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Abstract: The rapid and improper disposal of electronic waste (e-waste) has become an issue of great
concern, resulting in serious threats to the environment and public health. In addition, e-waste is
heterogenous in nature, consisting of a variety of valuable metals in large quantities, hence the need
for the development of a promising technology to ameliorate environmental hazards associated with
the indiscriminate dumping of e-waste, and for the recovery of metal components present in waste
materials, thus promoting e-waste management and reuse. Various physico-chemical techniques
including hydrometallurgy and pyrometallurgy have been employed in the past for the mobilization
of metals from e-waste. However, these approaches have proven to be inept due to high operational
costs linked to the consumption of huge amounts of chemicals and energy, together with high metal
loss and the release of secondary byproducts. An alternative method to avert the above-mentioned
limitations is the adoption of microorganisms (bioleaching) as an efficient, cost-effective, eco-friendly,
and sustainable technology for the solubilization of metals from e-waste. Metal recovery from e-waste
is influenced by microbiological, physico-chemical, and mineralogical parameters. This review,
therefore, provides insights into strategies or pathways used by microorganisms for the recovery of
metals from e-waste.
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1. Introduction

The development of electronic and electrical industries and the widespread use of
electronic technologies result in the production of more and new electronic devices [1,2].
When these products reach their service life, a huge amount of electronic waste (e-waste)
is accumulated. It was estimated that more than 50 million metric tons of e-waste was
generated in 2019 with a projection of 74 million metric tons in 2030 [3]. However, so far,
about 9.3 metric tons of e-waste has been collected and valorized, representing 17.4% of the
overall amount of the e-waste generated [4–6]. In South Africa, based on United Nation’s
global e-waste surveillance report, about 360,000 tons of e-waste is generated yearly, and
the Gauteng province is responsible for about 55% of it, since it is the economic hub of the
country [7]. E-waste is categorized into subgroups depending on the metallic composition,
type, origin, age, manufacturer, and constituents’ parts. The United Nations categorized e-
waste into six groups, namely temperature exchange equipment (e.g., refrigerators), screens
and monitors, lamps, large equipment (e.g., large household appliances), small equipment
(e.g., toasters and tools), and small information technology/telecommunication equipment
(e.g., cellular phones and routers) [8] (Figure 1). However, printed circuit boards (PCBs)
are indispensable in many devices, where they connect different electronic components.
PCBs could be one-sided, double-, or multi-layer-sided, based on their configuration and
alignment [9]. Each year, 0.5 Mt of PCBs are generated, and the global PCB production
increases by 4% on average. Similarly, central processing units in computers contain a
relatively high proportion of precious metals [2].
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Figure 1. Various types of e-waste.

The composition of e-waste is very heterogeneous and includes a variety of hazardous
and/or non-hazardous substances including polymers, glass fiber, flame retardants, and
ferrous and non-ferrous metals, which, if improperly managed, can be toxic to humans
and the environment [10,11]. In addition, e-waste contains several precious metals (such
as Au, Ag, and Pt group metals), base metals (Al, Co, Cu, Ni, Zn, and Fe), rare earth
metals (e.g., In, Nd, and Ta), and others (e.g., Be, Cd, Cr, Hg, Pb, Sb, Sn, and Ti) in larger
quantities than those in some ores [12,13]. These metals are used in various applications
such as electronics, computers, automotive, jewelry, dentistry, and aviation industries
owing to their superb electrical conductivity and chemical resistance. According to some
statistics, there is about 10–1000 g gold/ton of e-waste, found to be 17 times when compared
with mineral ore [14,15]. Metal recovery from e-waste (secondary source) supports the
conservation of primary resources (ore) and prevent environmental degradation while
contributing to transition to a circular economy. E-waste has been treated as a secondary
ore in urban mining due to the presence of precious metals of which the concentrations are
higher than that of a primary ore. As a result, the development of a new technology for
the recovery of metals from e-waste is urgently needed to improve the added value of the
waste materials. Various methods, including mechanical separation, pyrometallurgical, and
hydrometallurgical processes, are employed for the removal of metals from e-waste [16–18].
However, these techniques are characterized by environmental hazards, high operational
costs, high metals loss, and the release of secondary by-products, as well as the consumption
of huge amounts of energy and chemicals [19–21]. An alternative approach to ameliorate
the afore-mentioned challenges is the use of microorganisms to mobilize the metals from
e-waste [22].

Bio-hydrometallurgy (also known as bioleaching) is referred to as a green and sustain-
able technology that utilizes the metabolic activities of microorganisms (fungi, bacteria,
archaea) for the solubilization of metals from low-grade ores, mineral concentrates, or
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e-waste [1,6,23] (Figure 2). In other words, it is a process of the conversion of non-soluble
metallic compounds present in the solid matrix into soluble form under the influence of
microorganisms [2,6]. It is considered a simple, effective, inexpensive, and eco-friendly
method with less energy requirements [20,24]. Furthermore, bioleaching generates less sec-
ondary waste and permits the ease of metal recovery during the recovery process. However,
the longevity of leaching time and low metal yields are crucial factors that hamper the large-
scale application of bioleaching. Microbes secrete certain metabolites (lixiviants), which
aid the solubilization and mobilization of insoluble metals from e-waste. The leaching
efficiency is determined mainly by the physiology of the microorganisms and the miner-
alogical contents of e-waste [25]. Therefore, the present review focuses on the mechanisms
employed by microorganisms for the recovery of metals from e-waste. In addition, biopro-
cess parameters influencing the efficacy of metal bioleaching coupled with techniques used
for the commercial mobilization of metals from e-waste is discussed extensively.
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2. Environmental and Health Effects of E-Waste

An improper disposal of e-waste in landfills or other dumpsites poses serious threats
to the environment and public health [26]. E-waste consists of an array of toxigenic or-
ganic and inorganic pollutants (such as polybrominated diphenyl ethers, polychlorinated
biphenyls, brominated flame retardants, dioxins, heavy metals, etc.), which are hazardous
upon exposure to ecosystems, flora and fauna. These substances are released directly or
indirectly in form of heavy metals, acids, and lethal chemicals. Direct exposure occurs
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via the inhalation of fine and coarse particles, skin contact with hazardous substances
or the ingestion of contaminated dust [27]. Human contact with e-waste renders certain
effects by increasing in concentration as it travels up the food chain, leading to vari-
ous health challenges such as DNA damage, birth defects, cardiac failure, cancer, skin
dermatitis, etc. [27,28]. Furthermore, an improper disposal of e-waste causes the release of
dust particles or toxins (such as dioxins) into the environment, resulting in air pollution
and damage to the respiratory system [29]. In addition, the incineration of e-waste emits
toxic fumes and gases, which pollutes the surrounding air. Hazardous substances present
in e-waste leak through the soil and further contaminate surface and underground water,
leading to the acidification and toxification of water. This kills marine and freshwater
organisms, disturbs biodiversity, harms ecosystems, as well as disrupts the ecological
set-up of soil [6,27].

3. Bioleaching of Metals from E-Waste

Microorganisms play a crucial role in the extraction of metals from e-waste, a technol-
ogy known as bioleaching [30]. Microorganisms that are involved in the bioleaching of
metals from e-waste include iron and sulfur-oxidizing bacteria, cyanogenic bacteria, and
fungi [31,32]. Generally, three groups of microbes, including chemolithotrophic bacteria,
heterotrophic bacteria, and fungi are known as microbial candidates for the recovery of
metals from e-waste. These microorganisms and their leaching efficiencies are discussed in
detail below.

3.1. Bioleaching by Chemolithotrophic Microorganisms

These microbes are also known as iron and sulfur-oxidizing bacteria or acidophilic
bacteria. They are involved in the oxidation of ferrous ion to ferric ion, or elemental sulfur
to sulfuric acid during metal bioleaching ((Equations (1) and (2)) [33–35]. The biogenic
ferric iron and sulfuric acid serve as oxidizing agents (lixiviants) for the mobilization of
base metals from the solid matrix via acidolysis and redoxolysis bioleaching mechanisms
(Equations (3)–(5)) [36].

2FeSO4 + H2SO4 + 1/2 O2 → Fe2(SO4)3 + H2O (1)

S0 + H2O + 3/2O2 → H2SO4 (2)

H2SO4 + MeS→ H2S + MeSO4 (3)

H2SO4 + MeO→ H2O + MeSO4 (4)

Fe2(SO4)3 + MeS + H2O + 3/2O2 →Me2+ + SO4
2− + 2FeSO4 + H2SO4 (5)

In addition, the microbes consume atmospheric CO2 as a carbon source, and inorganic
compounds such as ferrous ion (Fe2+), elemental sulfur, and/or reduced sulfur compounds
(polysulfide, H2S, S2O3

2−, and S8) as an energy source. This group of microorganisms is
unique among other classes of microbes most frequently studied due to their potential
to facilitate metal dissolution from e-waste via a series of bio-oxidation and bioleaching
reactions [37–39].

Based on their desired temperature, chemolithotrophic bacteria could be mesophilic
(28–37 ◦C), moderately thermophilic (40–60 ◦C), and extremely thermophilic (60–80 ◦C). Ex-
amples include Acidithiobacillus thiooxidans, Acidithiobacillus ferrooxidans, Thiobacillus thiooxidans,
Leptospirillum ferriphilum, Sulfobacillus thermosulfidooxidans, Thermoplasma acidophilum, etc. [9,40].
Most of these microbes can tolerate lower pH values and higher concentrations of met-
als such as silver, uranium, and molybdenum [41,42]. However, members of the genus
Acidithiobacillus are prominent and well-studied organisms for the bioleaching of metals
due to their outstanding tolerance to heavy metal toxicity and low nutrient requirements
for metal solubilization [43,44] (Table 1). For instance, Arshadi and Yaghmaei [45] inves-
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tigated the potential of a pure culture of Acidithiobacillus ferrooxidans in the mobilization
of metals from discarded PCBs collected from Pars Charkhesh Asia, which is a recycling
unit in Tehran, Iran. Maximum recovery efficiencies of copper (90%) and nickel (88%)
were recorded. The bioleaching of waste PCB sludge using Acidithiobacillus ferrooxidans
resulted in the recovery of copper (76%), nickel (74%), and zinc (72%) at optimal con-
ditions of FeSO4·7H2O (60 g/L), initial pH 0.5, and an incubation period of 6 d [46].
Kadivar et al. [47] extracted metals from discarded mobile phone PCBs in the presence
of Acidithiobacillus thiooxidans. The bioleaching process resulted in 98% (copper) and 82%
(nickel) at 30 ◦C (160 rpm) within 72 h. Arshadi et al. [48] recorded 100% copper, 100%
iron, and 54% nickel during the biorecovery of metals from electronic waste combina-
tion at optimal conditions of pulp density (15 g/L), inoculum size (10%, v/v), tempera-
ture (30 ◦C), and agitation speed (130 rpm). In addition, Acidithiobacillus thiooxidans and
Acidiphilum acidophilum achieved 75% (copper) and 100% (copper), respectively, from the
bioleaching of computer PCBs within 9 d and 2.5 h, respectively [49,50].

Table 1. Efficiencies of some chemolithotrophic bacteria (pure culture) in the bioleaching of metals
from e-waste.

Bacteria Metal Source Recovery Efficiency (%) Bioleaching Conditions Reference

Acidithiobacillus ferrooxidans PCB Cu (80%) pH 2.0; temperature 30 ◦C;
incubation time 2d [51]

Acidithiobacillus thiooxidans Spent mobile phone PCB Cu (98%); Ni (82%) 160 rpm; 30 ◦C; 72 h [47]

Acidithiobacillus ferrooxidans OLED touch screens of
mobile phone In (100%); Sr (5%) Initial pH 1.1; 29 ◦C; 140 rpm; 15 d [52]

Thiobacillus ferrooxidans Nickel–cadmium batteries Cd (100%); Ni (96.5%);
Fe (95%)

pH 2.0; temperature 30 ◦C;
incubation time 93 d; pulp density

0.2 g/L
[53]

Acidithiobacillus ferrooxidans Nickel–cadmium batteries Cd (100%) pH 1.5; temperature 30 ◦C;
incubation time 28 d [54]

Acidithiobacillus ferrooxidans Mobile phone PCB Cu (99%); Ni (99%)

170 rpm; temperature 30 ◦C; initial
pH 1.0; pulp density 9.25 g/L; Fe3+

concentration 4.17 g/L; incubation
time 55 d

[55]

Acidithiobacillus ferrooxidans Nickel ion batteries Co (65%)
pH 2.5; temperature 30 ◦C;

incubation time 20 d; pulp density
5 g/L

[56]

Acidithiobacillus thiooxidans Computer PCBs Cu (75%) Pulp density 0.7%; 9 d [49]

Acidithiobacillus ferrooxidans Nickel ion batteries Co (99.9%) pH 3.0; temperature 35 ◦C;
incubation time 6 d [57]

Acidithiobacillus ferrooxidans Mobile phone PCB
Cu (95.92%); 93.53% (Al);
92.58% (Zn); 65.27% (Ni);

95.33% (Sn)

Temperature 20–35 ◦C; waste PCB
concentration 5%; inoculation

volume 5% (v/v)
[58]

Acidiphilium acidophilum Computer PCBs 100% (Cu) Incubation time 10 d; H2O2
concentration 30% [50]

Acidithiobacillus ferrooxidans Mobile phone PCB 95%–100% (Cu) Incubation temperature 30 ◦C;
130 rpm; pulp density 7.5 g/L; 48 h [59]

Acidithiobacillus ferrooxidans Computer PCBs 92% (Cu) pH 1.8; pulp density 35 g/L; 30 ◦C;
170 rpm [19]

The utilization of mixed cultures or a consortium of chemolithotrophic organisms
yields better results in comparison to a single microbial species [39] (Table 2). Arslan [60]
used Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans for the extraction of met-
als from discarded PCBs while investigating the effect of bioprocess parameters on the
bioleaching process. Peak recovery efficiencies of 94% (copper), 89% (nickel), 88% (zinc),
and 59% (aluminum) were recorded at optimum conditions of 10% (v/v) inoculum volume,
10% pulp density, 10 d leaching time, 1.8 initial pH, 30 ± 2 ◦C initial temperature, 125 µm
particle size, and 180 rpm agitation speed. In addition, a cocktail of Leptospirillum ferriphilum
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and Sulfobacillus thermosulfidooxidans was employed for the bioleaching of copper from
waste PCBs [1]. About 94% of copper was recovered from 100 g/L PCB concentrates in
9 d. Ghassa et al. [61] achieved recovery efficiencies of 99.7% (nickel), 99.9% (copper),
and 84% (lithium) during the bioleaching of metals from lithium-ion batteries in the pres-
ence of a consortium of the Ferroplasma sp., Sulfobacillus sp., Leptospirillum ferriphilum, and
Acidithiobacillus caldus at 45 ◦C (130 rpm). Mixed cultures of adapted acidophilic bacteria
consisting of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans were inoculated
into a growth medium under the conditions of FeSO4 (36.7 g/L), sulfur (5 g/L), pH 1.5, par-
ticle size (<75 µm), and pulp density (40 g/L) during the bioleaching of metals from spent
lithium-ion laptop batteries [62]. Maximum recovery efficiencies of 89.4% (nickel), 99.2%
(lithium), and 50.4% (cobalt) were recorded. Similarly, improved bioleaching of metals from
waste PCBs of computers by Acidithiobacillus ferrooxidans and Acidiphilium acidophilum at a
pulp density of 7.5 g/L within 18 d has been reported [63]. Maximum leaching efficiencies
of 96% (copper), 94.5% (zinc), 75% (nickel), and 74.5% (lead) were recorded.

Table 2. Efficiencies of some chemolithotrophic bacteria (mixed culture/consortium) in the bioleach-
ing of metals from e-waste.

Bacteria Metal Source Recovery Efficiency (%) Bioleaching Conditions Reference

Acidithiobacillus ferrooxidans,
Leptospirillum ferriphilum,

Acidithiobacillus caldus,
Acidithiobacillus thiooxidans,

Sulfobacillus sp., and Ferroplasma sp.

Cell phone PCB 98%–99% (Cu) Pulp density (7%, 10%, and
15% w/v); incubation time 12 d [64]

Acidithiobacillus ferrooxidans and
Acidithiobacillus acidophilum Waste PCB 96% (Cu); 94.5% (Zn);

75% (Ni); 74.5% (Pb)
Pulp density 7.5 g/L; pH 2.5;

170 rpm; 30 ◦C; 18 d [63]

Acidithiobacillus ferrooxidans and
Acidithiobacillus thiooxidans Waste PCB Cu (86%); Zn (100%);

Ni (100%)
Pulp density 15 g/L; 180 rpm;

30 ◦C; 25 d [65]

Acidithiobacillus ferrooxidans,
Ferroplasma acidiphilum, and

Leptospirillum ferriphilum

Desktop computer
motherboards 80.5% (Cu)

Pulp density 5%; 170 rpm; 45
◦C; pH 1.6; Fe3+ concentration

9 g/L; graphite 2.5 g/L; 5 d
[66]

Acidithiobacillus ferrooxidans,
Leptospirillum ferrooxidans, and

Acidithiobacillus thiooxidans
Mobile phone PCB 97.3% (Cu); 55.8% (Al);

79.3% (Ni); 66.8% (Zn)

Fe3+ concentration 9 g/L; pulp
density 10%; inoculum volume

10% (v/v); pH 1.8
[67]

Acidithiobacillus caldus, Leptospirillum
ferriphilum, Sulfobacillus sp., and

Ferroplasma sp.
Lithium-ion batteries Co (99.9%); Ni (99.7%);

Li (84%) 45 ◦C; 130 rpm [61]

Acidithiobacillus ferrooxidans and
Acidithiobacillus thiooxidans

Spent lithium-ion
laptop batteries

89.4% (Ni); Co (50.4%);
Li (99.2%)

FeSO4 36.7 g/L; Sulfur 5 g/L;
pH 1.5; particle size < 75 µm;

40 g/L pulp density
[62]

3.2. Bioleaching by Heterotrophic Microorganisms

Heterotrophic microbes (bacteria and fungi) consume organic carbon sources and
water as electron and energy sources [6]. In addition, this group of organisms can tolerate
a broader pH range and complex metals, making them employable in the treatment of
moderate alkaline waste materials [39].

3.2.1. Bioleaching by Heterotrophic Cyanogenic Bacteria

Heterotrophic bacteria produce by-products that facilitate the mobilization of metals
from e-waste. This is typical of cyanogenic bacterium that secretes hydrogen cyanide (HCN)
as a secondary metabolite to mobilize precious metals from e-waste, a phenomenon known
as cyanogenesis [22]. Under alkaline conditions, cyanogenic organisms synthesize cyanide
in the presence of glycine (precursor) between the exponential and stationary phase via
oxidative decarboxylation. This reaction is catalyzed by HCN synthase. The metabolite
dissolves precious metals from e-waste through the formation of a soluble metal–cyanide
complex, which facilitates the extraction of metals [68]. However, low yields of cyanide by
the organisms and toxicity of e-waste to the cyanogenic bacteria affect the mass recovery
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of metals from waste materials [2]. Cyanide production by microorganisms is influenced
by temperature, pH, dissolved oxygen concentration, and glycine [69]. The dissolution
of precious metals by cyanide consists of anodic (6) and cathodic (7) reactions, which are
summarized in Equation (8) illustrated below:

4Au + 8CN− → 4Au (CN)2
− + 4e− (6)

O2 + 2H2O + 4e− → 4OH− (7)

4Au + 8CN− + O2 + 2H2O4 → Au (CN)2
− + 4OH− (8)

Cyanogenic microbes are efficiently employed to leach valuable metals and metal-
loids such as gold, silver, platinum, palladium, and titanium from e-waste. Prior to the
bioleaching of precious metals from e-waste using heterotrophic organisms, base metals are
recovered from waste materials, since they are available at high concentrations and form
complexes with the metabolites, and thus reduce the mobilization of precious metals [36].
Cyanide-producing bacteria include Chromobacterium violaceum, Bacillus megaterium, and the
Pseudomonas sp.; however, Chromobacterium violaceum is the most widely studied, followed
by the Pseudomonas species (Table 3). Li et al. [25] reported a 70.6% bioleaching efficiency
of gold from a pretreated waste PCB using Chromobacterium violaceum ATCC 12471. Chi
et al. [70] studied the bioleaching of metals from waste mobile PCBs in the presence of
Chromobacterium violaceum. The bioleaching experiment was conducted at 30 ◦C (150 rpm)
at a pH range of 8.0–11.0 when 15 g/L pulp density was used. The recovery of gold and
copper from the solid matrix was enhanced from 7.78% to 10.8%, and 4.9% to 11.4% as the
pH increased from 8.0 to 11.0, and 8.0 to 10.0, respectively, in 8 d. In addition, indigenous
Pseudomonas balearica SAE1 isolated from an e-waste recycling facility in India was em-
ployed for the bioleaching of precious metals from waste PCBs [20]. The results obtained
showed recovery efficiencies of 68.5% (gold) and 33.8% (silver) at the optimum temperature
of 30 ◦C, pH 9.0, pulp density 10 g/L, and glycine concentration 5 g/L. Marra et al. [71]
recorded a recovery efficiency of 48% (gold) from e-waste shredding dust in the presence
of Pseudomonas putida WSC361 at the optimized conditions of pH 7.2-8.4; glycine concen-
tration 10 g/L; pulp density 10 g/L; 150 rpm, and 3 h. Mutated Pseudomonas fluorescens
CICC21620 was able to leach 54% gold from waste PCB under the optimized conditions
of pH 9.0, bacterial density 3.33% (v/v), pulp density 0.33% (w/v), glycine 0.133 mol/L,
and a glycine–methionine ratio of 1:10 [21]. Motaghed et al. [72] investigated the extraction
of platinum and rhenium from a spent refinery catalyst using Bacillus megaterium PTCC
1656. Maximum recoveries of 15.7% (platinum) and 98% (rhenium) were recorded at an
optimum glycine concentration and pulp density of 12.8 g/L and 4% (w/v), respectively.

Table 3. Efficiencies of some heterotrophic bacteria (pure culture) in the bioleaching of metals
from e-waste.

Bacteria Metal Source Recovery Efficiency (%) Bioleaching Conditions Reference

Pseudomonas chlororaphilis Waste PCBs 8.2% (Au); 12.1% (Ag);
52.3% (Cu)

pH 7.0; 25 ◦C; glycine 4.4 g/L;
+methionine 2 g/L; 72 h; 60 rpm [73]

Chromobacterium violaceum Electronic scrap materials 30% (Au) Pulp density 0.5%; 30 ◦C; 170 rpm; 8 d [74]

Pseudomonas putida Waste PCBs 44% (Au) 10 g/L glycine; pulp density 1%;
pH 7.3–8.6; 30 ◦C; 2 d [36]

Chromobacterium violaceum Waste mobile phone PCBs 24.6% (Cu); 11.31% (Au) H2O2 0.004% (v/v); pH 8.0–11.0; 150 rpm;
30 ◦C; pulp density 15 g/L; 8 d [70]

Bacillus foraminis AMOLED display of
smartphones

100% (Ag); 56.8% (Mo);
41.4% (Cu) Incubation time 12 d; 160 rpm; 40 ◦C [75]

Pseudomonas biofilm Waste computer PCBs 14.7% (Ag) Pulp density 2%; pH 7.0; 25 ◦C; 7 d [76]

Bacillus megaterium Computer PCBs 63.8% (Au) Pulp density 2 g/L; pH 10.0 [55]
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Table 3. Cont.

Bacteria Metal Source Recovery Efficiency (%) Bioleaching Conditions Reference

Pseudomonas fluorescens Waste PCBs 54% (Au)
pH 9.0; bacterial density 3.33% (v/v);

pulp density 0.33%; glycine 0.133;
glycine: methionine ratio 1:10

[21]

Chromobacterium violaceum Waste PCBs 70.6% and 52.4% (Au)
MgSO4·7H2O 4 × 10−3 mol/L; NaCl

1.7 × 10−1 mol/L; particle size 200 mesh;
7 d

[25]

Bacillus megaterium
PTCC 1656 Spent catalyst 15.7% (Pt); 98% (Re) Glycine 12.8 g/L; pulp density 4%; 30 ◦C;

170 rpm; 7 d [72]

Pseudomonas balearica
SAE1 Waste PCBs 68.5% (Au); 33.8% (Ag) pH 9.0; pulp density 10 g/L; 30 ◦C;

glycine 5 g/L [20]

Chromobacterium violaceum Mobile PCBs 11% (Au) pH 11.0; pulp density 15 g/L; glycine
5 g/L; MgSO4 0.5 g/L; 8 d; 150 rpm [77]

Chromobacterium violaceum
MTCC 2656 SIM card waste 13.79% (Cu); 0.44% (Au);

2.55% (Ag)
pH 9.0; glycine 5 g/L; pulp density

10 g/L; 150 rpm; 30 ◦C; 7 d [78]

Pseudomonas plecoglossicida PCB 68.5% (Au) pH 7.3; glycine 5 g/L; 150 rpm; 3 d [79]

Pseudomonas putida PCB 44% (Au) pH 7.3–8.6; pulp density 5 g/L; glycine
10 g/L; 150 rpm; 2 d [36]

Pseudomonas chlororaphilis PCBs 8.2% (Au)

The cocktail of cyanogenic bacteria enhances bioleaching efficiency. This is notable in
a study conducted by Pradhan and Kumar [80] for the bioleaching of metals from personal
computer e-waste, using a mixture of Chromobacterium violaceum and Pseudomonas fluorescens
when the culture medium (pH 7.2) was incubated at 30 ◦C (150 rpm). Recovery ef-
ficiencies of 83% (copper), 8% (silver), 13% (iron), 73% (gold), and 49% (zinc) were
achieved. Zhou et al. [81] assessed the efficacy of two cyanide-producing bacterial strains
(Pseudomonas putida and Bacillus megaterium) that were co-cultured for the mobilization of
precious metals from waste PCBs. Maximum gold mobilization of 83.59% was recorded at
pH 10.0, pulp density 5 g/L, and leaching time of 34 h. Gold bioleaching from e-waste by
Chromobacterium violaceum and Pseudomonas fluorescens at pulp densities of 2 and 4% (w/v)
resulted in a recovery efficiency of 8% [82].

3.2.2. Bioleaching by Heterotrophic Fungi

This group of fungi secrete huge amounts of organic acids (such as carboxylic acid,
gluconic acid, citric acid, and lactic acid), which induce the mobilization of metals from
e-waste [83]. This is achieved through the reaction of organic acids with metals through aci-
dolysis, redoxolysis, bioaccumulation, chelate, and complex formation mechanisms [84,85].
In addition, metal solubilization by fungi may also be due to the reduction in highly
oxidized metal compounds in the presence of certain biodegradative extracellular en-
zymes [12]. The ability of fungi to adapt and tolerate environmental stress (e.g., metal
pollution) makes them a better candidate in mineral bioleaching. Fungal genera such as
Penicillium, Aspergillus, Trichoderma, Candida, Saccharomyces, and Phanerochaete are
well documented for the solubilization of metals from e-waste due to the possession of
bioconversion reactions in their metabolic machinery [6,32,85] (Table 4). Cui et al. [86]
recorded 100% recovery efficiency of Indium from waste LCD panels when Aspergillus
niger was inoculated into an optimized growth medium (pH 7.0) at 30 ◦C (200 rpm) in
the presence of 1% (w/v) indium tin oxide for 15 d. Arshadi et al. [48] investigated the
bioleaching of metals from PCBs in the presence of Penicillium simplicissimum. The results
obtained showed the recovery of 90% (copper) and 89% (nickel) at pH 7.0 and spore con-
centration of 3.3 × 107 (copper) and pH 2.0, 30 ◦C, 150 rpm and spore concentration of 106

(nickel), respectively. Liu et al. [87] reported a 60.96% leaching rate of copper from waste
PCBs by Phanerochaete chrysosporium at pH 5.0, pulp density of 2%, and 30 ◦C (150 rpm) for
14 d. In another study by Bahaloo-Horeh et al. [88], Aspergillus niger was employed for the
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bioleaching of metals from spent lithium-ion mobile phone batteries. Maximum leaching
capacities of 100% (lithium), 72% (manganese), 45% (nickel), 38% (cobalt), 94% (copper),
and 62% (aluminum) were recorded at 30 ◦C for 30 d. Patel and Lakshmi [89] investigated
the ability of Aspergillus fumigatus A2DS in the mobilization of metals from mobile phone
PCBs. Maximum leaching efficiencies were obtained at the respective optimum conditions:
pulp density of 0.5% (42.37% nickel and 62% copper), inoculum volume 1% (32.29% nickel
and 58% copper), pH 6.0 (32% nickel and 58.7% copper), and incubation temperature of
40 ◦C (27.07% nickel and 61.8% copper). Netpae and Suckley [90] evaluated the efficacy
of Rhizopus oligosporus and Aspergillus niger in the bioleaching of metals from PCB scrap
collected from an e-waste recycling outlet. The best leaching efficiency was recorded by
Aspergillus niger (30.63% lead and 46.92% copper) when compared to Rhizopus oligosporus
(19.61% lead and 8.53% copper). A highly efficient recovery of 98% for gold (III) ion from
an aqua regia leachate of a central processing unit was achieved by Saccharomyces cerevisiae
at 5.0 × 1014 cells/m3 within 10 min [91].

Table 4. Efficiencies of some heterotrophic fungi (pure culture) in the bioleaching of metals
from e-waste.

Fungi Metal Source Recovery Efficiency (%) Bioleaching Conditions Reference

Aspergillus niger Waste PCBs 100% (Zn); 80.39% (Ni);
85.88% (Cu)

Pulp density (0.5–20 g/L); 120 rpm;
ambient temperature; 30 d [92]

Trichoderma viride Computer PCBs 1% (Pd); 10% (Au) pH 5.0; 30 d; 1 g PCB [93]

Penicillium simplicissimum Cell phone PCBs 90% (Cu); 89% (Ni) Cu: pH 7.0; 3.3 × 107 spores; sugarNi:
pH 2.0; 106 spores; molasses

[48]

Phanerochaete
chrysosporium Waste PCBs 60.96% (Cu) pH 5.0; pulp density 2%; 30 ◦C;

150 rpm; 14 d [87]

Aspergillus niger Spent lithium-ion
mobile phone batteries

100% (Li); 72% (Mn); 45%
(Ni); 38% (Co); 94% (Cu);

62% (Al)
30 ◦C; 30 d [88]

Candida orthopsilosis Cell phone PCBs 1% (Cu) pH 4.4; 0.5 g PCB; 35 d [93]

Aspergillus tubingensis Computer PCBs 34% (Cu); 54% (Zn); 8% (Ni) pH 5.0; pulp density 0.25%–1%; 33 d [94]

Aspergillus fumigatus A2DS Mobile phone PCB 42.37%, 32.29%, 27.07% (Ni);
62%, 58%, 61.8% (Cu)

Pulp density 0.5%; inoculum volume
1% (v/v); pH 6.0; 40 ◦C [89]

Saccharomyces cerevisiae PCB scrap 98% (Au) 5.0 × 1014 cells; 10 min [91]

Trichoderma atroviride Computer PCB 1% (Pd); 13% (Au) pH 5.0; 1 g PCB; 30 d [93]

A consortium of heterotrophic fungi enhances organic acid secretion for the mass
mobilization of metals from e-waste [85]. Madrigal-Arias et al. [95] used a cocktail of
Aspergillus niger MXPE6 and Aspergillus niger MX7 for the recovery of metals from cellphone
PCBs. A maximum leaching efficacy of 87% (gold) was observed at a leaching time of 14 d.
The biorecovery of metals from Ni–Cd batteries using a consortium of Aspergillus niger,
Aspergillus tubingensis, Aspergillus versicolor, Aspergillus japonicus, Aspergillus fumigatus,
and Aspergillus flavipes was reported [96]. Peak leaching efficiencies of 80% (nickel), 80%
(cadmium), 80% (zinc), and 90% (cobalt) were obtained at a pulp density of 1 g/L, pH 5.0,
27 ◦C, 150 rpm, and particle size < 200 µm. Brandl et al. [97] recovered 65% (copper), >95%
(zinc), >95% (lead), and >95% (nickel) from e-waste in the presence of Aspergillus niger and
Penicillium simplicissimum at a pulp density of 1%–10% (w/v), pH 6.0, 150 rpm, and 30 ◦C.
Similarly, a cocktail of Aspergillus niger and Aspergillus tubingensis has been employed for
the recovery of 52% (cobalt), 95% (lithium), 95% (manganese), 77% (aluminum), and 72%
(nickel) from cellphone batteries at a pulp density of 10 g/L, 30 ◦C, and 140 rpm [98].

4. Mechanisms of the Bioleaching of Metals from E-Waste

The bio-extraction of metals from solid waste materials differs among a broad range
of microorganisms. However, it is governed by the following mechanisms of action in most
organisms, including bacteria and fungi:
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4.1. Acidolysis

Acidolysis occurs when the oxygen atoms present in a metal oxide are protonated,
thereby resulting in the mobilization of metals from a solid matrix. The oxygen atoms
interact with water molecules to facilitate the recovery of metals from its source into a
bioleaching medium [6,99]. Organic acids such as gluconic acid, formic acid, pyruvic
acid, etc., aid the protonation of oxygen atoms. In fungi, organic acid is essential for the
maintenance of a low pH required for an enhanced bioleaching process [85]. In addition,
acid reduces the availability of anions to cations in a metallic compound reaction, thus
enhancing the solubility of metal ions from waste materials. This mechanism is rapid and
prevalent among heterotrophic bacteria and fungi, and has been used for the extraction of
metals such as lead, zinc, nickel, and copper [100]. For instance, Amiri et al. [101] reported
the significance of organic acids from Aspergillus niger in the detachment of molybdenum,
nickel, and aluminum from industrial waste. An increase in the secretion of itaconic acid
and oxalic acid by Aspergillus niveus resulted in an enhanced recovery of zinc (75.7%), nickel
(73.6%), and copper (80.3%) from waste PCB in 15 d [102]. In addition, Liao et al. [103]
reported that ascorbic acid from Acidithiobacillus caldus and Sulfobacillus thermosulfidooxidans
improved the bioleaching of copper (94%) and lithium (95%) from Li-ion batteries at a pulp
density of 20 g/L.

4.2. Redoxolysis

Redoxolysis is an oxidation–reduction approach that permits the conversion of insol-
uble metals to corresponding soluble metallic form. This mechanism is common among
chemolithotrophic microbes such as Leptospirillum ferrooxidans, Acidithiobacillus ferrooxidans,
and Acidithiobacillus thiooxidans, among others [104]. During the bioconversion process, Fe3+

serves as an oxidizing agent and undergoes reduction to Fe2+, followed by a subsequent
oxidation to Fe3+ for metal mobilization. Various metals such as lead, zinc, nickel, copper,
etc., are recovered from e-waste using this mechanism [100].

4.3. Complexolysis

Complexolysis is also known as a chelation mechanism. The target metals from a
solid matrix form a complex with ligands, resulting in the formation of cyanides, organic
acids, or siderophores, which then facilitate the mobilization of metals from waste mate-
rials. Complexolysis occurs upon acidolysis and is used for the extraction of metals such
as silver, gold, iron, platinum, and palladium [100,105]. The secretion of iron-chelating
compounds by microbes serves as a solubilizing agent for the recovery of Fe3+. In ad-
dition, fungal organic acids produce protons and boost the complexing capacity during
metal mobilization [85]. This mechanism is found among heterotrophic bacteria and
fungi, including Chromobacterium violaceum, Pseudomonas fluorescens, Bacillus megaterium,
Pseudomonas aeruginosa, Aspergillus niger, etc. [12].

4.4. Biosorption

Biosorption is a metabolically independent accumulation of metals by microorgan-
isms from the bioleaching medium [85]. It is an emerging physico-chemical adsorption
technique that utilizes certain types of inactive, dead, or viable microbial biomass for
the removal of metals from e-waste through complexation, chelation, coordination, and
ion-exchange between the metals [12,39]. The microbial cell wall consists of many func-
tional groups, including a carbonyl, phosphodiester, sulfonate, and phosphate group,
that are needed for sequestering metals present in e-waste [106,107]. Biomass of sev-
eral fungal, bacterial, and algal species has been used as a biosorbent for the recovery
of heavy metals, precious metals, and rare earth metals from e-waste [12]. Microorgan-
isms are considered better metal-absorbing agents due to their rapid growth under con-
trolled conditions, adaptability toward environmental conditions, and large fungal hypha
surface-area–volume ratio [108,109]. Di Piazza et al. [110] reported approximately 390 ppm
lanthanum and 1520 ppm terbium following the biosorption of metals from waste electri-
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cal and electronic equipment by Penicillium expansum. A cell-free culture supernatant of
Leptospirillum ferriphilum and Sulfobacillus thermosulfidooxidans was used for the bioleaching
of metals from PCBs (5 g/L). Maximum (100%) copper recovery efficiency was recorded in
2 h [1].

4.5. Bioaccumulation

It involves the uptake of metals from a bioleaching medium through the outer mem-
branes of microorganisms [32]. In this microbe–metal interaction, soluble metals are
mobilized intracellularly via the cell membrane, leading to the accumulation of metal ions
in the cell vacuole [85]. The presence of certain functional moieties such as phosphate,
amine, carboxyl, hydroxyl, etc., on the cell wall facilitates the solubilization of metals from
a solid matrix. The metal ions serve as a cation exchanger and bind to the functional groups.
Metal ion solubilization by fungal mycelium is accomplished through active bio-synthetic
reactions and passive adsorption [85,99].

5. Strategies for the Biorecovery of Metals from E-Waste

The recovery of metals from e-waste in the presence of microorganisms is achieved
with the strategies described below.

5.1. One-Step Bioleaching

In a one-step bioleaching technique, a freshly grown microbial culture is inoculated
into a sterile bioleaching medium, along with the e-waste in shake flasks under aseptic
conditions [2] (Figure 3). The bioleaching process is carried out at optimum bioprocess
conditions suitable for the growth of the organisms, secretion of biolixiviants, and biorecov-
ery of metals from waste materials. However, the toxicity of e-waste is a great challenge
for the biorecovery process, as this affects the growth of the organisms, resulting in low
yields of metabolites, with a consequential effect on metal recovery efficiency [9]. One-step
bioleaching has been employed by various researchers for the mobilization of metals from
e-waste [55,70]. For instance, Jujun et al. [73] investigated the one-step bioleaching efficacy
of Pseudomonas chlororaphilis for the extraction of copper, gold, and silver from cellphone
PCBs at optimum bioprocess conditions: glycine concentration 4.4 g/L, methionine 2 g/L,
25 ◦C, and pH 7.0. Leaching efficiencies of 52% (copper), 8% (gold), and 12% (silver) were
obtained. Trivedi and Hait [111] employed single-step bioleaching for the recovery of
54% (copper) and 89% (zinc) from waste PCBs using Aspergillus niger at a pulp density
of 2.5 g/L, pH 5.0–9.0, 30 ◦C, and 170 rpm. In addition, Arshadi et al. [112] recovered
72% (copper) and 3% (gold) by one-step bioleaching in the presence of Bacillus megaterium
at optimized conditions of 10 g/L glycine concentration, pH 10.0, and pulp density of
0.8% (w/v). Garg et al. [113] achieved maximum (100%) copper recovery efficiency from
cellphone PCBs within 6–8 d during a one-step bioleaching experiment in the presence
of Leptospirillum sp. Khatri et al. [114] recorded 89% (copper) recovery efficiency within
10 d from a combination of cellphone and computer PCBs via one-step bioleaching in
the presence of Acidithiobacillus thiooxidans at an optimum pulp density of 1% (w/v) and
pH 1.0–1.6.



Minerals 2023, 13, 828 12 of 25

Minerals 2023, 13, x FOR PEER REVIEW 12 of 26 
 

 

Metal ion solubilization by fungal mycelium is accomplished through active bio-synthetic 

reactions and passive adsorption [85,99]. 

5. Strategies for the Biorecovery of Metals from E-Waste 

The recovery of metals from e-waste in the presence of microorganisms is achieved 

with the strategies described below. 

5.1. One-Step Bioleaching 

In a one-step bioleaching technique, a freshly grown microbial culture is inoculated 

into a sterile bioleaching medium, along with the e-waste in shake flasks under aseptic 

conditions [2] (Figure 3). The bioleaching process is carried out at optimum bioprocess 

conditions suitable for the growth of the organisms, secretion of biolixiviants, and biore-

covery of metals from waste materials. However, the toxicity of e-waste is a great chal-

lenge for the biorecovery process, as this affects the growth of the organisms, resulting in 

low yields of metabolites, with a consequential effect on metal recovery efficiency [9]. One-

step bioleaching has been employed by various researchers for the mobilization of metals 

from e-waste [55,70]. For instance, Jujun et al. [73] investigated the one-step bioleaching 

efficacy of Pseudomonas chlororaphilis for the extraction of copper, gold, and silver from 

cellphone PCBs at optimum bioprocess conditions: glycine concentration 4.4 g/L, methio-

nine 2 g/L, 25 °C, and pH 7.0. Leaching efficiencies of 52% (copper), 8% (gold), and 12% 

(silver) were obtained. Trivedi and Hait [111] employed single-step bioleaching for the 

recovery of 54% (copper) and 89% (zinc) from waste PCBs using Aspergillus niger at a pulp 

density of 2.5 g/L, pH 5.0–9.0, 30 °C, and 170 rpm. In addition, Arshadi et al. [112] recov-

ered 72% (copper) and 3% (gold) by one-step bioleaching in the presence of Bacillus mega-

terium at optimized conditions of 10 g/L glycine concentration, pH 10.0, and pulp density 

of 0.8% (w/v). Garg et al. [113] achieved maximum (100%) copper recovery efficiency from 

cellphone PCBs within 6–8 d during a one-step bioleaching experiment in the presence of 

Leptospirillum sp. Khatri et al. [114] recorded 89% (copper) recovery efficiency within 10 d 

from a combination of cellphone and computer PCBs via one-step bioleaching in the pres-

ence of Acidithiobacillus thiooxidans at an optimum pulp density of 1% (w/v) and pH 1.0–

1.6. 

 

Figure 3. Schematic diagrams showing procedures for the one-step bioleaching of metals from e-

waste. 

Fresh inoculum + sterile 
culture medium + 

sterile e-waste in shake 
flasks

Incubation at desired 
temperatures

Separation of cell-free culture 
supernatants from bioleached 

residue: centrifugation or 
filtration

Metal analysis of culture 
supernatants

Figure 3. Schematic diagrams showing procedures for the one-step bioleaching of metals
from e-waste.

5.2. Two-Step Bioleaching

In this approach, microbes are cultivated aseptically without e-waste, in shake flasks
containing a fresh culture medium at optimum and appropriate bioprocess conditions until
the organism attained maximum cell growth and biolixiviant production [36]. Thereafter,
sterilized e-waste at a desired particle size and pulp density is added into the culture
medium as a second step, followed by further incubation for a particular period [115]
(Figure 4). This technique lessens the inhibitory effects of e-waste on microbial growth and
metabolite secretion, thereby enhancing the metal leaching capacity of the organisms [116].
In addition, it is rapid and can be conducted at a high pulp density. The employabil-
ity of two-step bioleaching as a preferred method for metal recovery from e-waste has
been reported by several co-workers [25,117]. Mary and Meenambal [118] used a two-
step bioleaching technique for the recovery of copper and lead from waste PCBs using
Penicillium chrysogenum at pH 3.0, pulp density 1% (w/v), 25 ◦C, and 160 rpm. Maximum
leaching efficiencies of 60% and 82%, respectively, were obtained. Işildar et al. [36] em-
ployed two-step bioleaching for the mobilization of 44% (gold) from discarded PCBs
in the presence of Pseudomonas putida WCS361 at 1% pulp density, glycine concentra-
tion 10 g/L, pH 7.3–8.6, and 30 ◦C for 2 d. In addition, a metabolically engineered
Chromobacterium violaceum pBAD strain was used for the recovery of 30% (gold) from
electronic scrap materials using a two-step bioleaching approach at 0.5% pulp density,
30 ◦C, and170 rpm for 8 d [74]. Shah et al. [119] investigated two-step bioleaching for an
enhanced recovery of metals from computer PCBs using Leptospirillum ferriphilum. Max-
imum recovery efficiencies of 85.26% (copper), 97.75% (zinc), and 93.22% (nickel) were
recorded within an 8 d reaction time. The two-step bioleaching of copper from waste PCB
resulted in 99%–100% recovery efficiency in the presence of Leptosprillum ferriphillum [59].
Becci et al. [120] investigated the potential of Acidithiobacillus ferrooxidans for the recovery
of metals from computer PCBs using a two-step bioleaching approach at the optimum
conditions of 30 ◦C, PCB concentration 5% (w/v), and Fe2+ 10 g/L. Maximum recovery
efficiencies of 94% (copper) and 70% (zinc) were recorded with a leaching time of 9 d.
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5.3. Spent Medium Bioleaching

In this method, an organism is grown in a culture medium in shake flasks in the
absence of e-waste, until it attains peak cell density and biolixiviant production. There-
after, e-waste is added into a cell-free culture supernatant obtained via centrifugation or
filtration of the cultured broth, and is subjected to further incubation [116] (Figure 5). The
metabolites present in the supernatant facilitate the recovery of metals in e-waste. Unlike
in single-step and two-step bioleaching, in this technique, the organisms are not in close
contact with the e-waste. Spent medium bioleaching has been recognized as the most
effective approach, as it allows for higher amounts of e-waste (i.e., higher pulp densities)
at a higher pH, without any consideration of the toxic effect of waste materials on the
microbes [121]. More so, it eliminates side reaction between the organisms and metabo-
lites [2]. Natarajan and Ting [68] reported the efficacy of spent medium bioleaching in
comparison to two-step bioleaching for the mobilization of gold (18%) from e-waste by
Chromobacterium violaceum at 0.5% pulp density, 30 ◦C, and170 rpm for 8 d. A shift in the
pH of the spent medium favored cyanide ion production, resulting in enhanced (30%)
gold recovery. This was found to be greater than the 11.3% gold leaching efficiency ob-
tained in the two-step bioleaching experiment. Similarly, Das et al. [122] confirmed the
effectiveness of spent medium bioleaching for the mobilization of gold (30%) and copper
(95.7%) from urban solid waste in comparison to two-step bioleaching at a pulp density
of 0.5% and pH 10.0 by Chromobacterium violaceum. In addition, Wu et al. [1] employed
Leptospirillum ferriphilum and Sulfobacillus thermosulfidooxidans culture supernatants as a
preferred approach to eliminate the toxic effects of e-waste during metal bioleaching. The
results obtained showed a maximum copper leaching capacity (93.4%) from PCBs (100 g/L)
in 9 d. The spent medium bioleaching of rare earth elements (REEs) from waste materials
(spent fluid catalytic cracking catalyst) was carried out using culture supernatants from
Gluconobacter oxydans. Maximum leaching efficiency (49% of total REEs) was recorded,
with preferential recovery of lanthanum over cerium. The leaching efficiency increased
following an enhanced secretion of gluconic acid by the bacterial strain [121].
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6. Influence of Bioprocess Parameters on the Bioleaching of Metals

The biorecovery of metals from e-waste is dependent on the physiology of the organ-
isms and availability of suitable physico-chemical parameters at the optimum conditions
required to support the growth of microorganisms and metabolite secretion [32] (Figure 6).
Other factors that affect metal bioleaching include the effectiveness of the leaching methods:
one-step, two-step, or spent medium bioleaching; and the mode of operation: heap, col-
umn, shake-flask, or bioreactor operation [6,123]. These parameters influenced bioleaching
efficiency autonomously or as combined [124,125]. Some of the various factors that affect
bioleaching are discussed below.

6.1. pH

The pH of the bioleaching medium is a crucial factor that influences the mobilization
of metals from e-waste, since it affects the growth of microorganisms and biolixiviant
production. However, a deviation in the optimum pH requirement of the organisms can
have a detrimental effect on their growth, metabolic activities, and leaching efficiency [125].
The pH requirements differ among different groups of microbes. For instance, pH values in
the range of 2.0–2.5 are optimal for iron- and sulfur-oxidizing bacteria, with an abundance
of the proton concentration [83]. The optimal growth of cyanogenic organisms occurs at
an alkaline pH [2]. Amiri et al. [126] reported different optimum pH values for organic
acid secretion by Aspergillus niger during the biorecovery of metals from industrial waste.
In addition, an increase from 8.0 to 11.0 (gold), and 8.0 to 10.0 (copper) in the pH of a
yeast–peptone medium used for the cultivation of Chromobacterium violaceum enhanced
gold and copper mobilization from 7.78% to 10.8%, and 4.9% to 11.4%, respectively, from
e-waste [70]. Gold recovery from waste PCBs by Pseudomonas balearica SAE1 is enhanced
(44% to 68.5%) following an adjustment in the pH of the bioleaching medium from 7.0 to
9.0 [20].
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6.2. Temperature

The efficiency of the bioleaching process is dependent on temperature, since each or-
ganism has a specific optimum temperature required for growth and metabolite
production [2]. For instance, some acidophilic and cyanogenic bacteria and fungi have op-
timal temperatures in the range of 28–30 ◦C, 25–35 ◦C, and 25–30 ◦C, respectively [2,83,85].
However, thermophilic bacteria can be employed at elevated temperatures within the
range of 50 to 80 ◦C for bioleaching [127,128]. Kumar et al. [20] investigated the influ-
ence of temperatures (25–40 ◦C) on the bio-extraction of metals from waste PCBs by
Pseudomonas balearica SAE1. Maximum yields of 56.2% (gold) and 26.6% (silver) were
recorded at 30 ◦C. Bacillus megaterium PTCC 1656 [72] and Aspergillus niger DDNSI [129]
were employed for the bioleaching of platinum, rhenium, silver, copper, and iron from
industrial waste, at 30 and 28 ◦C, respectively.

6.3. Pulp Density

Pulp density is also known as the liquid-to-solid ratio. It is the amount of a solid
matrix (e-waste) present in a solution. A higher liquid-to-solid ratio signifies a low pulp
density [125]. A higher pulp density contributes to the toxicity of the e-waste, affecting
the growth and metabolic activity of organisms [130]. In other words, a higher pulp
density limits the oxygen mass-transfer rate, inhibits microbial growth and metabolite
production, and reduces the leaching efficiency [44,131]. Optimum pulp densities of
0.5%, 1%, and 4% have been reported for the biorecovery of precious metals from e-
waste by Chromobacterium violaceum, Roseovarius tolerans DSM 11457 and Bacillus megaterium,
respectively [10,68,72].

6.4. Culture Medium

The composition of the culture medium used for the cultivation of microorganisms
determines the leaching efficiency, since it influences the metabolism of the organisms.
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This medium consists of organic and inorganic nutrients, which are utilized by microbes
for growth and metabolite production. A growth medium containing organic substances
such as peptone, yeast extract, glycine, amino acids, etc., is used for the cultivation of
cyanogenic organisms for the recovery of precious metals from e-waste [132]. A chemically
defined medium consisting of ammonium sulphate, dipotassium hydrogen phosphate,
magnesium sulphate, iron sulphate, elemental sulfur, etc., provides nutrients for the growth
of chemolithotrophic organisms. These nutritive salts act as a cofactor for the enzyme-
catalyzed biosynthetic pathways for the secretion of metabolites that aid metal mobilization
from e-waste [2]. For instance, Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans
utilized ferrous ion and elemental sulfur as energy sources, which are later converted to
ferric ion and sulfuric acid, respectively, serving as lixiviants for the mobilization of base
metals from e-waste [60].

6.5. Aeration

The supply of oxygen is essential for microbial growth and metabolic activity during
metal bioleaching. Oxygen is provided to microbes (aerobes) via shaking or stirring using a
shaker incubator, measured in revolutions per minute (rpm) [126]. An ideal shaking speed
required for a bioleaching experiment is usually in the range of 130 to 170 rpm [24,48].
However, excess agitation renders the friction, abrasion, or disruption of microbial cells,
resulting in a decline in metal biorecovery efficiency [133]. A limited oxygen supply can
delay the oxidation of ferrous ion and elemental sulfur, leading to a reduction in bioleaching
efficiency [134].

6.6. Type and Physiology of Microorganisms

Microorganisms (bacteria and fungi) or their metabolic products are utilized for the
recovery of metals from e-waste. These organisms are classified, based on carbon and
energy requirements, as chemolithotrophic and heterotrophic organisms. The former
are further grouped as mesophiles, moderate thermophiles, and extreme thermophiles,
depending on their temperature demands [6]. In addition, the microbes can be applied as
pure cultures, mixed cultures, or a consortium for the bioleaching process. The leaching
efficiency of these organisms is determined by their adaptation to the metallic environment
and toxic nature of e-waste, optimal metal tolerance, and inoculum volume [133].

6.7. Leaching Substrate

The elemental and mineralogical composition of e-waste are crucial factors that influ-
ence bioleaching efficiency. This determines the type and amounts of metals present in the
solid matrix [32]. The composition of e-waste is measured using analytical equipment such
as inductively coupled plasma-mass spectrometer (ICP-MS), following acid digestion of
the waste materials in aqua regia, consisting of concentrated nitric acid and hydrochloric
acid [36]. In the biorecovery of precious metals from e-waste by cyanogenic organisms,
pretreatment for the removal of copper is imperative, as this base metal can form a stable
complex with cyanide, thereby reducing free cyanide yield and ultimately inhibiting the
recovery of precious metals [68]. Such pretreatment is carried out with the aid of nitric acid,
hydrogen peroxide, or Acidithiobacillus ferrooxidans.

In addition, the particle size of e-waste influences microbial growth and the biorecov-
ery of metals from the solid matrix. It is the reduced particle size of e-waste and is usually
measured in millimetres or micrometres. Bioleaching increases with decreasing particle
size. Different particle sizes of e-waste, including <100 µm [74], 120 µm [129], 150 µm [20],
<750 µm [34], <0.5 mm [124], and <22 mm [125] have been reported by several co-workers
during the bioleaching process.
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7. Techniques for the Large-Scale Bioleaching of Metals from E-Waste
7.1. Statistical Optimization of Bioprocess Parameters

The optimization of suitable bioprocess parameters that influence the growth and
metabolism of microorganisms is vital for an improved bioleaching efficiency [72]. A
conventional approach involving the change of one variable at a time, while keeping
other parameters at a constant level, is generally employed to enhance metal yields [20].
However, this technique is laborious, costly, time-demanding, and is characterized by
an inability to elucidate interactive effects among the tested variables [135]. As a result,
statistical experimental designs are employed as a promising method for an enhanced
recovery of metals from e-waste [25]. The significant parameters that affect metal biore-
covery are chosen using the Placket–Burman design. Thereafter, optimal conditions and
interactive effects of the variables are determined by an artificial neural network (ANN) or
response surface methodology (RSM) [136]. Response surface methodology is commonly
employed using the Box–Behnken design (BBD), Doehlert design (DD), or central com-
posite design (CCD). For instance, Abdol Jani et al. [137] investigated the influence of the
oxygen level, glycine concentration, and pulp density on the bio-extraction of gold from
e-waste by Chromobacterium violaceum DSMZ 30191 using the BBD of RSM. A maximum
leaching efficiency of 62.4% (gold) was recorded at optimal conditions of 0.56 mg/L (oxygen
concentration), 2.49 mg/L (glycine concentration), and 1.95% (pulp density). The pulp
density and glycine concentration significantly impacted on gold biorecovery. Similarly,
Merli et al. [138] employed the CCD of RSM for the enhancement of cyanide production by
Pseudomonas aeruginosa PA01-T. A maximum cyanide yield of 20 mg/L was generated at a
pH 8.0 and glycine concentration of 1 g/L, resulting in the recovery of 90% (silver) and 20%
(gold) from PCBs. Esmaeili et al. [139] assessed the influence of sucrose concentration, pulp
density, and initial pH on the bioleaching of metals from computer PCBs in the presence
of Penicillium simplicissimum using the CCD of RSM. The highest yields of 100% (copper),
98% (aluminum), and 70% (nickel) were recorded at the optimal conditions of 16 g/L pulp
density, initial pH 6.0, and 60 g/L sucrose concentration. Pulp density was found to be the
most significant variable affecting metal leaching efficiencies.

7.2. Bioreactor Bioleaching Experiments

The use of a bioreactor is vital for proper phase contact and accurately controlled
process conditions for the large-scale bioleaching of metals from e-waste [140]. In addition,
a bioreactor permits for synergy among microbial diversity involved in the metal bioleach-
ing process at a lesser time [123]. Generally, bioreactors such as stirred tank bioreactor,
column bioreactor, rotating drum bioreactor, fluidized bed bioreactor, etc., are employed
for the bioleaching of metals. Minimol et al. [141] optimized the bioleaching of zinc from
e-waste using Alcaligenes aquatilis in a fluidized bed bioreactor at the optimum condi-
tions of a 5% e-waste load, 0.175 mm particle size, and 5% inoculum. A maximum zinc
recovery of 13% was recorded. Three further sequential batch runs enhanced the zinc
recovery to 38%. Maximum leaching capacities of 85.23% (zinc), 76.59% (copper), and
70.16% (aluminum) were reported during the bio-extraction of metals from waste PCBs
using Leptospirillum ferriphilum and Acidithiobacillus caldus in a stirred tank bioreactor [142].
In addition, Ilyas et al. [143] applied a column bioreactor for the bioleaching of metals from
electronic scrap using a mixed adapted consortium of Sulfobacillus thermosulfidooxidans and
Thermoplasma acidophilum. Maximum leaching efficiencies of 80% (zinc), 64% (aluminum),
86% (copper), and 74% (nickel) were obtained. A higher copper extraction of 85% at 50 ◦C
in 8 d by Sulfobacillus thermosulfidooxidans was reported by Rodrigues et al. [144] using a
rotating drum bioreactor. Hubau et al. [140] recorded peak recovery efficiencies of 96% (cop-
per), 73% (nickel), 85% (zinc), and 93% (cobalt) during the bioleaching of metals from PCBs
in a double-stage continuous bioreactor for 2 d in the presence of Leptospirillum ferriphilum
and Sulfobacillus benefaciens. Vardanyan et al. [125] recorded approximately 87% (copper)
and nearly 100% each of zinc and nickel during the bio-extraction of metals from waste
PCBs by Acidithiobacillus ferrooxidans 61 in a stirred tank bioreactor. In addition, a bubble
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column bioreactor was used for the recovery of 97% (copper) and 72% (nickel) from mobile
phone PCBs in the presence of Penicillium simplicissimum at a pulp density of 10 g/L [145].

7.3. Use of Genetically Engineered Microorganisms

The utilization of genetically modified organisms has been recognized as a promising
and sustainable approach for the large-scale recovery of metals from a solid matrix [146].
Such modification in the genome of microbes can be achieved using techniques such as
plasmid transfection, conjugation, protoplast fusion, mutation, etc., leading to an increase
in the adaptation and resistance of the organisms to high metal concentrations, as well as
an enhancement in metabolic activity of microbes at a particular optimal condition [147].
For instance, an improvement in arsenic bioleaching by Acidithiobacillus ferrooxidans TFBk
using genetic engineering has been reported [148]. Natarajan and Ting [64] investigated
the effect of mutagen (100 mm N-Nitroso–N-ethyl urea) on the bioleaching efficiency of
Chromobacterium violaceum ATCC 12472 under alkaline conditions. The mutated bacterial
strain recorded higher gold recoveries of 18%, 22.5%, and 19% at pH 9.0, 9.5, and 10.0,
respectively, when compared to a wild strain. Mutation improved the bioleaching poten-
tial of the mutant under alkaline conditions by increasing the availability of hydrogen
cyanide for gold mobilization from electronic scrap. Tay et al. [117] reported an increase in
gold recovery by two genetically modified Chromobacterium violaceum strains: pBAD and
pTAC. After 8 d of the bioleaching experiment, 30% and 25% of gold, respectively, was
mobilized from electronic scrap material when compared to the 11% gold recovery from
wild-type strain.

8. Challenges Affecting the Commercial Bioleaching of Metals from E-Waste

The bioleaching of metals from e-waste using microorganisms is efficient and promis-
ing. However, this technology is linked to some limitations, which makes its commercial-
ization yet to be established. These include the following:

i Metabolite (e.g., cyanide, organic acids) production by microbial strains may be
limited due to different optimal pH required by organisms for the growth and lix-
iviant secretion. In other words, dissimilar pH demands for microbial growth and
metabolite production are challenging for a fruitful metal bioleaching experiment.
Therefore, it is necessary to optimize the pH for metabolite production, without pre-
venting the growth of the organisms. This can be achieved by statistical experimental
designs (RSM or ANN), the use of a bioreactor, or the use of metabolically engineered
organisms with a high pH tolerance.

ii Metal recovery from e-waste using microorganisms is low in comparison to chem-
ical leaching, since bio-lixiviant concentrations are also relatively low. As a re-
sult, processing conditions and leaching parameters must be modified to enhance
metal dissolution.

iii The toxicity of e-waste is a great challenge for the bioleaching process, as this affects
the growth of organisms for metabolite production. Conventionally, high-throughput
screening of microbial strains is carried out for the selection of organisms with a
large tolerance to toxic metal ions. Furthermore, the organisms are allowed to reach
a particular growth phase, in which maximal cell density and optimal biolixiviant
production are attained before the addition of waste materials into the bioleaching
medium. In addition, the toxicity of e-waste to microbes can be combated using
autochthonous organisms that are native to waste materials. The exploration of
indigenous organisms could be of great significant to metal bioleaching, since these
microbes can be assumed to perform better in their native environments compared
with exotic organisms.

iv The long duration of bioleaching is a crucial drawback that affects the large-scale
(commercial) recovery of metals from e-waste.

v An efficient reclamation of metals from the bioleaching medium at a low cost is a
great obstacle hindering the industrial recovery of metals from e-waste.
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9. Conclusions and Recommendations for Future Perspectives

The global, fast growth of electronic and electrical industries, coupled with incessant
demands for electrical and electronic equipment, has led to the indiscriminate disposal of e-
waste, especially when the products have attained their service life, causing environmental
and health hazards. Furthermore, e-waste is a complex material, consisting of metallic
components in large quantities. Bioleaching is a promising and sustainable technology for
the valorization of e-waste for the reclamation of value-added metals for the exploitation in
various industrial applications. The efficiency of the microorganisms is determined by the
presence of appropriate and optimum bioprocess conditions for the large-scale recovery of
metals from e-waste.

There is a need to enhance the metal bioleaching efficacy through ground-breaking
and sustainable technology for e-waste management. These innovative approaches for
future studies include the following:

i The slow kinetics of metal recovery from e-waste can be ameliorated using suitable
concentrations of metal ions (e.g., Ag+, Cu++, Hg++, Co++, Bi+++, etc.) or non-metal
ions (such as activated carbon and quartz) catalysts in the bioleaching medium as an
efficient and cost-effective technique for the development of a successful large-scale
bioleaching process. In addition, the cocktail use of these catalysts in the bioleaching
of metals from e-waste should be encouraged, as this combination may induce greater
catalysis, resulting in better microbe–mineral interactions with a consequential effect
on improving metal yields.

ii Exploration of the leaching potential of unidentified or genetically modified mi-
croorganisms including thermophilic fungi, bacteria, and archaea under different
bioprocess conditions can be a better alternative for enhanced metal recovery from
e-waste. The genetic modification makes the engineered organisms highly efficient
for metal recovery and rapidly adaptable to environmental changes when compared
to wild-type strains. It involves enhancing the expression of genes that encode for
biolixiviant production.

iii Further research should be carried out on the proper understanding of community
distribution, synergistic relationships, and mechanisms of actions of mixed or a
consortium of microbial strains for the bioleaching of metals from e-waste.

iv The utilization of non-conventional carbon sources, including agro-industrial wastes
such as corncobs, rice bran, straw, mango-peels, etc., should be encouraged as a
cost-effective and eco-friendly substrate for the cultivation of microbes for improved
secretion of metabolite for metal recovery from e-waste.

v Due to the complexity of e-waste, which consists of a variety of metals, further
studies should be geared toward application of hybrid technology for the efficient
and enhanced extraction of metals from waste materials. This involves the integration
of an assortment of leaching technologies (such as biological, chemical, and physical
processes) for the effective recovery of metals from e-waste.

vi Prior to the bio-extraction process, the toxic level of e-waste can be reduced through
the development of a novel physico-mechanical technique for the separation of
hazardous components of the waste materials from non-hazardous elements.

vii Microbial cells can be immobilized on natural (e.g., cellulose, agar, alginate) or
synthetic (such as polypropylene, polyvinyl, polyurethane) support materials for
the efficient recovery of metals during the bioleaching process. In addition, the
immobilization of microorganisms on a suitable carrier increases the stability of
the immobilized cells over a broad range of temperatures and pH, and permits the
reusability of the immobilized organisms with a decrease in operational costs.
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