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Abstract: The formation ages and tectonic features of the Bulunkuole Complex (BKC) is critical for
understanding the geological evolution of the western section of the West Kunlun Orogenic Belt
(WKOB), and they are also critical for understanding the metallogenic background of the Taxkorgan
Iron Belt. In this paper, we report new geochemical and in situ zircon U–Pb isotopes data for the
most southwestern iron-bearing formation of the BKC. The petrography and sedimentation ages
of the BKC reveal that the main part of the BKC was emplaced in the Early to Late Cambrian
period as a giant accretionary wedge formed during the Proto-Tethys Ocean south-southwestward
subduction. The high-pressure metamorphic rocks located at the margin of the Kangxiwa Fault
should be further disintegrated from the Cambrian BKC to form a Triassic accretionary complex.
Geochemical characteristics indicate that the metasedimentary rocks of the Cambrian BKC derived
predominantly from the regional contemporary intermediate to felsic source rocks, and deposited in
the fore-arc basin. Provenance studies further demonstrate that the detrital materials were mainly
sourced from the Gondwana-affinity terranes, Mazar Terrane as well as the volcanic and magmatic
rocks produced during the Tethys subduction. The metamorphism of the Cambrian BKC occurred
at ca. 200 Ma in the western section of the WKOB. Proto-Tethys Ocean did not close until 230 Ma,
possibly during the Early Mesozoic (200–180 Ma).

Keywords: West Kunlun orogenic belt; Bulunkuole; Proto-Tethys; zircon U–Pb

1. Introduction

The West Kunlun Orogenic Belt (WKOB) has a long history of tectonic evolution,
particularly Tarim and its adjacent continental blocks. They all witnessed the breakup of
the Neoproterozoic Rodinia Supercontinent, the convergence and breakup of the Gondwana
Supercontinent in the Cambrian and late Paleozoic, respectively, and the convergence of the
Pangea Supercontinent [1,2]. The complex tectonic evolution process and unique tectonic
location make it a hotspot for research on the orogenic belt and its early evolution around
the Qinghai–Tibet Plateau, as well as a critical location for the study of the Tethys Ocean’s
tectonic evolution, a subject of long-standing interest to scholars [3–9].

Division of the orogeny belt tectonic units is also essential for regional metallogenic
background study. Although numerous researches have been conducted on the partition of
the WKOB tectonic units, there are still ambiguities regarding the division of the WKOB‘s
western portion. Based on recent comprehensive investigations into the material composi-
tion and structural characteristics of the WKOB [3,10–15], Zhang et al. divided the WKOB
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into the North Kunlun Terrane (NKT, part of Tarim), the South Kunlun Terrane (SKT), the
Mazar and Tianshuihai Terranes (MTTs) (Figure 1a,b). Furthermore, the SKT contains the
Taxkorgan Terrane (TXKT) divided by predecessors [16,17]. More than forty iron deposits
have been found in this area. They all hosted in the large exposed Bulunkuole Complex
(BKC, previously named the Bulunkuole Group) [18] north of Mazar town (Figure 1c). The
formation age and tectonic features of the BKC are critical for understanding not only the
geological evolution of the WKOB’s western section, but also the metallogenic background
of the West Kunlun iron belt. The BKC has been the subject of earlier investigations due to
its prominence as major ore-bearing strata in the area [19]. However, due to the area’s poor
natural environment and inconvenient transportation, field geological inquiry has been
hampered, and the research degree in the area is relatively weak. The processes responsible
for the formation of the BKC remain uncertain. Previous studies on chronology of the
BKC (Table 1) range from Neoarchean to Early Paleozoic, while the documented tectonic
settings include intracratonic rift, fore-arc basin, and back-arc basin [2,20–23]. The tectonic
evolution of the Proto-Tethys in the western part of the WKOB is still unclear [2,17].
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Figure 1. (a) Outline of Asian tectonics indicating the location of the western segment of the Himalaya-
Tibet Orogenic Belt (after research [4,24,25]; (b) Tectonic framework of the West Kunlun Orogenic
Belt (WKOB) (after research [17,26]; (c) Geological map of the BKC in the WKOB (after research [22]).
Abbreviation: CAOB = Central Asian Orogenic Belt; NP = North Pamir; CP = Central Pamir;
SP = South Pamir; NKT = North Kunlun Terrane; SKT = South Kunlun Terrane; STG = Setula Group;
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BKC = Bulunkuole Complex; TXKT = Taxkorgan Terrane; TSHT = Tianshuihai Terrane;
MZT = Archean Mazar Terrane; TSHG = late Neoproterozoic Tianshuihai Group; KAT = Karakorum
Terrane. Faults: 1© Kudi Fault; 2© Kangxiwa Fault; 3© Karakorum Fault; 4© Bangonghu-Nujiang
Fault; 5© Taxkorgan Fault.

Table 1. Statistical table on the chronology of the Bulunkuole Complex.

Number Sampling
Location Lithology Analytical Method Age/Ma Age

Interpretation Data Source

1 Bulunkou Plagioclase gneiss LA-ICP-MS U-Pb 1828 Magmatic zircon [27]

2 Bandi Garnet-biotite
schist SHRIMP U-Pb 2200–600 Detrital zircon [28]

3 East of Karachigu Basic volcanic rock SHRIMP U-Pb 861 ± 43 Magmatic zircon [29]
4 Dabudaer Metavolcanic LA-ICP-MS U-Pb 2481 ± 14 Magmatic zircon [30]
5 Laobing Biotite quartzite LA-ICP-MS U-Pb 532 ± 3.9 Detrital zircon [31]
6 Laobing Felsic schist LA-ICP-MS U-Pb 526 ± 5.0 Detrital zircon [31]

7 Bulunkou Quartzite LA-ICP-MS U-Pb 515/219 Metamorphic
zircon [32]

8 Ziluoyi Biotite quartz schist LA-ICP-MS U-Pb 500 Metamorphic
zircon [32]

9 Ziluoyi Two-mica quartz
schist LA-ICP-MS U-Pb 495 Metamorphic

zircon [32]

10 Zankan Magnetic iron ore LA-ICP-MS U-Pb
2465–1959

Detrital zircon [32]904–558

11 Zankan Biotite quartzite LA-ICP-MS U-Pb
2500

Detrital zircon [32]985–706
12 Zankan Aegirine syenite LA-ICP-MS U-Pb 551 Magmatic zircon [32]

13 Zankan Dacite porphyry LA-ICP-MS U-Pb
2420–2370

Detrital zircon [33]800
2540

14 Zankan Biotite quartzite LA-ICP-MS U-Pb
2380

Detrital zircon [33]830
15 Yelike Biotite quartzite LA-ICP-MS U-Pb 565–517 Detrital zircon [33]

16 Yelike Plagioclase gneiss LA-ICP-MS U-Pb
2600

Detrital zircon [33]484

17 Taaxi Plagioclase
amphibole schist LA-ICP-MS U-Pb 2370 Magmatic zircon [33]

18 Taaxi Meta-dacite LA-ICP-MS U-Pb 521 Magmatic zircon [34]
19 Bandi Biotite quartzite LA-ICP-MS U-Pb 296 ± 2 Magmatic zircon [35]

20 Taaxi Plagioclase
amphibolite LA-ICP-MS U-Pb 516.5 ± 5.2 Magmatic zircon [35]

21 Yelike Biotite quartzite LA-ICP-MS U-Pb 473.6 ± 7.4 Metamorphic
zircon [35]

22 Mokaer Plagioclase
amphibole schist LA-ICP-MS U-Pb 511.2 ± 3.5 Metamorphic

zircon [35]

23 Mokaer Biotite quartzite LA-ICP-MS U-Pb 511.7 ± 6.7 Metamorphic
zircon [35]

24 Zankan Biotite quartzite LA-ICP-MS U-Pb 2375 ± 81 Magmatic zircon [36]
25 Zankan Felsophyre LA-ICP-MS U-Pb 520 ± 33 Magmatic zircon [37]

26 Kalaizi Biotite-plagioclase
gneiss LA-ICP-MS U-Pb 537.2 ± 6.4 Magmatic zircon [38]

27 Laobing Felsic gneiss LA-ICP-MS U-Pb 532 ± 3.9 Detrital zircon [39]
28 Laobing Biotite quartzite LA-ICP-MS U-Pb 526 ± 5.0 Detrital zircon [39]

29 Bulunkou and
north of Laobing Paragneiss LA-ICP-MS U-Pb 580/795

(peaks) Detrital zircon [2]
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Table 1. Cont.

Number Sampling
Location Lithology Analytical Method Age/Ma Age

Interpretation Data Source

30

38◦20′45′′ N,
74◦56′45′′ E

Metavolcanic LA-ICP-MS U-Pb

508.1 ± 2.1

Magmatic zircon [2]
37◦53′05′′ N,
75◦16′05′′ E 515.0 ± 1.7

37◦53′11′′ N,
75◦16′01′′ E 518.8 ± 2.0

31

37◦53′11′′ N,
75◦16′01′′ E

Gneissic intrusive
rocks LA-ICP-MS U-Pb

510.8 ± 2.1

Magmatic zircon [2]

37◦10′25′′ N,
75◦36′54′′ E 513.2 ± 3.76

37◦08′43′′ N,
75◦32′03′′ E 486.1 ± 3.1

37◦53′01′′ N,
75◦16′08′′ E 245.2 ± 0.98

32 South of Laobing Biotite plagioclase
granulite LA-ICP-MS U-Pb 603 ± 10 Magmatic zircon [40]

33 Jirtiekegou Biotite-quartz
schist LA-ICP-MS U-Pb 547.4 ± 7.2 Detrital zircon [20]

34 Zankan
Biotite-quartz

schist LA-ICP-MS U-Pb
2457–2142

Detrital zircon [20]1093–737
2643–542

35 Mazar Intermediate-acid
volcanic rock LA-ICP-MS U-Pb 519–513 Magmatic zircon [41]

36 Taaxi Amphibolite LA-ICP-MS U-Pb 516 ± 6 Magmatic zircon [42]
37 Zankan Amphibolite LA-ICP-MS U-Pb 520 ± 6 Magmatic zircon [42]
38 Mokear Amphibolite LA-ICP-MS U-Pb 516 ± 3 Magmatic zircon [42]
39 Mazar Meta-rhyolites LA-ICP-MS U-Pb 2502.9 ± 7.4 Magmatic zircon [22]
40 Zankan Meta-rhyolites LA-ICP-MS U-Pb 540.2 ± 2.0 Magmatic zircon [22]

41 Taaxi Meta-rhyolites LA-ICP-MS U-Pb

540.2 ± 2.4

Magmatic zircon [22]

530.3 ± 2.5
526.2 ± 3.3
526.2 ± 3.3
515.3 ± 2.3
515.2 ± 2.7

42 Ziluoyi Meta-rhyolites LA-ICP-MS U-Pb
526.4 ± 2.5

Magmatic zircon [22]516.3 ± 3.9
508.8 ± 3.6

43 Taaxi Metavolcanic rocks LA-ICP-MS U-Pb 539.3 ± 3.3 Magmatic zircon [21]
44 Yelike Metavolcanic rocks LA-ICP-MS U-Pb 543.7 ± 5.7 Magmatic zircon [21]
45 Yelike Meta-greywacke LA-ICP-MS U-Pb 535.9 ± 5.1 Detrital zircon [21]
46 Kalaizi Meta-arkose rock LA-ICP-MS U-Pb 539.7 ± 3.3 Detrital zircon [21]

In this contribution, we conducted the zircon U–Pb dating, whole-rock geochemistry
of the BKC compiled with the published geological and geochemical data to reveal the
depositional ages and the geological evolution of the WKOB’s western section. Furthermore,
the regional metallogenic background was constrained.

2. Geological Background

The WKOB is located at the junction of the India and Tarim Cratons (Figure 1a).
Previous studies have divided the WKOB into three parts: North Kunlun Terrane (NKT),
South Kunlun Terrane (SKT), and Taxkorgan–Tianshuihai Terrane (TTT) from north to
south, which are separated by the Kudi and Kangxiwa Faults, respectively [21,22,43,44].
According to the most recent studies, however, the Taxkorgan Terrane (TXKT) should be
considered part of the SKT. The amphibolite- to granulite-facies metamorphic volcanic-
sedimentary sequences in the SKT deposited between the Late Sinian and Early Ordovician
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periods during the southward subduction of the Proto-Tethys Ocean under the MTTs. They
exhibit features of typical accretionary complex composing of fore-arc accretion sequences,
intraocean arc, arc and ophiolites [16,17].

The TXKT is located in extreme southwest of the WKOB (Figure 1b), bounded by the
Kangxiwa Fault to the north and the Taaxi Fault (one fault of the Karakorum Fault Belt) to
the south (Figure 2). Lithologies in the TXKT are the BKC and Lower Cretaceous Xialafudi
Group and intruded by Proterozoic granodiorite and adamellite, Mesozoic granodiorite
and monzonitic granite, and Cenozoic syenogranite, syenite [2,9,16].

The newly discovered Taxkorgan Iron Belt is located in the TXKT (Figure 2) [31,45].
The iron ores, hosted in the metamorphosed volcanic and sedimentary rocks of the
BKC (Figure 3), are characterized by an assemblage of magnetite, pyrite and anhydrite
(Figure 4h,k). The term “Bulunkuole Group Complex” was initially introduced by the Xin-
jiang Regional Geological Survey Team in 1967 to encompass a collection of metamorphic
complexes found extensively in the Bulunkou and Taxkorgan regions [18]. On the “Geo-
logical Map of Western South of Xinjiang at the Scale of 1: 500,000”, Wang (1985) named
this set of metamorphic rocks the “Bulunkuole Group” [46]. However, with achievements
of regional research in the recent decade (Table 1), more and more evidence proves that
the previously defined “Bulunkuole Group” is a diachronous complex [47]. Scholars have
dissected it and called it the “Bulunkuole Complex” [19,22]. In this contribution, we aim
to provide a more detailed analysis and redefinition of the “Bulunkuole Group”. As a
result, we refer to it as the “Bulunkuole Complex” (BKC) throughout this paper. In China,
the BKC is primarily distributed north–south along Gongge Mountain (Figure 1c). It is
approximately 200 km long from north to south, 5~50 km wide from east to west, and has
an exposed surface of approximately 1500 km2. Lithologically, the BKC is characterized
by a suit of volcanic, clastic, and chemical sedimentary rocks. It was metamorphosed to
a greenschist-amphibolite facies and composed of biotite-plagioclase gneiss, plagioclase-
amphibole gneissic schist, biotite-quartz schist, schist, magnetite quartzite, meta-siltstone,
and marble [30,48]. According to previous studies [29], the lithologic assemblages in the
BKC can be divided into four sets of metamorphic assemblages from west to east: the iron-
bearing formation, the (garnet) plagioclase-amphibole formation, the sillimanite–garnet
gneisses formation, and the marble formation. Based on 1/50,000 mappings and field obser-
vations, Zhang et al. (2018) described the rock associations, stratigraphic and metamorphic
features in the following three key areas: the Zankan–Laobing iron deposit area (south, Fig-
ures 1c and 2), the Wazelapu area (to the south of the high-pressure mafic granulite location,
central) and the Ziluoyi iron deposit area (north, Figure 1c) [2]. The most southwestern
iron-bearing formation is the primary ore-bearing horizon in the research area. The BKC
in this area consists mainly of a series of metamorphic volcanic and sedimentary rocks,
with sedimentary rock being the predominant type. According to the regional distribution
of rock assemblages, the lower section of the Zankan–Laobing iron deposit area has pla-
gioclase amphibolite and granulite, which are metamorphic products of bimodal volcanic
rocks. The upper section is dominated by paragneiss and marble, possibly containing some
acid volcanic rocks [17].
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nite–biotite gneiss. (b,e) Garnet–biotite feldspar granulite. (c,f) Biotite–amphibole feldspar schist. 
(g,j) Plagioclase–amphibolite granulite. (h,k) Iron ore from the Zankan deposit. (i,l) The host rock 
of iron ore bedding from the Zankan deposit (Garnet–biotite–amphibole quartz schist). Abbrevia-
tion: Pl = Plagioclase, Kfs = K-feldspar, Qtz = Quartz, Bt = Biotite, Grt = Garnet, Stp = Stilpnomelane, 
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The main rocks in the study area comprise garnet–bearing gneiss, biotite schist, 
quartzite, biotite–plagioclase–quartz gneiss (meta-rhyolite), amphibolite (meta-basalts), 
and magnetite layers with minor marble. Geological section survey revealed that the 

Figure 4. Representative photographs and photomicrographs of rocks from the BKC. (a,d) Sillimanite-
biotite gneiss. (b,e) Garnet-biotite feldspar granulite. (c,f) Biotite-amphibole feldspar schist.
(g,j) Plagioclase-amphibolite granulite. (h,k) Iron ore from the Zankan deposit. (i,l) The host rock of
iron ore bedding from the Zankan deposit (Garnet-biotite-amphibole quartz schist). Abbreviation: Pl = Pla-
gioclase, Kfs = K-feldspar, Qtz = Quartz, Bt = Biotite, Grt = Garnet, Stp = Stilpnomelane, Am = Amphibole,
Po = Pyrrhotite, Py = Pyrite, Mag = Magnetite, Anh = Anhydrite, Sil = Sillimanite, Ms = Muscovite.



Minerals 2023, 13, 776 8 of 24

3. Samples and Methods
3.1. Sample Descriptions

The main rocks in the study area comprise garnet–bearing gneiss, biotite schist,
quartzite, biotite-plagioclase-quartz gneiss (meta-rhyolite), amphibolite (meta-basalts),
and magnetite layers with minor marble. Geological section survey revealed that the
volcanic rocks account for ca. 30% while the sedimentary rocks account for ca. 70% of the
thickness. In this study, we collected systematically metasedimentary and metavolcanic
rocks of the BKC from five locations (Figures 2–4), and the petrological features of samples
are listed in Table 2.

Table 2. Petrological features of the typical rock samples from the BKC.

Sample Location Structure Texture Lithology Mineral Assemblage

BKC16-1 37◦33′3.366′′ N
75◦39′41.874′′ E gneissic medium coarse

grain lepidoblastic
Sillimanite-biotite

gneiss

sillimanite (~5%), garnet (~5%), biotite
(20%), muscovite (~5%), quartz (~60%),

and plagioclase (~5%)

BKC16-2 37◦30′7.092′′ N
75◦39′52.884′′ E gneissic medium to coarse

granular-sheet
Garnet-biotite

feldspar granulite

garnet (~20%), alkalifeldspar (~20%),
plagioclase (~30%), biotite (~10%),
amphibole (~10%), quartz (~5%),

stilpnomelanite (~5%)

BKC16-3 37◦27′11.508′′ N
75◦39′25.626′′ E schistose fine to medium

granular-sheet
Biotite-amphibole

feldspar schist
Plagioclase (~40%), amphibole (~45%),

biotite (~10%), quartz (~5%)

BKC16-4 37◦22′38.484′′ N
75◦40′51.276′′ E massive homoeoblastic

Plagioclase-
amphibolite

granulit

Plagioclase (~45%), amphibole (~40%),
biotite (~5%), quartz (~10%)

ZK16 Zankan iron
deposit massive granular Iron ore

Magnetite (~60%),
pyrite(~25%),diopside(~10%), apatite,

feldspar et al.(~5%)

ZK16m-3
37◦15′2.508′′ N
75◦37′37.446′′ E

schistose
fine grain

lepidoblastic

Garnet-biotite
amphibole quartz

schist

garnet (~10%), biotite (~10%), quartz
(~50%), feldspar (~10%), amphibole
(mostly anthophyllite~20%), sulfide

minerainornor)

ZK16m-8
ZK16m-9

3.2. Analytical Methods
3.2.1. Major and Trace Elements

The host rocks of the Zankan iron deposit were selected for major and trace elements
analyses at the State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry,
Chinese Academy of Sciences (GYIGCAS) in Guiyang. Samples were washed to remove
surficial materials and cut to remove weathered surfaces. After that, the fresh rocks were
chipped and powdered in an agate puck mill to a fine powder (<200 mesh). Major oxides
were analyzed using the ARL Perform’X 4200 X–ray fluorescence (XRF) with analytical
uncertainties of 1%–3%. Trace element contents were determined by ICP–MS (Plasma
Quant MS Elite) with Relative Standard Deviation (RSD) repeatability test for (most) trace
elements < 10%. The specific analysis and testing procedures are referred to [50].

3.2.2. Zircon U–Pb Dating

Zircon grains were concentrated using heavy liquid separation procedures and then
handpicked using a binocular microscope after being crushed to 80 mesh. Zircon grains
were mounted in epoxy resin and then polished for cathodoluminescence (CL) imaging
and laser ablation–inductively coupled plasma–mass spectrometry analysis (LA–ICP–MS).

The IL imaging was undertaken at the Langfang Fengze Source Rock Ore Testing
Technology Laboratory. U–Pb dating and trace element analyses of zircon were conducted
synchronously by LA–ICP–MS at the State Key Laboratory of Ore Deposit Geochemistry,
Institute of Geochemistry Chinese Academy of Sciences. Laser sampling was performed
using a GeoLas Pro 193 nm ArF excimer laser. An Agilent 7500x ICP-MS instrument was
used to acquire ion-signal intensities. Helium was applied as a carrier gas which was mixed
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with argon via a T-connector before entering the ICP–MS. Each analysis incorporated
a background acquisition of approximately 30 s (gas blank) followed by 60 s of data
acquisition from the sample. Offline selection and integration of background and analyte
signals, and time drift correction and quantitative calibration for trace element analyses
and U–Pb dating were performed by ICPMSDataCal [51,52]. Zircon 91,500 was used
as an external standard for U–Pb dating, and it was analyzed twice every 6–8 analyses
(i.e., 2 zircon 91,500 + 6–8 samples + 2 zircon 91500). Uncertainty of preferred values
for the external standard 91,500 was propagated to the ultimate results of the samples.
Concordia diagrams were constructed and weighted mean calculations were conducted
using Isoplot [53]. Trace element compositions of zircons were calibrated against multiple-
reference materials (NIST 610, BHVO-2G, BCR-2G, BIR-1G) combined with Si internal
standardization. The preferred values of element concentrations for the USGS reference
glasses were obtained from the GeoReM database (http://georem.mpch-mainz.gwdg.de/
(accessed on 3 September 2018)).

4. Results
4.1. Whole-Rock Geochemistry

The biotite-quartz schists from the Zankan deposit exhibit a homogenous composi-
tion, with high concentrations of SiO2 (60.10–64.99 wt%), MgO (2.45–2.98 wt%), TFe2O3
(7.81–9.56 wt%) (Table S1), as well as a moderate amount of TiO2 + Al2O3 (11.11–11.61 wt%)
and alkali component (Na2O + K2O; 4.73–5.24 wt%). In the Al2O3 v. (Na2O + K2O) protolith
discriminant diagram, the biotite-quartz schist samples are discriminated into sedimen-
tary rock (Figure 5a). Further, when plotted on the geochemical classification diagram
(Figure 5b), the protolith of metasedimentary rocks (TZK29, TZK60) from Li et al. (2019) [20]
and our study can be classified into two groups: greywacke and arkose sandstone. Al2O3
contents in the meta-greywackes (11.98 wt% on average) are lower than those of the upper
continental crust (UCC; Al2O3 = 15.4 wt%, [54]), suggesting a low clay content and distinct
source materials for these rocks. In addition, the meta-greywacke samples (5.65 on aver-
age) have slightly higher SiO2/Al2O3 ratios than those of igneous rocks (3–5), providing
evidence of mildly sedimentary maturation [55].
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(SiO2/Al2O3) v. log (TFe2O3/K2O) diagram after research [57]. TZK29 and TZK60 are from [20],
similarly hereinafter.

Both meta-greywacke and meta-arkose samples have relatively uniform REE pat-
terns (generally sub-parallel and enriched in the light REE (LREE) (Figure 6a). The
heavy REEs (HREE) are weakly fractionated with slightly inclined to flat patterns with
(Gd/Yb)N = 1.28 on average). However, high (La/Yb)N ratios (3.24–13.0) are observed in
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all the samples. Moreover, both types of rocks show tiny Ce anomalies (Ce/Ce* = 0.74–1.01).
The meta-grey wacke samples have negative Eu anomalies (Eu/Eu* = 0.65–0.73), while the
meta-arkose samples possess slightly positive Eu anomalies (Eu/Eu* = 1.05–1.38).

Most schists exhibit similar UCC-normalized trace element patterns for most LILEs
(large ion lithophile elements) and HFSEs (high field strength elements) (Figure 6b). Our
samples show numerous depletions in Sr and mild enrichments in Th, Ca, P, Y and Tm, and
compositions of the other trace elements are comparable with those of UCC. However, for
samples from Li et al. (2019) [20], with regard to the large ion lithophile elements (LILEs), Ca
and Sr are variably depleted, but K is enriched in all samples. High-field-strength elements
(HFSEs), including Hf, Nb, and Ta, are all close to the values of the UCC (Figure 6b). Sr
is variably depleted in most samples, implying that plagioclase in the source material of
these siliciclastic rocks was decomposed during weathering [58]. The lower or comparable
Zr and Hf concentrations and the average Nb/Ta and Zr/Hf ratios (Table S1) similar to
those of the UCC suggest that secondary fractionation is negligible, and that there is no
preferential accumulation of detrital zircons in these siliciclastic rocks [59–61].
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4.2. Zircon U–Pb Ages

The zircon U–Pb isotopic data of the representative samples from the Taxkorgan area
are present in Table S2.

4.2.1. Ages of the Metavolcanic Rock

Most zircon grains from the meta-andesite sample (BKC16-4) are prismatic, ranging
from 50 to 100 µm in length with length/width ratios of 1–2. According to the CL image
features, almost all zircon grains display oscillatory zoning characteristic of magmatic
zircon (Figure 7). A total of twenty-four analyses were performed on zircons from this
sample. These zircons display high Th/U ratios ranging from 0.3 to 0.8, except for point 25,
which has suffered intensive metamictization with high uranium contents, and point 11,
which is captured zircon.

The zircon grains from meta-andesite yield a narrow range of ages from 509 to 579 Ma
(Figure 8a). Four youngest analyses yield consistent results within analytical error and
a weighted mean age of 517.9 ± 1.7 Ma. This age is interpreted to the extrusive age of
meta-andesite protolith.
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from the Taxkorgan area (see details in the text).

4.2.2. Ages of the Metasedimentary Rocks

One hundred and forty-two and forty-nine analyses were obtained from samples
ZK16m and BKC16–1, respectively. Detrital zircon grains from these samples share similar
characteristics. Most zircons range from 100 µm to 150 µm in length with aspect ratios of
1–2, displaying euhedral or semi-euhedral shapes, suggesting a near-source region; some
zircons are oval or round, indicating their long-distance transportation or abrasion, whereas
some grains are fragmented with sharp edges. In the CL images, zircon grains show very
different inner features with oscillatory zoning, homogenous or wide stripe inner texture,
indicating different origins (Figure 7). Most zircons display high Th/U ratios (0.12–2.80)
(Table S2), which are typical of igneous origin. A few zircon grains exhibit no zoning,
or contain narrow rims with inherited cores, relatively low Th/U ratios (0.01–0.99) and
high uranium contents which suggest a metamorphic origin and intensive metamictization
(Figure 7). Some samples show radiogenic Pb loss in different degrees (Figure 8b,c).

The detrital zircon grains from BKC16-1 exhibit a wide range of ages from 230 to
2366 Ma (Figure 8b). On the combination plot, two prominent peaks at ca. 250 Ma and
425 Ma are observed, and the youngest zircon grains yield an age of ca. 230 Ma (Figure 8b).

However, detrital zircon grains from the sample ZK16m yield a wide range of ages
from 485 to 3494 Ma (Figure 8c). On the combination plot, three prominent peaks at ca.
546 Ma, 630 Ma and 738 Ma are observed (Figure 8d) for the sample ZK16m. These results
have revealed the presence of Precambrian components in our survey area, as evidenced
by two prominent peaks at ca. 1824 Ma and 2544 Ma. The existence of the Neoarchean
zircon age population in our samples is an important finding. Thirteen zircon grains yield
a weighted average 207Pb/206Pb age of 2514 ± 17 Ma (MSWD = 0.67) (Figure 8c). The
youngest set of zircons is concentrated at ca. 526Ma, representing the upper limit deposition
age of the samples.

4.2.3. Metamorphic Zircon U–Pb Ages

Zircons obtained from two samples collected from the Bulunkuole Complex (BKC)
exhibit characteristics typical of metamorphic zircons, such as their anhedral or round
forms, homogeneous and bright CL images (Figure 9c), with their low Th and U contents
and Th/U ratios [63] (Table S2). Metamorphic zircons from sample BKC16-2 display bright
accretive edges, while those from sample BKC16-3 exhibit fan-shaped zoning (Figure 9c).
Forty-nine analyses were conducted on sample BKC16-3, and forty-four analyses were
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conducted on sample BKC16-2. The metamorphic zircon grains from biotite amphibole
feldspar schist sample (BKC16-3) yield younger ages from 175.2 Ma to 207.9 Ma with
an average of 18.4 ± 1.3 Ma (Figure 9a,d). There is an older ages range (189.1 Ma to
223.2 Ma) for the garnet-biotite feldspar granulite sample (BKC16-2, Figure 9b). Two groups
of metamorphic ages can be identified, 211.1 ± 1.7 Ma (Figure 9e) and 198.2 ± 2.0 Ma
(Figure 9f), respectively, suggesting multiple stages of metamorphism.
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5. Discussion
5.1. Geochronology of the BKC

To ascertain the age of the BKC’s formation, we compiled the research findings through-
out the last two decades (Table 1). The understanding of the formation age and tectonic
properties of the BKC can be divided into the following stages: (1) The BKC was for-
merly considered a Precambrian basement (Bulunkuole Group) of the WKOB owing to its
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amphibolite-facies metamorphism and the absence of verifiable fossils or isotopic ages [64].
(2) According to the geological survey along the Xinjiang–Tibet Highway, especially the
composition of the tectonic mélange belt in the Mazha area (Figure 1c), it was considered
that the main body of the tectonic mélange belt belongs to the Triassic system, which was a
set of accretive wedge complexes containing the “Bulunkuole Group” in the Taxkorgan
area of the west [35]. (3) With the application of high-precision zircon U–Pb isotope dating
technology, multiple independent isotope chronological data have been published, where
two ages have been proposed: Paleoproterozoic (e.g., [30,32,33,65]) or Early Cambrian
(e.g., [20,31,37,66]). A series of Paleoproterozoic metamorphic volcano-sedimentary rocks
in the Mazar region have been reported [22,30]. According to Ji et al. (2011) [30], the
metamorphic volcanic–sedimentary rocks in this area are part of the BKC. However, a
recent study demonstrates that the strata are markedly different from the BKC in terms of
material composition, metamorphism, and deformation, and hence should be classified as a
separate unit. The Mazar complex was believed to be the only confirmed Early Precambrian
rock assemblage of the WKOB [2,9].

Combined with the previous research and our latest data, we provide a new explana-
tion for the age of southern section of the BKC. The U–Pb ages of detrital zircon grains from
the biotite-amphibole-quartz schist samples (ZK16m) and the sillimanite-biotite gneiss
(BKC16-1) provide a potential means to constrain the depositional ages of the sedimentary
sequences and the associated iron deposit. The metamorphic zircons and those with serious
Pb loss were removed, and the youngest detrital grains obtained from the samples can
be used to constrain their maximum depositional age [67]. In the Zankan area, zircon
U–Pb ages of the sample ZK16m constrain the maximum depositional age to ca. 526 Ma,
which indicates that the deposition of the Zankan iron deposit continued until at least
526 Ma. In addition, previous reported zircon U–Pb ages of metavolcanic rocks range from
540 Ma to 520 Ma [22,38,66], which proves that the mineralization of iron ore is a long-term
process accompanied by accretive wedge. In the northern section of the study area, the
age of the plagioclase-amphibolite granulite (meta-andesite) BKC16-4 yields a youngest
weighted mean age of 517.9 ± 1.7 Ma. Significantly, two prominent peaks at ca. 520 Ma
and 540 Ma were observed, which may indicate long-term volcanic activities in this region.
In northernmost section of the study area, the age of the sillimanite-biotite gneiss BKC16-1
constrain the maximum depositional age to ca. 230 Ma.

The metamorphic grade of the BKC is up to amphibolite-facies and even to high-
pressure granulite-facies [43,68,69]. However, the metamorphic age is still debated [70–72].
The metamorphic zircons of two samples (garnet-biotite-feldspar granulite and biotite-
amphibole–feldspar schist) in the central section of the study area reveal a metamorphic
age of 211–187 Ma (Figure 9) with three stages, which is consistent with recent studies of
the high-pressure metamorphic rocks [2,43,69,72].

Collectively, our results confirm that the main part of the BKC is Cambrian in age
rather than Paleoproterozoic or Triassic. Furthermore, our research indicates that the
metamorphic event associated with the BKC occurred in ca. 200 Ma (e.g., [73]). The high-
pressure metamorphic rocks (BKC16-1) should be further disintegrated from the Cambrian
BKC to form a Triassic accretionary complex together with the sillimanite–garnet-biotite
gneiss in eastern Taxkorgan Town [43,72]. They all belong to the Kangxiwa tectonic zone.
The depositional age for the BKC provides a reasonable background to further discuss
sediment source characteristic and the genesis of the deposit.

5.2. Provenance of the Metasedimentary Rocks of the BKC

Siliciclastic rocks associated with the Zankan iron deposit have been metamorphosed
from greenschist to amphibolite facies, as well as possibly altered and weathered. Thus,
it is critical to assess element mobility prior to undertaking any geochemical interpre-
tation [74]. The relatively narrow range of the SiO2/Al2O3 (5.21–9.28) and K2O/Na2O
ratios (0.42–14.48) for the Zankan metasedimentary rocks (Table S1) suggest negligible
silicification and K-metasomatism. Both HFSEs (e.g., Zr, Hf, Ti, Nb, Ta) and REEs in
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clastic sediments are often considered to be immobile and are suitable for provenance
interpretation [75–77].

The Index of Compositional Variability (ICV) was applied to fine-grained sedimentary
rocks as a measure of compositional maturity [78], and is defined as

ICV =
(

Fe2O3 + K2O + Na2O + CaO* + MgO + MnO + TiO2

)
/Al2O3 (Molar proportions). (1)

All the ICV values for metasedimentary rocks of the Zankan are >1 (ICV = 1.03 to
2.41, mean = 1.56), indicating that they are compositionally immature and derived from an
active tectonic setting [79].

The most widely used chemical index to ascertain the degree of source-area weathering
is the Chemical Index of Alteration (CIA) proposed by [80], and it is defined as

CIA =
[
Al2O3/

(
Al2O3 + CaO* + Na2O + K2O

)]
× 100 (Molar proportions).

In such a formulation, it is necessary to make a correction to the measured CaO
content for the presence of Ca in carbonates (calcite, dolomite) and phosphates (apatite).
For this study, CaO was corrected for phosphate using P2O5 (see details in [81]). The
Zankan metasedimentary rocks have lower CIA values ranging from 53 to 65, indicating
a relatively low–moderate degree of weathering and consequently indicate cool and/or
arid conditions or active tectonic setting in the source area [82]. The A-CN-K system is
useful for evaluating fresh rock compositions and examining their weathering trend [83].
The A–CN–K triangular diagram (Figure 10a) demonstrates a weathering trend without K-
metasomatism in the metasedimentary samples supported by major element geochemistry
(as discussed above). The dashed straight line connecting the samples is stretched to
the feldspar joining line, indicating that the parent rock is mostly felsic in composition.
The metasedimentary samples from the Zankan area trend towards an idealized biotite
composition, indicating the apparent enrichments in K may be attributed to hydrothermal
or other alterations aside from weathering [20].

Due to oxidation and uranium loss, sedimentary rocks’ Th/U ratios tend to rise with
increased weathering [82,84,85]. In the Th/U v. Th diagram (Figure 10b), almost all the
Zankan samples display lower Th/U ratios than that of UCC (3.89, [54]), suggesting a
negligible degree of weathering which is consistent with interpretations based on the CIA
and major elements.
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Another indicator of the source composition is the Al2O3/TiO2 ratio. Feldspars are the
primary source of aluminum in normal igneous rocks and the titanium in mafic minerals
(e.g., olivine, pyroxene, hornblende, biotite, and ilmenite). Therefore, the Al2O3/TiO2 ratios
of igneous rocks generally increase with increasing SiO2 contents [88]. Sediments with
Al2O3/TiO2 values < 14 are likely to be derived from mafic rocks, while sediments with
Al2O3/TiO2 values within the 19–28 range might be predominately from a source with
average andesitic to rhyodacitic (and/or granodioritic to tonalitic) composition [89]. The
Al2O3/TiO2 ratios for the sedimentary rocks range from 19.54 to 47.24, suggesting that they
are derived mainly from intermediate-acid rocks.

Additionally, immobile trace elements, such as Zr, Nb, Hf, Ta, Th, U, and Sc, can be
used to differentiate between different sedimentary origins [72]. The Zankan schists have
La/Sc, Eu/Eu*, Th/U, Zr/Sc and Th/Sc ratios comparable to those of UCC (Table S1), indi-
cating a probable intermediate to felsic igneous source. A plot of Hf against La/Th provides
useful bulk rock discrimination between different source compositions [90]. In Figure 11a,
the data disperse along the mixed felsic and basic sources and trend to an andesitic arc
source, suggesting that they may derive from the mixture of basic and felsic rocks.
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research [91]. F1 = −1.773 × TiO2 + 0.607 × Al2O3 + 0.76 × TFe2O3 − 1.5 ×MgO + 0.616 × CaO +
0.509 × Na2O − 1.22 × K2O − 9.09, F2 = 0.445 × TiO2 + 0.07 × Al2O3 − 0.25 × TFe2O3 − 1.142 ×
MgO + 0.438 × CaO + 1.475 × Na2O + 1.426 × K2O − 6.861.

Discriminant function diagrams based on the abundance of major elements can be used
to denote the provenance of sedimentary rocks [91]. In the discriminant function diagram of
major element provenance (Figure 11b), most of the samples plot in the provenance region
assigned to felsic igneous and quartzose sedimentary, indicating a significant igneous
contribution to the Zankan area.

In view of their stability during weathering, transport, diagenesis, and low to medium
grade metamorphism, REEs patterns are generally accepted as one of the most reliable
indicators of sediment provenance [75]. Typically, mafic rocks contain low REE concen-
trations and insignificant or no negative Eu anomaly, whereas felsic rocks contain higher
REE concentrations and a noticeable negative Eu anomaly [92]. All the Zankan samples
show moderate to high ΣREE abundances (63.36–202.39 ppm) and are characterized by
fractionated REE with almost flat HREE patterns (Figure 6a). These patterns are comparable
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to that observed in Early Paleozoic granite, meta-dacite and meta-dacites [21,41], indicating
intermediate to felsic source rocks.

Detrital zircon age spectra are also a powerful tool for interpreting the provenance
of sedimentary rocks [93]. The studied meta-arenite samples are dominated by a large
population of zircons of Pan-Africa age with secondary populations at ~1.82 and 2.54 Ga
(Figure 8d). Numerous zircons have ages consistent with those of granites, meta-dacites
and meta-rhyolites [21] in the region, showing that felsic igneous rocks are a significant
source of metasedimentary materials. Zhang et al. (2018) reported that the Neoarchean
metamorphic volcanic–sedimentary sequence of the MZT was deposited at ca.2.5 Ga [9].
This age is consistent with Neoarchean zircon age population of our samples. Hu et al.
(2016) reported the detrital zircon U–Pb ages on the marbles and schists of the TSHT,
which displayed a similar distribution of age populations with ours, but lacked early
Paleozoic records [94]. The possible source for this detritus of the Cambrian BKC was the
Gondwana-affinity terranes, such as Lhasa Terrane, South Qiangtang Terrane, and the MZT.
Additionally, the volcanic and magmatic rocks produced during the Tethys subduction are
also significant contributors [2,26].

5.3. Implication for Tectonic Setting and Tectonic Evolution of the BKC

It has been recognized that there is a magmatic arc zone related to the southward
subduction of the Proto-Tethys Ocean in the northern margin of the MTTs [26,41,42,95],
while the tectonic setting of the BKC is still controversial, including the intracratonic rift,
fore-arc basin, and back-arc basin.

There is a strong correlation between the tectonic setting of depositional basins and
the geochemical features of the sediments [96]. However, considering the different tectonic
backgrounds of different source areas, geochemical criteria must be utilized cautiously [97].
In general, there is a progressive decrease in TFe2O3 + MgO, TiO2, and Al2O3/SiO2 ratios,
and an increase in Al2O3/(CaO + Na2O) in sandstones from the oceanic island arc to the
continental island arc to active continental margins to passive margins [98]. The Zankan
metasedimentary samples have moderate TFe2O3 + MgO (4.33–12.54 wt%), Al2O3/SiO2
ratios (0.11–0.19) and relatively TiO2 contents (0.22–0.55), which shares geochemical affini-
ties with continental arcs or active continental margin settings. In view of the fact that
the area has experienced a long period of metamorphic deformation and weathering ef-
fects, immobile elements such as Th, Sc, and Zr are more useful in distinguishing tectonic
environments than the major elements. The most appropriate tectonic discriminatory
plots are compiled to apply for the graywacke. In the Th-Sc-Zr/10 and Ti/Zr v. La/Sc
diagrams [96] (Figure 12), most of the samples plot in the field of continental island arc and
active continental margin setting [99]. Given the abundance of older detrital zircon grains
in the metasedimentary rock samples, the intra-arc deposition was largely ruled out. So,
was it the fore-arc or the back-arc?

Significantly, both regional geology and geochemistry favor the theory that the gabbros
and gabbroic sheets of the lower BKC are most likely formed in a fore-arc setting [26]. The
Early Cambrian BKC is mainly a volcanic–clastic deposit with ophiolite assemblages, and
its provenance is mainly arc magmatic material of the early Paleozoic period (Figure 1c),
which is consistent with the characteristics of the fore-arc basin. In addition, the geo-
chemical characteristics of sedimentary rocks show the characteristics of continental arcs,
which rarely develop back-arc basins with large and thick deposits [100]. Considering the
abundance of bimodal volcanic rocks in the region, we suggest that a continental fore-arc
extensional basin may be the most suitable.
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Figure 12. Tectonic discrimination diagrams for the Zankan metasedimentary rocks. (a) Th-Sc-Zr/10
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Collectively, we established a possible tectonic evolution model of the Early Cambrian
BKC to constrain the iron ore mineralization in the region (Figure 13). In this model,
we regard the BKC in the western section of the WKOB as a giant accretionary wedge
between the Tarim and MTTs formed during the Proto-Tethys Ocean south–southwestward
subduction (present orientation, Figure 13). Based on the age of our sedimentary and
volcanic rocks and the early Paleozoic granites (our unpublished data) of the BKC, as well
as the data collected (Table 1), we constrained the Proto-Tethys subduction to no later than
540 Ma. Then, a continental arc system was formed, in which I-granites, volcanic rocks,
and gabbros were developed in the BKC and the northern margin of the MTTs, and a
volcanic–sedimentary sequence was deposited in the fore-arc basin, in which the Taxkorgan
Iron Belt was developed.
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The evolution of the eastern WKOB from Proto-Tethys to Paleo-Tethys has been studied
in detail [2,16,26]. The southward subduction of the Proto-Tethys Ocean probably started
in ca. 540 Ma, which led to the deposition of the SKT (the Setula Group). The collision
between the NKT and TSHT occurred during 445~440 Ma, which led to the metamorphism
of amphibolite-granulite facies of the Setula Group in this area [101]. Thereafter, the



Minerals 2023, 13, 776 19 of 24

extension began in about 430 Ma and was marked by the emergence of A-type granite
in 400 Ma [102,103], representing the end of the Proto-Tethys Ocean evolution. However,
subtractive closure time of the Proto-Tethys in the western section of the WKOB is still
controversial. Liu et al. (2023) proposed that the early Paleozoic orogenic event in the SKT
of the WKOB did not extend to the western section of the WKOB based on the following
lines of evidence [104]: (1) Silurian amphibolite-facies metamorphism, concurrent with the
Devonian molasse unconformably overlying on the Sinian–Cambrian metamorphic rocks,
was well documented in the SKT of the WKOB, whereas no early Paleozoic metamorphism
has ever been identified in the western section of WKOB [2]. Instead, our data indicate
that the amphibolite- to high-pressure granulite-facies metamorphism of the Cambrian
BKC occurred in ca. 200 Ma [72], which is consistent with the absence of late Devonian
molasse in the western section of the WKOB. (2) Post-orogenic igneous activity is absent
in the western section of the WKOB, indicating its distinct evolution process since ca.
440 Ma. (3) In the northeastern margin of the NE Pamir, continuous late Ordovician to
Devonian sedimentary sequences are characterized by shallow marine deposition, and
Carboniferous–Permian sequences were mainly platform limestone [105], indicating a
continuous ocean evolution. Our new age data (BKC16-1) provide definitive evidence of
continued sedimentation at the edge of the TXKT (adjacent to the Kangxiwa Fault, Figure 2)
up to 230 Ma, when the Proto-Tethys Ocean was still unclosed. The relic Proto-Tethys was
finally closed during the early Mesozoic as recorded by the 211–187 Ma amphibolite- to
granulite-facies metamorphism in the BKC [73,101].

6. Conclusions

Based on the detail zircon U–Pb isotopic and whole rock geochemistry data of the
BKC in the Taxkorgan area, we draw the following main conclusions:

The main part of the BKC was emplaced in the Early to Late Cambrian period as a
giant accretionary wedge formed during the Proto-Tethys Ocean south–southwestward
subduction; subsequent metamorphism occurred in ca. 200 Ma.

The high-pressure metamorphic rocks should be further separated from the Cambrian
BKC to form a Triassic accretionary complex.

The host rocks, siliciclastic rocks, of the Zankan iron deposit derived predominantly
from the regional contemporary intermediate to felsic source rocks with tiny additions of
older detritus of the Precambrian crust, and deposited in the fore-arc basin, in which the
Taxkorgan Iron Belt was developed.

Provenance studies show that detrital materials of the sediments at Zankan are mainly
sourced from the Gondwana-affinity terranes, such as the Lhasa Terrane, the South Qiang-
tang Terrane, and the Mazar Terrane. Additionally, the volcanic and magmatic rocks
produced during the Tethys subduction are also significant contributors.

In the western section of the WKOB, Proto-Tethys did not close until 230 Ma, possibly
during the Early Mesozoic period (211–187 Ma).
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