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Abstract: Sandstone type uranium is the most valuable and has the most potential for mining among
the known uranium deposits. In the process of forming, the hydrolytic migration and enrichment of
uranium require special basin sedimentary environment and tectonic background. Therefore, the
mineralization process of sandstone type uranium deposits has certain layering characteristics and
distribution rules in the underground vertical depth space. It is important to mine the spatial distribu-
tion characteristics of vertical uranium-bearing layers, and thus, reconstruct the three-dimensions of
uranium orebodies. In this paper, according to the metallogenic law and distribution characteristics
of sandstone type uranium in the underground vertical space, a nonlinear uranium-bearing layers
identification (NULI) method of sandstone type uranium is proposed by using different types, resolu-
tions and scales of borehole data. Then, the depth of uranium mineralization for the Daying uranium
deposit within northern Ordos Basin is identified accurately and the spatial distribution characteris-
tics of the uranium-bearing layer on the exploration line are obtained. Finally, the occurrence mode
of the underground uranium orebodies are presented by using three-dimensional reconstruction
analysis. It provides a basis for the prediction, exploration and mining of sandstone type uranium
deposits within the Ordos Basin.

Keywords: sandstone type uranium deposits; uranium-bearing layers identification; three-dimensional
reconstruction; borehole data

1. Introduction

Uranium is a strategic resource closely related to national security and economic
development. Uranium resources are an important guarantee for the sustainable devel-
opment of nuclear energy and national defense construction in China. As a clean and
stable base load energy, uranium resources are an important choice to achieve carbon
neutrality, which can ensure sustainable economic development and ecological civilization
construction in China. Sandstone type uranium deposit is the most promising and valuable
type of uranium deposit. It may have been discovered in the Ordos Basin, Erlian Basin,
Ili Basin, and in the Songliao Basin, in China, and some have already reached the scale of
large/ultra-large mineral deposits [1]. Sandstone type uranium deposit play an important
role in the supply of uranium resources in China. They are characterized by shallow depth,
large-scale reserves and low cost of mining [2,3]. At present, there are a series of studies on
the geological conditions, mechanisms, and basin characteristics of sandstone type uranium
deposits [4,5]. However, the deep prediction on its mineralization model and ore body size
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are in the exploratory stage [6]. Therefore, further research is needed for the exploration
and prediction of sandstone type uranium deposits.

Ordos Basin, as an important treasure trove of uranium resources in China, is located
in the northern part of the North China Craton [7–9]. Large or supersized sandstone type
uranium deposits, such as Zaohuahao, Nalinggou, Hantai Temple, Daying, Bayinqinggeli
and Dongsheng, have already been discovered in the northern part of the basin [10]. It is
the milestone transformation in uranium exploration and mining research, and provided a
foundation and driving force for sustainable development in China [11,12]. The Daying
uranium deposit is one of the important areas for uranium exploration. Industrialized
uranium ore bodies have been discovered in the Zhiluo Formation in Daying [13]. Previous
references in this area have mainly focused on geological structure, sedimentary character-
istics [14], uranium reservoirs [15,16], fluid characteristics [17], provenance tectonic [18,19]
and ore-controlling factors [20,21] of sandstone type uranium deposits. The research on the
uranium bearing layer identification and prediction is relatively lacking [22,23].

Sandstone type uranium deposits are formed within sedimentary sandstone forma-
tions and located at a depth of several hundred meters in vertically underground [24].
Compared with ordinary metal minerals and other types of uranium deposits, the transport
and migration of uranium elements with fluid requires a special tectonic setting and metal-
logenic environment of the sedimentary basin [25,26]. The enrichment and mineralization
of uranium elements require a special sedimentary stratigraphic combination [6,27]. It
enables sedimentary mineralization in the interlayer oxidation zone and its vicinity through
oxidation and reduction [28,29]. Therefore, uranium enrichment and mineralization have a
certain spatial tendency towards the selection of sedimentary stratigraphic combinations
within sedimentary facies, resulting in layered characteristics of sandstone type uranium
deposits within the vertical depth range underground. It makes the identification and
three-dimensional reconstruction analysis as the core of uranium-bearing layers studies in
sandstone type uranium deposit.

In this paper, we selected the Daying uranium deposit within northern Ordos Basin as
the research object, and proposed a NULI method of sandstone type uranium deposits. By
calculating the depth and location of uranium anomalies in each borehole, the distribution
characteristics of uranium bearing layers on exploration lines are analyzed, which can lay a
foundation for the study of the spatial tendency of sandstone type uranium enrichment and
mineralization for the selection of sedimentary stratigraphic combinations. Then, we use
triangular mesh segmentation theory to identify and analyze the uranium bearing layers.
The occurrence mode and three-dimensional reconstruction characteristics of uranium ore
bodies are obtained. It provides the technical methods for describing the underground
vertical spatial occurrence characteristics, resource prediction, exploring and mining of
sandstone type uranium deposits.

2. Geological Setting

Ordos Basin is a part of the North China Craton, which formed on the basis of the
North China Craton with an extension of 2.5105 km2 [30] and contains abundant energy
resources, such as oil, gas, coal and uranium-bearing deposits [31]. Ordos Basin is a
Mesozoic and Cenozoic superimposed basin and has the most stable blocks of North China
Craton [32], with the characteristics of overall uplift, wide and slow slope, continuous
subsidence and uniform contact. The Ordos Basin is surrounded by orogenic belts [33,34]
which include the Taihang Mountain to the east, the Qinling orogenic belt to the south,
Helan Mountain to the west and Yinshan orogenic belt to the north (Figure 1a). Ordos Basin
looks like a rectangular shape that extends from north to south [35], some fault depressions
have developed between the basin and the orogenic system [36], which can be divided
into six tectonic units that include the Yimeng uplift, western overthrust belt, Tianhuan
depression, Jinxi flexural fold belt, Lvliang uplift and Weibei uplift [32,37] (Figure 1b).
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In the Middle–Late Triassic, the Ordos Basin was compressed and uplifted among
the Paleotethys oceanic crust to the southwest, the Alashan block to the northwest and
the Yangtze plate to the southeast [38,39]; it then developed into an independent large
sedimentary basin. The overall tectonic pattern of the basin is tectonic belts with different
characteristics developed along the basin margin, while the internal tectonic of the basin is
relatively undeveloped [40]. Ordos Basin began to deposit stably in the Mesoproterozoic,
which contains two basement units, direct basement and indirect basement, with the
characteristics of “double” basement [41]. The indirect basement of the basin consists of
Archean Palaeoproterozoic metamorphic rock series, including Archean granulite facies,
amphibolite facies metamorphic rocks and migmatite granite, amphibolite and greenschist
of Proterozoic. The direct basement is from Mesozoic Triassic to Quaternary [42,43] with
Lower Carboniferous; moreover, Devonian and Silurian strata are absent [44], and the
Triassic, Jurassic and Lower Cretaceous are the main sedimentary bodies of the basin [45].

In northern Ordos Basin, fluvial and lacustrine facies developed on an alluvial diluvial
plain in the inland depression basin within early Cretaceous [46], which provided the
unique geological conditions for the migration of uranium elements [47]. Cap rocks include
Invasion rock, metamorphic rock of Archean and Proterozoic, Upper and Lower Paleozoic,
Triassic, Jurassic, lower Cretaceous and Quaternary (Figure 1c). The Jurassic strata are
the location for uranium enrichment and mineralization [48], as well as the main layer
for energy enrichment such as coal, oil and natural gas [2,49]. In this paper, we selected
the Daying uranium deposit within northern Ordos Basin as the research object; the
geographic coordinates are 108◦54′24′′–109◦03′20′′ E, 39◦55′55′′–40◦06′15′′ N (Figure 1c),
and the altitude are from 1000 to 1500 m [50]. Under the control of basement structure, the
develop structural features of basement fractures, folds, faults, etc., have certain control and
influence on magmatism, sedimentary diagenesis and metamorphism in the study area [51],
providing unique geological conditions for the enrichment of uranium deposits [25,52].

3. Proposed NULI Method

In this section, the NULI method is proposed for uranium bearing layers of sandstone
type uranium deposits identification and three-dimensional reconstruction. The proposed
NULI method consists of two main parts: (1) borehole data mining and (2) identification of
vertical uranium bearing layers. A detailed presentation and description of these parts is
given in the following subsections.

3.1. Borehole Data Mining

Borehole data are the core for the study of sandstone type uranium deposits [41,53]. In
this paper, we divide borehole data into borehole quantitative data and borehole qualitative
data. The borehole quantitative data includes natural gamma irradiation rate, aperture,
natural potential, apparent resistivity and density. The borehole qualitative data includes
strata, stratigraphic age, aquifer, permeability and rock lithology. For one borehole, the
borehole quantitative data can be expressed as a matrix, and all boreholes on an exploration
line can be represented by the following matrices.

x1 =


x1

11 x1
12 · · · x1

1M
x1

21 x1
22 · · · x1

2M
...

...
. . .

...
x1

N11 x1
N12 · · · x1

N1 M

x2 =


x2

11 x2
12 · · · x2

1M
x2

21 x2
22 · · · x2

2M
...

...
. . .

...
x2

N21 x2
N22 · · · x2

N2 M

 · · · xk =


xk

11 xk
12 · · · xk

1M
xk

21 xk
22 · · · xk

2M
...

...
. . .

...
xk

Nk1 xk
Nk2 · · · xk

Nk M

 (1)

where k is the sequence number of borehole, xk represents the k-th borehole on the explo-
ration line, M is the number of the borehole quantitative data, N1 − Nk are the number of
sampling points for borehole quantitative data of the k-th borehole, xk

Nk M represents the
data value of the sampling point on the M-th variable in the k-th borehole. Therefore, the
k-th borehole xk can be expressed as follows:
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xk =
{

xk
ij

}Nk

i=1
, (2)

where j is the j-th variable in the k-th borehole and j ∈ (1, M), i shows the i-th data point
on the j-th variable for the k-th borehole and i ∈ (1, Nk), Nk is the sampling number of the
k-th borehole, xk

ij represents the data value of the i-th sampling point on the j-th variable for
the k-th borehole.

Borehole quantitative data have different data units and showing heterogeneous with
different scales and resolutions. Therefore, we preprocess it into dimensionless data that
can be used for metric fusion analysis; the preprocessing method is as follows:

xk
ij =

Nk−t
∑

i=1
xk

ijx
k
(i+t)j√

Nk−t
∑

i=1

(
xk

ij

)2
×

√
Nk−t

∑
i=1

(
xk
(i+t)j

)2
(3)

where t is the coordinate of the sampling point on the j-th variable and t = 1, 2, 3, · · · n,
n ≤ Nk, xk

(i+t)j represents the data value of the j-th variable with (i + t)-th sampling point
in the k-th borehole.

In this paper, we construct borehole qualitative data based on the concept of relevant
component analysis [54,55]. First, we collect stratigraphic age data at different depths of
each borehole, then construct a stratigraphic age constraint matrix Ck that matches the
borehole quantitative data, and the calculation formula is as follows:

Ck =
{

xk
pl

}np

l=1
, (4)

where p is the p-th stratigraphic age for the k-th borehole and p ∈ (1, 5) in this paper,
l represents the data point within the p-th stratigraphic age, and the total number for
this stratigraphic age is np, xk

pl shows the data value of the l-th data point on the p-th
stratigraphic age for the k-th borehole.

According to the Ck, the borehole quantitative data can be divided into different verti-
cal layers, and the borehole data within each vertical layer belongs to the same stratigraphic
age. The total variance Ĉk of borehole quantitative data for each vertical layer is calculated
using the following formula:

Ĉk =
1

Nk

ck

∑
p=1

np

∑
l=1

(xk
pl
−mk

p)(xk
pl
−mk

p)
T

, (5)

where mk
p represents the average of borehole quantitative data in the p-th vertical layer for

the k-th borehole, ck are the number of vertical layers divided in the k-th borehole.
In actual uranium mineralization process, uranium enrichment layers typically exhibit

similar geological evolution characteristics, i.e., minimize the total variance within the
vertical layer as much as possible. Therefore, the optimal vertical layer transformation
matrix Wk is constructed based on the above calculation results. Through the above
calculation, the impact of different variables on uranium mineralization can be measured,
and the transformation matrix is expressed as follows:

Wk = (Ĉk)
− 1

2 , (6)

Based on the measurements, we assign larger weights to variables with a high degree
of impact on the mineralization of sandstone type uranium deposits and assign lower
weights to variables with lower impact. Then, the new borehole data measurements can be
obtained, and the calculation formula is as follows:
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xk
ij =

∣∣∣xk
ij

∣∣∣× ∣∣∣Wk
∣∣∣, (7)

3.2. Identification of Vertical Uranium Bearing Layers

In this section, we organize and analyze the above measurements to obtain the vertical
layer features Rk(t) of each borehole, and express the vertical layer features as follows:

Rk(t) =
1
M

M

∑
j=1

xk
ij, (8)

where t is the depth position of the sampling points in the vertical layer, M is the number
of the borehole quantitative data.

Sandstone type uranium deposits typically exhibit a discontinuous “oscillation” state
underground, which means they have discrete characteristics. Therefore, we conduct in-
depth analysis based on Fourier thought [56,57] and power spectral density method [58,59].
Performing time/airspace analysis on Rk(t), then the time/spatial function Sk(ωm) of the
k-th borehole can be expressed as:

Sk(ωm) =
Nk−1

∑
n=0

Rk(t)e−ωmit = 2
Nk−1

∑
n=0

Rk(t)e−
2πm
NTn i(nTn), (9)

where Tn are the average interval between sampling points of borehole data,m is the
parameter of Sk(ωm) and m = 1, 2, 3, · · · , Nk − 1.

According to the Fourier transform, we perform an inverse Fourier transform on the
time/space function and transform it into the underground vertical band range. Then, we

perform the following transformation to obtain the vertical layer variation value
_
R

k
(t), and

the
_
R

k
(t) of the k-th borehole can be transformed using the following formula:

_
R

k
(t) =

1
Nk

Nk−1

∑
n=0

Sk(ωm)e
( 2π

Nk Tn m)i(nTn) =
1

Nk

Nk−1

∑
n=0

Sk(ωm)e
imn( 2π

Nk
)
, (10)

The vertical layer variation value
_
R

k
(t) reflects the possibility of uranium miner-

alization at depth t of the sampling point. Therefore, the following conditions should
be met: 

Tn = 1
n t

ωm = f
NkTn

ωm = 2π
NkTn

m
(11)

where Nk are the number of sampling points in the k-th borehole and n = 1, 2, 3, · · · , Nk− 1,
f ∈ R.

4. Borehole Data

In the experiments, we selected 18 boreholes on 4 exploration lines in Daying uranium
deposit within northern Ordos Basin; the 4 exploration lines are distributed in a grid shape
(Figures 2 and 3) and the names of the 18 boreholes are listed in Table 1. The strata involved
in the 18 boreholes include the Middle Jurassic Yan’an Formation (J2y), Zhiluo Formation
(J2z) and Lower Cretaceous (K1); the Zhiluo Formation can be further divided into the
upper Zhiluo Formation (J2z2) and the lower Zhiluo Formation (J2z1), while the lower
section of the Zhiluo Formation can be further divided into the upper sub section J2z1-2 and
the lower sub section J2z1-1 (Table 2).
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Table 1. List of borehole names in the study area.

Serial
Number

Exploration
Line

Borehole
Number Borehole Name

1 ZKA 3 ZKA-1, ZKA-2, ZKA-3
2 ZKB 6 ZKB-1, ZKB-2, ZKB-3, ZKB-4, ZKB-5
3 ZKC 4 ZKC-1, ZKC-2, ZKC-3, ZKC-4
4 ZKD 5 ZKD-1, ZKD-2, ZKD-3, ZKD-4, ZKD-5



Minerals 2023, 13, 834 8 of 18

Table 2. The vertical depth position of borehole exposed strata in the study area.

Borehole
Name

Lower Cretaceous
(K1)

Middle Jurassic (J2)

Upper Zhiluo
Formation (J2z2)

Lower Zhiluo Formation (J2z1) Yan’an
Formation (J2y)Upper Sub Section

(J2z1-2)
Lower Sub

Section (J2z1-1)

Top
(m)

Bottom
(m)

Top
(m)

Bottom
(m)

Top
(m)

Bottom
(m)

Top
(m)

Bottom
(m)

Top
(m)

Bottom
(m)

ZKA-1 19.98 282.60 282.60 548.80 548.80 623.40 623.40 634.20 634.20 639.47
ZKA-2 19.99 282.40 282.40 550.40 550.40 622.40 622.4 635.34 --- ---
ZKA-3 20.00 287.60 287.60 556.80 556.80 610.80 610.80 635.70 --- ---
ZKB-1 20.00 289.00 289.00 545.90 545.90 643.70 643.70 651.64 --- ---
ZKB-2 20.00 291.00 291.00 544.90 544.90 610.30 610.30 702.80 702.80 710.38
ZKB-3 20.00 300.00 300.00 562.40 562.40 629.40 629.40 648.55 --- ---
ZKB-4 20.00 299.40 299.40 549.50 549.50 628.60 628.60 636.15 --- ---
ZKB-5 20.00 294.70 294.70 553.00 553.00 657.40 657.40 701.60 701.60 715.31
ZKC-1 19.99 301.60 301.60 558.40 558.40 616.20 616.20 625.64 --- ---
ZKC-2 20.00 301.00 301.00 562.40 562.40 614.40 614.40 630.00 --- ---
ZKC-3 20.00 292.50 292.50 553.40 553.40 634.90 634.90 652.24 --- ---
ZKC-4 20.00 307.20 307.20 570.60 570.60 657.00 657.00 720.00 720.00 735.47
ZKD-1 19.99 284.00 284.00 562.00 562.00 626.00 626.00 639.00 --- ---
ZKD-2 19.99 300.20 300.20 550.10 550.10 629.60 629.60 727.10 727.10 733.03
ZKD-3 20.00 298.20 298.20 570.00 570.00 628.90 628.90 650.58 --- ---
ZKD-4 20.02 305.00 305.00 579.60 579.60 637.80 637.80 726.30 726.30 740.95
ZKD-5 19.99 304.40 304.40 565.80 565.80 655.40 655.40 726.10 726.10 746.26

5. Results and Discussion
5.1. Identification Results of Vertical Uranium Bearing Layers

In the experiments, the vertical layer sampling thickness is set to 10 m. The vertical
layer variation value is set to 0.8 for extracting the vertical uranium bearing layers, i.e., if
the vertical layer variation value of the vertical uranium bearing layers are higher than 0.8,
we determine there were the uranium bearing layers, otherwise it was the non-uranium
bearing layer. After trial calculation, 90 vertical uranium layers were identified. According
to the degree of uranium mineralization, the study area can be divided into two types, i.e.,
ordinary uranium mineralization layer and industrial uranium mineralization layer. These
two types represent the possibility of uranium mineralization, in which industrial ura-
nium mineralization are better than ordinary uranium mineralization. In the comparative
analysis, the ordinary uranium mineralization layer and industrial uranium mineraliza-
tion layer are contained within the identified 90 vertical uranium bearing layers from all
the boreholes.

In the exposed strata, no vertical uranium bearing layers were identified in the Lower
Cretaceous (K1) strata, whereas in the Yan’an Formation (J2y) and the Upper Zhiluo For-
mation (J2z2) of the Middle Jurassic, only three and two vertical uranium bearing layers
were identified, respectively. The remaining vertical uranium bearing layers are all located
within the Lower Zhiluo Formation (J2z1) of the Middle Jurassic, which include Upper Sub
Section (J2z1-2) and Lower Sub Section (J2z1-1), accounting for 73.33% and 21.11% of the total
number of vertical uranium layers, respectively (Figure 4). The Lower Zhiluo Formation in
the study area is located within a depth range from 550 m to 740 m underground, indicating
that most of the vertical uranium bearing layers are within this depth range, while a small
portion are within the depth range from 650 m to 740 m of Lower Sub Section in Zhiluo
Formation for the Middle Jurassic, indicating that a small portion of the vertical uranium
bearing layers are within this depth range.
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On the exploration lines, 11 vertical uranium bearing layers were identified in the
3 boreholes of ZKA exploration line, in which 1 layer belongs to the Lower Sub Section
and the rest are all in the Upper Sun Section of Lower Zhiluo Formation, located within a
depth range from 560 m to 610 m underground. For the ZKB exploration line, 27 vertical
uranium bearing layers were identified from 5 boreholes, where 5 layers are located in
the Lower Sub Section and the rest are located in the Upper Sub Section of the Zhiluo
Formation; most of the vertical uranium bearing layers are located within a depth range
from 560 m to 640 m, and only 2 layers are located within a depth range from 680 m to 700 m
underground. The ZKC exploration line includes 4 boreholes and we identify 24 vertical
uranium bearing layers, with only 4 layers belonging to the Lower Sub Section and the rest
are all in the Upper Sub Section of Lower Zhiluo Formation, where 2 layers located within
a depth range from 710 m to 730 m and the rest are all in the depth range from 560 m to
650 m underground. The ZKD exploration line includes 5 boreholes and the number of
vertical uranium bearing layers are the most in 4 exploration lines; the total number are 28,
3 vertical uranium bearing layers have been identified in the Yan’an Formation of the
Middle Jurassic and no vertical uranium bearing layers have been observed in the Yan’an
Formation on other exploration lines. Rhe number of vertical uranium bearing layers
identified in the Lower Sub Section and Upper Sub Sections of the Zhiluo Formation are
10 and 15, respectively. The depth range of the vertical uranium bearing layer is from 570 m
to 740 m, which is the largest depth span and the deepest position of vertical uranium
bearing layer among the 4 exploration lines (Table 3). Meanwhile, we plotted a two-
dimensional vertical distribution of uranium bearing layers based on the depth position of
each borehole’s vertical uranium bearing layer in the study area (Figure 5).
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Table 3. Comparison between vertical uranium-bearing layers and mineralization information from
ZKA to ZKD exploration line.

Exploration
Line Borehole

Vertical Uranium-Bearing Layer
Strata

Known Uranium Mineralization
Start (m) End (m) Start (m) End (m) Degree

ZKA

ZKA-1
589.98 599.98 J2z1-2 595.00 597.00 Industrial
599.98 609.88 J2z1-2 601.00 608.00 Ordinary

ZKA-2
580.00 589.89 J2z1-2 582.25 585.45 Ordinary
589.89 599.99 J2z1-2 591.45 592.75 Ordinary
599.99 609.89 J2z1-2

ZKA-3

550.00 556.80 J2z2

556.80 560.00 J2z1-2

560.00 569.90 J2z1-2 567.25 573.25 Ordinary
569.90 579.90 J2z1-2 573.25 576.65 Ordinary
590.00 600.00 J2z1-2

600.00 609.90 J2z1-1

ZKB

ZKB-1

550.00 559.95 J2z1-2 551.00 552.00 Ordinary
559.95 569.95 J2z1-2 568.30 571.00 Ordinary
580.00 589.95 J2z1-2 586.15 589.45 Industrial

589.95 600.00
J2z1-2 592.75 593.95 Industrial
J2z1-2 597.10 600.00 Ordinary

600.00 609.95 J2z1-2 600.80 601.90 Ordinary

ZKB-2

580.00 589.95 J2z1-2 587.00 589.00 Ordinary
589.95 600.00 J2z1-2 590.30 591.30 Ordinary

600.00 610.30
J2z1-2 598.35 602.15 Industrial
J2z1-2 609.05 610.25 Industrial

610.30 619.95 J2z1-1

ZKB-3

550.00 559.95 J2z2

570.00 600.00 J2z1-2 573.15 573.95 Ordinary
575.95 576.15 Ordinary

600.00 609.95 J2z1-2 606.65 611.05 Industrial

609.95 619.95 J2z1-2 615.45 616.85 Ordinary
618.15 618.45 Ordinary

619.95 630.00 J2z1-2

630.00 639.90 J2z1-1

ZKB-4

550.00 559.90 J2z1-2

559.90 570.00 J2z1-2 562.45 564.75 Industrial
568.75 569.75 Ordinary

570.00 579.95 J2z1-2 572.65 573.15 Industrial
610.00 620.00 J2z1-2 613.55 617.65 Industrial
620.00 628.60 J2z1-2 620.75 622.45 Industrial

ZKB-5

570.00 579.95 J2z1-2 572.15 579.95 Industrial
579.95 589.95 J2z1-2 579.95 590.15 Industrial
600.00 609.95 J2z1-2 606.00 608.00 Ordinary
620.00 630.00 J2z1-2 623.00 626.00 Ordinary
630.00 639.95 J2z1-2 631.00 633.00 Ordinary
680.00 690.00 J2z1-1 687.00 689.00 Ordinary
690.00 699.95 J2z1-1 691.00 692.00 Ordinary

ZKC ZKC-1

560.00 569.90 J2z1-2 561.85 562.85 Ordinary
580.00 589.89 J2z1-2

589.89 599.98 J2z1-2 590.25 592.25 Ordinary

599.98 609.89 J2z1-2 606.25 606.85 Industrial
607.25 610.95 Ordinary

609.89 616.20 J2z1-2
613.95 615.65 Ordinary

616.20 619.79 J2z1-1
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Table 3. Cont.

Exploration
Line Borehole

Vertical Uranium-Bearing Layer
Strata

Known Uranium Mineralization
Start (m) End (m) Start (m) End (m) Degree

ZKC

ZKC-2

570.00 579.90 J2z1-2

579.90 589.90 J2z1-2

589.90 599.90 J2z1-2 589.75 593.15 Industrial
599.90 610.00 J2z1-2 607.45 609.90 Industrial
610.00 614.40 J2z1-2 610.00 614.25 Industrial
614.40 619.90 J2z1-1

ZKC-3

560.00 569.90 J2z1-2

580.00 589.90 J2z1-2 585.25 589.35 Industrial
589.90 600.00 J2z1-2 594.15 599.85 Industrial
600.00 609.90 J2z1-2 604.55 609.90 Industrial
609.90 619.90 J2z1-2 610.00 614.85 Industrial
619.90 629.90 J2z1-2

ZKC-4

580.00 589.90 J2z1-2 587.85 590.55 Industrial
620.00 629.90 J2z1-2

629.90 640.00 J2z1-2 637.95 639.05 Industrial
640.00 649.90 J2z1-2 641.45 646.85 Industrial
710.00 720.00 J2z1-1

720.00 729.90 J2z1-1

ZKD

ZKD-1

570.00 579.90 J2z1-2 573.75 576.35 Industrial
609.99 619.89 J2z1-2 610.45 618.35 Industrial
619.99 626.00 J2z1-2

626.00 629.88 J2z1-1

ZKD-2

590.00 600.00 J2z1-2 594.95 599.90 Industrial
600.00 609.90 J2z1-2 600.00 602.45 Industrial
609.90 619.90 J2z1-2 609.25 616.15 Industrial
619.90 629.60 J2z1-2 619.35 626.35 Industrial

ZKD-3 630.01 639.91 J2z1-1 631.15 632.05 Ordinary

ZKD-4

580.00 589.89 J2z1-2

599.99 609.89 J2z1-2

609.89 619.99 J2z1-2 609.75 610.65 Industrial
613.05 618.55 Industrial

619.99 629.98 J2z1-2 620.95 621.95 Industrial
629.98 637.80 J2z1-2 628.55 636.85 Industrial

637.80 649.88 J2z1-1 639.15 639.85 Industrial
646.35 649.15 Industrial

649.98 659.88 J2z1-1

659.88 669.88 J2z1-1

669.97 679.87 J2z1-1 670.85 677.75 Industrial
726.30 729.88 J2y

ZKD-5

599.99 609.89 J2z1-2

629.98 639.88 J2z1-2

639.88 649.88 J2z1-2

659.98 669.87 J2z1-1

669.87 679.97 J2z1-1

679.97 689.87 J2z1-1 686.05 687.45 Industrial
689.87 699.87 J2z1-1 693.85 695.45 Industrial
726.10 729.96 J2y

729.96 739.86 J2y 731.55 732.45 Industrial
735.75 737.45 Industrial
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5.2. Vertical Three-Dimensional Reconstruction Analysis

In this paper, we use triangular mesh segmentation method [60,61] to perform three-
dimensional reconstruction analysis on vertical uranium bearing layers of the exploration
line for the Daying uranium deposit within northern Ordos Basin. Five uranium ore bodies
based on the vertical uranium-bearing layers and stratigraphic age were obtained. The
borehole number and depth location of the uranium ore bodies are shown in Table 4.

Uranium ore body one was reconstructed and analyzed through four boreholes on the
ZKA and ZKB exploration lines. The thinnest thickness is 9.95 m and the thickest thickness
is 29.95 m, which is located at the intersection of Upper Sub Section for Lower Zhiluo
Formation and Upper Zhiluo Formation in Middle Jurassic. Most of the ore bodies are
located in the Upper Sub Section of Lower Zhiluo Formation. Only the ZKB-3 borehole
has a 9.95 m deep ore body located in the Upper Zhiluo Formation (Figure 6a). Uranium
ore body two was reconstructed and analyzed through five boreholes on the ZKB, ZKC
and ZKD exploration lines. The thinnest thickness is 9.90 m and the thickest thickness is
19.95 m. The uranium ore bodies are all located in the Upper Sub Section of Lower Zhiluo
Formation (Figure 6b). Uranium ore body three was reconstructed and analyzed with
all boreholes except ZKD-3 from four exploration lines, which is the largest uranium ore



Minerals 2023, 13, 834 13 of 18

body in the study area. The thinnest thickness is 9.90 m and the thickest thickness can
reach 49.90 m. The ore body is mainly located in the Upper Sub Section of Lower Zhiluo
Formation, and only the ZKA-3, ZKB-2 and ZKC-1 boreholes have exposed in the Lower
Sub Section of Lower Zhiluo Formation (Figure 6c). Uranium ore body four and five are all
reconstructed and analyzed on ZKB, ZKC and ZKD exploration lines. Uranium ore body
four has including six boreholes. The thinnest thickness is 9.90 m and the thickest thickness
can reach 69.89 m, which is located at the intersection of the Upper Sub Section and Lower
Sub Section of Lower Zhiluo Formation (Figure 6d). Uranium ore body five has including
four boreholes. The thinnest thickness is 3.60 m and the thickest thickness can reach 19.95 m,
and it is located at the intersection of the Lower Sub Section of Lower Zhiluo Formation
and Yan’an Formation for Middle Jurassic, which is the smallest uranium ore body in the
study area (Figure 6e). By mapping the five uranium ore bodies into underground vertical
three-dimensional space, we can obtain the three-dimensional reconstruction features of
the uranium ore bodies for the study area (Figure 7).

Table 4. The boreholes and depth positions for uranium ore bodies.

Uranium
Ore Bodies Borehole Start (m) End (m) Ore Bodies

Thickness

one

ZKA-3 550.00 579.90 29.90
ZKB-3 550.00 559.95 9.95
ZKB-4 550.00 579.95 29.95
ZKB-5 570.00 579.95 9.95

two

ZKB-1 550.00 569.95 19.95
ZKC-1 560.00 569.90 9.90
ZKC-2 570.00 579.90 9.90
ZKC-3 560.00 569.90 9.90
ZKD-1 570.00 579.90 9.90

three

ZKA-1 589.98 609.88 19.90
ZKA-2 580.00 609.89 29.89
ZKA-3 590.00 609.90 19.90
ZKB-1 580.00 609.95 29.95
ZKB-2 580.00 619.95 39.95
ZKB-3 600.00 619.95 19.95
ZKB-4 610.00 628.60 18.60
ZKB-5 579.95 609.95 30.00
ZKC-1 580.00 619.79 39.79
ZKC-2 579.90 619.90 40.00
ZKC-3 580.00 629.90 49.90
ZKC-4 580.00 589.90 9.90
ZKD-1 609.99 629.88 19.89
ZKD-2 590.00 629.60 39.60
ZKD-4 580.00 619.99 39.99
ZKD-5 599.99 609.89 9.90

four

ZKB-3 619.95 639.90 19.95
ZKB-5 620.00 639.95 19.95
ZKC-4 620.00 649.90 29.90
ZKD-3 630.01 639.91 9.90
ZKD-4 619.99 679.87 59.88
ZKD-5 629.98 699.87 69.89

five

ZKB-5 680.00 699.95 19.95
ZKC-4 710.00 729.90 19.90
ZKD-4 726.30 729.90 3.60
ZKD-5 726.10 739.86 12.86
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6. Conclusions

In this paper, we selected the Daying uranium deposit within northern Ordos Basin as
the research object. According to the mineralization patterns and distribution characteristics
of sandstone type uranium deposits in the underground vertical space, a nonlinear uranium-
bearing layers identification (NULI) method of sandstone type uranium is established by
utilizing borehole data with different types, resolutions and scales. First, borehole data
were divided into the borehole quantitative data and borehole qualitative data. In the
proposed NULI method, the depth and location of uranium mineralization in the vertical
underground space were accurately identified by constraining the borehole quantitative
data. The description of spatial distribution characteristics of vertical uranium bearing
layers and three-dimensional reconstruction analysis of uranium ore bodies were achieved.
In the experimental results, we found that the number of vertical uranium bearing layers
are 66, located within the depth range from 550 m to 650 m in the Upper Sub Section of
Lower Zhiluo Formation for the Middle Jurassic; 19 vertical uranium bearing layers are
located within the depth range from 650 m to 730 m in the Lower Sub Section of Zhiluo
Formation and only two and three vertical uranium bearing layers are located within the
depth range from 550 m to 560 m in Upper Zhiluo Formation of Middle Jurassic and the
Yan’an Formation with depth range from 720 m to 740 m.

The occurrence status of uranium ore bodies in the Daying uranium deposit within
northern Ordos Basin has been intuitively depicted with the distribution characteristics
of vertical uranium bearing layers. We obtained 5 uranium ore bodies, and the thinnest
thickness is 9.90 m and the thickest thickness can reach 69.91 m. Uranium ore body
three has the largest volume and the widest spatial distribution range, and is mainly
located in the Upper Sub Section of Lower Zhiluo Formation for Middle Jurassic. The
remaining four uranium ore bodies are all small in volume and distributed at the edge of
the study area: uranium ore body two is located in the Upper Sub Section of the Lower
Zhiluo Formation, uranium ore bodies one, four and five are located in the strata where the
Upper Sub Section of Lower Zhiluo Formation intersects with the Upper Zhiluo Formation,
the Lower Sub Section of Lower Zhiluo Formation and the Yan’an Formation for the
Middle Jurassic.

7. Patents

The “3. Proposed NULI Method” in this manuscript has already applied for a patent,
the patent number is ZL 202110686796.0.
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