is the amount
of exhaust injected into the tailings (outflow) from that perforated section; and Qi+1 is the
flow transported from the ith section to the following section.
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In Transport-2, the friction between the pipe wall and the flue gas is active along each
section. The Darcy–Weisbach equation [49] is used to estimate the contributions of frictional
pressure losses (∆pdi) to the TPL from each section:

∆pdi = −sz

(
ρ

2dh

)(
Qi
Ain

)2
λi (6)

In this equation, dh is the hydraulic diameter of the pipe, which is equal to the diameter
of a circular pipe; λi is the Darcy–Weisbach friction coefficient [49] corresponding to the ith
section, which in the case of turbulent flow is given as follows:

λi = 0.0055

1 +
(

2× 104 δ

2rin
+

106

Rei

) 1
3

 (7)

Additionally, laminar flow can be written as follows:

λi =
64
Rei

(8)

Here, δ is the absolute roughness of the pipe, rin is the inner radius of the injection
pipe, Ain

(
= πr2

in
)

is the cross-sectional area of the pipe inlet, and Rei(= (2rinρQi)/(µAin))
is the Reynolds number for the ith section.

For Transport-3, the perforations drilled on the surface of the injection pipe were
numerous enough to guarantee a smooth distribution of flow from the peripheral surface of
the pipe. Note that this assumption does not necessarily result in a consistent outflow into
the porous medium, as the outflow at each section depends on the local pressure difference
between the inside and outside of the pipe, along with the permeability of the surrounding
porous medium. Based on the Reynolds number, the flow regime in the porous media can
be classified into laminar (Re < 1), transitional (1 < Re < 10), and turbulent (Re > 10) [47].
In the current configuration, the ratio of the flue gas injected into the tailings surrounding
the injection pipe is in the laminar flow regime (viscous force dominated), and the inclusion
of the Brinkman Equation becomes valid. The injection of exhaust into the porous medium
through the section has been calculated by adapting Darcy’s law for radial coordinates in
the following equation [50]:

∆Qi =

(
pgi − ∆pdi/2

)
sz

α
(9)

Here, α depends on the perforation arrangement applied to the injection pipe and its
impact on the pressure profile through the pipe. When the impact of the perforations is
negligible, the following equation can be applied:

α =
µ

4k

{
2
π

ln
(

rout

dh

)}
(10)

In this equation, pgi is the gauge pressure in the ith section that is iterated from the
(1 + 1)D model to overcome the coupled TPL and IPL.

When the impact of the perforation arrangement of the injection pipe affects the
pressure profile, α must be determined in one of two ways. The first method is to use the
results from the 3D FE model as an input for the (1 + 1)D model, as shown in the following
equation:

α =
p′L
Q

(11)

where p′ is the pressure at the mid-perforation, which was obtained from the 3D FE
simulations developed in Section 2.2.
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The second method is to determine the value of p′ by correlating the value of a param-
eter, termed the m-factor, to different perforation arrangements. This method would enable
the (1 + 1)D model to operate independently from the 3D FE model and is accomplished
through the following process.

The perforation arrangement affects the pressure profile because it can cause non-
uniform flow patterns as the gas first enters the porous medium (see Figure 6). This region
(also denoted as Region 1 or the transition zone) extends to approximately∼ s/2 within the
porous domain for all perforation arrangements and corresponds to significant pressure
drops following injection of the fluid into the tailings. Note that in this case, the center-to-
center spacings are equal (sz = sc = s). Further within the porous domain, the flow is more
uniform, and this is denoted as Region 2 or the smooth zone. The transition zone occupies
the domain defined by rin ≤ r ≤ rint(= rin + s/2), and the smooth zone occupies the
region where rint ≤ r ≤ rout. The following representation of the radial velocity accounts
for the abrupt change in the pressure profile of Region 1:

u(1)
r (r) = Q

2πrL +
[

Q
Ap
− Q

2πrL

][
1−

(
r−rin

s
2

)m]
+m

[
Q
Ap
− Q

2πrint L

](
r−rin
s/2

)(
r−rin
s/2 − 1

)
; rin ≤ r ≤ rint

(12)
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medium.

For Region 2, it takes the following form:

u(2)
r (r) =

Q
2πrL

; rint ≤ r ≤ rout (13)

In Equation (12), Ap

(
= πncnzr2

p

)
is the total area of the perforations, nc is the number

of perforations on the circumference of the pipe, nz is the number of perforations along the
pipe direction, and rp is the radius of the perforations.

Equation (12) is a power function, and m (m-factor) is a value that is dependent on
the geometry of the perforations and the specific operating parameters. Equations (12)
and (13) account for the continuity of flow variables (p and ur) and their derivatives at
the interface of the two regions (r = rint). Here, the effect of the tangential and axial
velocities (due to the presence of perforations) on the pressure loss in the porous medium
is accounted for by only one velocity component, as represented in Equation (12). By
substituting Equations (12) and (13) separately in Equation (5) and integrating with respect
to the designated range of r, one can find a closed-form relation for pressure in regions 1 and
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2, respectively. By solving Equation (5) for m and making it equal to the mid-perforation
pressure obtained from the 3D FE solution for different perforation arrangements, one can
correlate the value of m with other non-dimensional variables that describe the perforation
arrangement and geometry of the design. Having made the m-factor an independent
variable, it is introduced to the (1 + 1)D model as an input to describe the transport
characteristics of the fluid into the porous domain from the perforated pipe.

Transport-2 and 3 can now be considered together as the processes are interrelated.
Due to the momentum loss from the outflow through the perforations, pressure recovery
(rise) occurs from one end of the perforation to the other. As the outflow contains the lower
energy fluid from the boundary layer compared to the flow in the middle of the pipe, a
pressure rise co-occurs with the friction effect [27]. The following equation [32] has been
employed to iterate the pressure recovery (∆pri

) for each pipe section:

∆pri
= k′iρ

(
v2

i − v2
i+1

)
(14)

In this equation, k′i is the momentum recovery factor that depends on the inflow and
outflow velocities of the ith section (see Figure 5) and is iterated in each section by using
the following equation [51]:

k′i = α + χ

(
v2

i − v2
i+1

v2
i

)
(15)

The values of α and χ depend on the pipe length to the pipe diameter ratio and have
been iterated for each section [51]. Finally, for the (i + 1)th section, we have:

Qi+1 = Qi − ∆Qi (16)

pgi+1 = ∆pdi
+ ∆pri

(17)

3. Results and Discussion
3.1. Validation of the Numerical Models
3.1.1. Experimental Results

Figure 7 shows the gauge pressures along the injection pipe for duplicate tests of
air injection at three flow rates per sand sample. The results include the errors in the
sensitivity of the pressure sensors and the flow controller. Measured gauge pressures
were consistent with each other along the length of the pipe and were consistent between
replicate experiments. The FS, having a lower permeability, recorded the highest gauge
pressures, yielding average pressures of 227, 196 and 153 Pa for injection rates of 100, 85
and 70 LPM, respectively. The CS yielded pressures of 40, 37 and 33 Pa with respective
injection rates of 120, 110 and 100 LPM.

The measured permeabilities of the CS and FS at the physical conditions of the m-
scale experiments were 3.2× 10−10 m2 and 4.8× 10−11 m2, respectively. Coarse-grained
materials yield larger pores, which enable fluid transport compared to the small pore spaces
of finer-grained materials. It was recognized that despite best efforts, the permeability of the
sand within the m-scale apparatus would be heterogeneous and not accurately represented
by the cm-scale permeameter measurement. The variability of the permeability of the sand
at different degrees of compaction resulted in a range of permeability values, as shown in
Figure 8. The CS’s permeability was as high as 3.8 ×10−10 m2 when loosely compacted
and as low as 1.3 ×10−10 m2 when densely compacted. Likewise, the FS varied from 1.3 to
5.8 ×10−11 m2.
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Figure 8. Comparison between the measured permeability range of the sand samples and the
predicted permeability range from the (1 + 1)D model results.

3.1.2. Comparison of the Experimental and Numerical Results

The experimental gauge pressure measurements along the pipe were compared with
the results from the 3D FE and the (1 + 1)D model simulations using the sand’s permeability
and injected flow rates (Figure 7). For all of the experiments, the results obtained from both
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the 3D and (1 + 1)D numerical models achieved an acceptable agreement with the experi-
mental findings. Both models produced near identical gauge pressures that were uniform
along the length of the injection pipe. The average difference between the experimental
and numerical results was less than 6%, validating the developed numerical models for
further use. However, a few individual experimental gauge pressure values at different
points along the injection pipe were inconsistent with the modeling results (for example,
see S2 in the FS at 100 LPM during test 1). This could be due to heterogeneous compaction,
which promotes the potential for having a nonuniform permeability inside the cylinder,
whereas the (1 + 1)D and 3D numerical models use a uniform permeability as the input.

To determine whether the variability in the sand’s permeability (permeability test
range in Figure 8) could account for the individual sensors not matching the numerical
model results, the pressure data from all sensors were used as an input for the (1 + 1)D
model to back-calculate the permeability that would cause the observed gauge pressures.
This process resulted in two permeability ranges, from the minimum to the maximum,
from the eight sensor values for each test. Figure 8 shows the numerical model values
compared to the ranges derived from the centimeter-scale permeameter tests.

The calculated permeability ranges derived from the numerical model for each flow
rate are nearly identical for both the FS and CS. Furthermore, these ranges fit well within
the measured permeability ranges for the FS. However, for each flow rate in the CS, the
error bar on the calculated permeability ranges from the numerical model are slightly
higher than the measured permeability range. However, the calculated permeability value
itself is within the measured range. Therefore, the variability seen in the experimental
results can be accounted for by the heterogeneity of the sand’s permeability. This validates
the ability of the (1 + 1)D numerical model to estimate the outflow from an injection pipe
into a porous medium.

3.2. Progression of the (1 + 1)D Reduced-Order Model

Having validated both the 3D FE and (1 + 1)D models, the aim was to make the
(1 + 1)D model independent. The relationship between the perforation arrangement on the
injection pipe and the pressure profile was determined from the 3D FE model and used
to define the m-factor for the (1 + 1)D model. Using the 3D FE model, the relationship
between the perforation arrangement and the m-factor was determined and analysed to
understand which design parameters impact the m-factor. With the m-factor value related
to design parameters, the (1 + 1)D model can be used independent of the 3D FE model.
Note that for all 3D FE simulations, the center-to-center distances of the perforations were
equal along the circumference and axial direction of the pipe (sz = sc = s).

3.2.1. Impact of Design Parameters on the m-Factor

Five parameters were identified as potentially having a significant role in the value of
the m-factor. The effects of these parameters on the value of the m-factor were studied by
varying each while holding the others constant. A visual presentation of the cases studied
in this paper is shown in Figure 9. These parameters, and the degree to which they varied,
were as follows: the permeability (k; 10−9–10−12 m2), inlet flow rate (Q; 25–300 L/min),
perforation arrangement (including the number of perforations: nc; 4–10 or nz; 44–110), the
perforated area ratio of the pipe (Ar; 10%–60%), and the ratio of the thickness of the porous
domain to the injection pipe diameter (rr; 1–30).
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Figure 9. Visual representation of the cases studied: (a) variation in the perforation arrangement for
a constant perforation ratio, (b) variation in the perforation ratio for a fixed perforation arrangement,
and (c) cross-section of the system and the definition of rr.

Note that when the perforation density increased while the total perforated area was
kept the same, the size of the perforation (rp) was reduced. The parameter range was chosen
based on typical tailings permeabilities, physical constraints from the size of the system,
and by considering what was physically possible. The default values for each parameter
were chosen such that the permeability was equal to 4.8× 10−11 m2, the inlet flow rate
was 100 L/min, the perforation arrangement had 4 perforations around the circumference
(nc = 4) and 44 perforations along the axial length of the pipe (nz = 44), the radius of the
perforations resulted in 30% of the pipe surface being perforated (Ar = 0.3), and the ratio
of the porous domain thickness to the injection pipe diameter was five (rr = 5).

Figure 10 shows the results from the 3D FE model for the required m-factor to be used
as an input for the (1 + 1)D model. The m-factor was found unaffected by the change in the
permeability of the porous media or by the change in the inlet flow rate when larger than
50 L/min. Cases above 50 L/min were related to transitional and turbulent flow regimes
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through the pipe, with Reynold’s numbers larger than 2000 and 4000, respectively. The
results showed a slightly higher m-factor for the lower flow rate of 25 L/min where the
transition zone is in the laminar pipe flow regime. However, the impact of the pipe flow
regime on the variance of the m-factor was overall negligible.
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Figure 10. Effect on the m-factor from changes in the: (a) permeability, (b) inlet flow rate,
(c) perforation arrangement, (d) injection pipe perforated area, and (e) thickness of the porous
domain.

The m-factor was affected by changes in the perforation arrangement, perforation
area, and thickness of the porous domain. The trend for the perforation arrangement and
the porous domain thickness was that the m-factor decreased as each of these parameters
increased. For the perforated area, the m-factor reaches a maximum value of 20% and
gradually decreases as the perforation ratio of the pipe increases further. Values below 20%
result in m-factors only slightly lower than the local maximum.
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3.2.2. Establishing Dimensionless Correlations between Design Parameters and m-Factor

From the 3D FE simulations, the value of the m-factor was found to be dependent
on the perforation arrangement of the injection pipe [s, and (nc or nz)], the ratio of the
perforated area to the total surface area of the pipe (Ar), and the ratio of the porous domain
to the size of the injection pipe (rr). To independently relate the m-factor value to the design
parameters, two of these variables were combined into a dimensionless number, β, the
ratio of the total perforated area ( Ap

)
to the area of the cylindrical surface confining the

transition zone (β = Ap/2πrintL). The m-factor was then correlated with β and rr using
the 3D FE model. To do so, four different perforation schemes were used: [nc = 4 (or
nz = 44), nc = 6 (or nz = 66), nc = 8 (or nz = 88), and nc = 10 (or nz = 110)]. For each of
these arrangements, different perforation ratios (Ar = 0.1, 0.2, . . . 0.6) and porous domain
thicknesses (rr = 1, 5, 10, 15, . . . 30) were considered. In total, one hundred sixty-eight
design scenarios were used with various values for β and rr. The 3D Fe model was adapted
for each of those scenarios. For every value of rr, twenty-four values of m-factor were
plotted against the associated values of β. To approximate a smooth curve through all
the values of m-factor at a specific value of rr, the B-Spline interpolation of β versus the
m-factor was conducted. For different porous domain thicknesses, the values of m-factor
against β are shown in Figure 11.

Minerals 2023, 13, x FOR PEER REVIEW 16 of 26 
 

 

to the size of the injection pipe (𝑟𝑟). To independently relate the 𝑚-factor value to the de-

sign parameters, two of these variables were combined into a dimensionless number, 𝛽, 

the ratio of the total perforated area (𝐴𝑝) to the area of the cylindrical surface confining 

the transition zone (𝛽 = 𝐴𝑝 2𝜋𝑟𝑖𝑛𝑡𝐿⁄  ). The 𝑚 -factor was then correlated with 𝛽  and 𝑟𝑟 

using the 3D FE model. To do so, four different perforation schemes were used: [𝑛𝑐 = 4 

(or 𝑛𝑧 = 44 ), 𝑛𝑐 = 6  (or 𝑛𝑧 = 66 ), 𝑛𝑐 = 8  (or 𝑛𝑧 = 88 ), and 𝑛𝑐 = 10  (or 𝑛𝑧 = 110 )]. 

For each of these arrangements, different perforation ratios (𝐴𝑟 = 0.1, 0.2, …  0.6) and po-

rous domain thicknesses (𝑟𝑟 = 1, 5, 10, 15, …  30) were considered. In total, one hundred 

sixty-eight design scenarios were used with various values for 𝛽 and 𝑟𝑟. The 3D Fe model 

was adapted for each of those scenarios. For every value of 𝑟𝑟, twenty-four values of 𝑚-

factor were plotted against the associated values of 𝛽. To approximate a smooth curve 

through all the values of 𝑚-factor at a specific value of 𝑟𝑟, the B-Spline interpolation of 𝛽 

versus the 𝑚-factor was conducted. For different porous domain thicknesses, the values 

of m-factor against 𝛽 are shown in Figure 11. 

 

Figure 11. Range of m-factors for different porous domain thicknesses and injection pipe perforation 

schemes. 

These results indicate that for all values of 𝛽  greater than 0.15, the 𝑚 -factor de-

creases with an increase in 𝑟𝑟 . For values less than 0.15, the 𝑚 -factor only decreases 

slightly. This means that with an increase in the size of the porous domain compared to 

the injection pipe diameter, the impact of the perforations on the pressure profile dimin-

ishes as the value of m goes to zero. For all values of 𝑟𝑟, the maximum 𝑚-factor value 

occurs when 𝛽 is between 0.1 and 0.2. Necessary boundary conditions have been added 

from the input parameters to Figure 11 based on what is physically and economically fea-

sible (𝑟𝑟 𝑚𝑖𝑛= 1; 𝛽𝑚𝑖𝑛 = 0.067 and 𝛽𝑚𝑎𝑥 = 0.59). The effect of the 𝑚-factor on the pressure 

profile of an injection pipe becomes negligible for values less than 0.05. This implies that 

in the lower bound of the graph, the velocity of the flow in the entire porous domain is 

analogous to the velocity profile represented by Equation (13). Using this graph to deter-

mine the 𝑚-factor as an input for the (1 + 1)D ROM decouples this model from the 3D FE 

model, thereby saving significant computational resources and time. 

  

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65

m
-f

ac
to

r

β

       = 1

       = 5

       = 10

       = 15

       = 20

       = 25

       = 30

rr

rr

rr

rr

rr

rr

rr

Negligible effect of 

m-factor (perforations)N
o

n
v

ia
b
le

 (
to

o
 s

m
al

l)
 

p
er

fo
ra

ti
o
n
s

P
h

y
si

ca
ll

y
 i

m
p

ra
ct

ic
al

 d
es

ig
n

(c
o

m
p

ro
m

is
ed

 p
ip

e 
st

re
n

g
th

) 

Minimum feasible value of rr

Figure 11. Range of m-factors for different porous domain thicknesses and injection pipe perforation
schemes.

These results indicate that for all values of β greater than 0.15, the m-factor decreases
with an increase in rr. For values less than 0.15, the m-factor only decreases slightly. This
means that with an increase in the size of the porous domain compared to the injection pipe
diameter, the impact of the perforations on the pressure profile diminishes as the value of
m goes to zero. For all values of rr, the maximum m-factor value occurs when β is between
0.1 and 0.2. Necessary boundary conditions have been added from the input parameters to
Figure 11 based on what is physically and economically feasible (rrmin= 1; βmin = 0.067 and
βmax = 0.59). The effect of the m-factor on the pressure profile of an injection pipe becomes
negligible for values less than 0.05. This implies that in the lower bound of the graph,
the velocity of the flow in the entire porous domain is analogous to the velocity profile
represented by Equation (13). Using this graph to determine the m-factor as an input for
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the (1 + 1)D ROM decouples this model from the 3D FE model, thereby saving significant
computational resources and time.

3.3. Evaluation of the (1 + 1)D Model’s Performance

Having made the (1 + 1)D model independent from establishing the relationship
between the m-factor and the porous domain thickness and perforation arrangement, the
performance of the (1 + 1)D model was compared with the results obtained from the 3D FE
model. For this analysis, three parameters were selected upon which to evaluate the model
results: the pressure at the injection pipe inlet (pin), the pressure throughout the injection
pipe, and the outflow distribution throughout the injection pipe.

3.3.1. Inlet Pressure

The pressure at the inlet of the injection pipe is a critical parameter that will be used
to determine the power and energy requirements to inject the gas, which will impact the
capital cost required for the pressurization equipment. Again, the permeability, inlet flow
rate, perforation arrangements, perforated area of the pipe, and the ratio of the porous
domain thickness to the injection pipe diameter, were all varied in the analyses. Figure 12
shows the inlet pressures obtained from the (1 + 1)D ROM and 3D FE numerical models.

For each case, the inlet pressure estimated by the (1 + 1)D model is nearly identical
to the results of the 3D FE model but requires significantly less time and resources. The
most variability occurs when the perforation density is changed; however, the difference
is still minor. The inlet pressure increases with lower permeabilities, higher injection
rates and greater porous domain thicknesses. Permeability exerts a linear control on the
injection pressure and has the largest impact relative to other factors. Likewise, the injection
rate increases linearly with the injection pressure, while for the porous domain thickness,
the injection pressure levels off as the porous domain size increases. Additionally, the
inlet pressure decreases as the perforation density and perforation area increase. Both
these factors appear to reach an asymptote implying the largest impact is seen within the
investigated parameter range.

3.3.2. Pressure Profile throughout the Injection Pipe

The (1 + 1)D model can estimate the pressure along the injection pipe by considering
the concurrent effects of friction, momentum recovery, and the injection of gas through
the perforations. The profile of the flue gas pressure is crucial for an optimum design to
ensure uniform exposure of the porous medium to CO2. A comparison is made between
the pressure profile along the pipe obtained from the (1 + 1)D model and the 3D FE results
in Figure 13. For this analysis, for each parameter, a minimum and maximum value
were analysed. The results for the pressure profile obtained from the (1 + 1)D model are
in excellent agreement with the 3D FE results for every case. The pressure distribution
through the pipe is largely consistent regardless of the permeability, injection rate and
porous domain thickness. With increases in the perforation density and area, the pressure
becomes higher the further from the injection point.

3.3.3. Outflow Distribution

A uniform outflow from the injection pipe allows for carbon sequestration to occur
throughout the entire tailings block in a consistent manner. The outflow for the same
design parameters as the pressure profile cases were analysed. The length of the pipe was
discretized into sections. For each section, the outflow was calculated (using Equation (9))
and shown as a relative value compared to the average outflow over the length of the pipe
(Figure 14).
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Figure 12. Comparison of inlet pressures obtained from the 3D FE and the (1 + 1)D numerical model
at different operating variables: (a) permeability; (b) inlet flow rate; (c) perforation arrangement;
(d) perforation ratio; and (e) size of the porous domain. The blue diamond and red square shaped
markers represent the 3D FE and (1 + 1)D results, respectively.

Ideally, the outflow should remain ~1 throughout the length of the pipe to ensure a ho-
mogeneous outflow distribution. The outflow was found to be almost constant throughout
the length of the pipe for most of the cases examined in this section. A slight trend can be
observed for the highest and lowest permeability values where the outflow increases along
the length of the pipe. Additionally, the 3D and (1 + 1)D model results differ the most here,
but by less than 5%.
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Figure 13. Comparison of the pressure profile along the injection pipe obtained from the 3D FE
and (1 + 1)D numerical models at different operating variables: (a) permeability, (b) inlet flow
rate, (c) perforation arrangement, (d) perforation ratio, and (e) size of the porous domain. The
diamond-shaped markers and dashed lines represent the 3D FE and (1 + 1)D results, respectively.
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Figure 14. Comparison of the outflow distribution obtained from the 3D FE and (1 + 1)D numerical
models under different operating parameters: (a) permeability, (b) inlet flowrate, (c) perforation
arrangement, (d) perforation ratio, and (e) size of the porous domain. The diamond-shaped markers
and dashed lines represent the 3D FE and (1 + 1)D results, respectively.

3.4. Application of the (1 + 1)D to an Optimal Design

Having shown that the (1 + 1)D and 3D model results match for the inlet pressure, the
pressure profile, and the outflow distribution, the developed (1 + 1)D model is therefore
reliable and can be applied to the selection of an optimal design. The ultimate objective
of this study was to optimize the pressure profile within the embedded perforated pipes
to homogeneously supply flue gas for the carbon to be sequestered by carbonate mineral
formation in the tailings. An optimum energy design requires an optimum pressure design.
The results for the pressure at the pipe inlet from the 168 design scenarios were tabulated
in the form of a heat map, as shown in Figure 15a. As a reminder, the injection flow rate
was 100 LPM, and the permeability of the porous medium was 4.8 × 10−11 m2. Using the
model, a similar heat map could be produced for different injection rates or permeabilities.
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Figure 15. Heat maps: (a) inlet pressure variation for different perforation arrangements and porous
domain sizes, and (b) difference in the inlet pressure calculations with and without considering the
effect of the perforation arrangement.
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From the heat map, we can observe that for any perforation arrangement with a
certain perforation ratio, the inlet pressure keeps increasing as the porous domain thickness
increases. In other words, higher pressures are required for injection into larger porous
domains. On the other hand, the inlet pressure starts to decrease with an increase in
the perforation surface area for a certain perforation arrangement. For example, the
inlet pressure for the case with a 20% perforation area designated as C6-Z66-A20-R1 is
102 Pa. This value drops by 28% to 74 Pa when the perforation area is increased to
50%. Additionally, with the same perforation area, the inlet pressure is lower for denser
perforation arrangements. For instance, the inlet pressure for the case designated as C4-Z44-
A40-R5 is 193 Pa and decreases by 6% to 182 Pa when a denser perforation arrangement of
C10-Z110-A40-R5 is applied. However, it is important to note that these effects are relatively
smaller for higher values of A and rr. From a design perspective seeking to reduce the
injection pressure and cost, the major controls are to be found in minimizing the porous
domain size and maximizing the perforation area. Additionally, a denser perforation
arrangement may have a minor effect on reducing the injection pressures further.

The perforation arrangement has a significant effect on the pressure profile and energy
requirements of the injection operation. Figure 15b provides the heat map for the difference
in the inlet pressure calculation that occurs when the effect of perforations determined
by the m-factor was included or excluded. This figure shows when the m-factor must be
included for the modeling results to be reliable in calculating the pressure profile of the
perforated injection pipes. The inlet pressure difference decreases as the porous domain
thickness, perforated surface area, and perforation arrangement density all increase. For
example, in the case of the C6-Z66-A20-R10 configuration, the exclusion of the impact of
the perforation could lead to a 16% error (under-designed) in the inlet pressure calculation.
This error decreases to 9% when the porous domain thickness increases by two and a half
times in the C6-Z66-A20-R25 configuration. With a denser perforation scheme such as C6-
Z66-A60-R10 or C8-Z88-A40-R25 configuration, this error reduces to 2%. By using both the
heat maps in Figure 15a,b, when the inclusion of the m-factor is needed can be determined,
and the required injection pressure can be minimized, guiding toward a cost-effective and
efficient design.

4. Conclusions

• The large-scale implementation of CO2 injection into mine tailings for carbon seques-
tration requires an accurate understanding of the fluid flow to design the operation
economically.

• A 3D FE model and a (1 + 1)D ROM were developed in this study to assess injection
pressures and gas outflow. An experimental investigation was conducted, and the
experimental and analytical results were compared to establish the validity of the
models. Upon this validation, the effort was made to develop the (1 + 1)D model as it
required significantly less computational resources and time than the 3D FE model.

• A variable called the m-factor was introduced, and its values were calculated for a
wide range of feasible operating and design parameters to correlate the impact of the
perforation arrangement on the pressure profile.

• The (1 + 1)D model was compared with the 3D FE model and was found to perform
consistently well in estimating the behavior of the gauge pressure through the perfo-
rated pipe, the pressure at the pipe inlet, and the outflow through the perforations
into the surrounding porous tailings.

• Validation of the model with the experimental and FE results established its viability
for use in large-scale injection designs. Finally, the developed (1 + 1)D ROM was
employed to establish a framework for constructing optimum design cases from an
energy and pressure perspective.

• Future work will focus on developing a cost model for optimal design scenarios se-
lected from the (1 + 1)D model results. Optimal designs require the injection pressures
and necessary power requirements to be minimized. The authors are also assessing
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other operating parameters that will impact the practical and economic feasibility of
the proposed system.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/min13070855/s1. Figure S1: (a) Particle size analysis of the CS, (b) Cumulative
distribution (%), and (c) distribution density of the FS used in the experiment.; Table S1: Summary results
of different tests conducted to measure the sand permeability at various conditions.
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Nomenclature

CFD Computational fluid dynamics
CS Coarse Sand
D Dimensional
FE Finite element
FS Fine Sand
IPL Injection pressure loss
PSD Particle size distribution
ROM Reduced-order model
S Sensor
TPL Transportation pressure loss
TSF Tailings storage facility
A Area (m2)
Ar Perforated area ratio of the pipe
cF Forchheimer coefficient
k Permeability (m2)
L Length of the injection pipe (m)
z Distance from pipe inlet (m)
p Pressure (Pa)
po Ambient pressure (Pa)
Q Volumetric flow rate (m3/s)
r Radius (m)
Re Reynolds number
rin Pipe inlet radius (m)
rp Perforation radius (m)
rr The ratio of the porous domain thickness to the injection pipe diameter
s Pitch (m)
δ Pipe roughness (m)
∆p Pressure drops or change (Pa)
∆Q Change of volumetric flow rate (m3/s)
ρ Density (kg/m3)
λ Darcy–Weisbach friction coefficient
µ Dynamic viscosity (Pa·s)
p′ Mid-perforation pressure (Pa)
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m measured
e Error
g Gauge
h Hydraulic
i Index
r Recovery
d Drop
c Circumference
z Axial direction
in Inlet
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