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Abstract: The Xinghongpu Formation is very important for understanding the Devonian tectonic
evolution of the South Qinling orogenic belt. Geochemical, detrital zircon U-Pb-Hf isotopic stud-
ies were carried out on the Late Devonian metasedimentary rocks of the Xinghongpu Formation
to constrain the depositional age, the provenance, and the tectonic setting. The detrital zircon
U-Pb dating results revealed that the depositional age of the Xinghongpu Formation of the Late
Devonian was not earlier than 363.2 Ma. The whole-rock geochemistry suggested that (1) this suite
of metasedimentary rocks was mainly derived from quartzose sediments of mature continental
provenance, with a small contribution from mafic and intermediate igneous provenance, and (2) the
metasedimentary sandstone of the Xinghongpu Formation from the Late Devonian was deposited
in an active continental margin to continental arc setting. The detailed detrital zircon U-Pb dating
showed that the age spectra of detrital zircon could be divided into four groups: (1) 416–480 Ma,
accounting for about 23%; (2) 740–850 Ma, accounting for about 19%; (3) 889–1017 Ma, accounting
for about 19%; and (4) 1072–1146 Ma, accounting for about 12%. It also contained a group of Early
Proterozoic zircons. The age and Hf isotope of the detrital zircons suggested that the clastic sediment
deposited in the Xinghongpu Formation mainly came from the South Qinling Orogenic Belt and the
North Qinling Orogenic Belt. The detrital zircon Lu-Hf isotopes indicated that most zircons were the
products of the ancient crustal remelting, and the mantle-derived magmatic sources contributed to the
provenance. The Xinghongpu Fm. formed in an oceanic basin in a continental margin environment
with arc systems.

Keywords: detrital zircon; U-Pb dating and Lu-Hf isotope; late Devonian; South Qinling orogenic belt

1. Introduction

The Qinling orogenic belt (QOB) in central China is a very important part of the
Central Orogenic Belt [1,2]. It is between the North China Craton (NCC) in the north and
the South China Craton (SCC) in the south. The west of the QOB is connected with the
Qilian-Kunlun-Algin orogenic belt and the Pamir Plateau, and the southwest is adjacent to
the Songpan-Ganzi fold belt. The east of the QOB is connected with the Tongbai-Hong’an-
Dabie-Sulu orogenic belt [3–5]. The QOB has been divided into several parts [1]: the
southern margin of the NCC (S-NCC), the North Qinling belt (NQB), and the South Qinling
belt (SQB). These three terranes are separated from each other by the Shangdan Suture
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Zone (SSZ) in the north and the Mianlue Suture Zone (MSZ) in the south [1,6]. Like
the other major collisional orogenic belts in the world, the QOB was also constructed
through prolonged processes of arc–arc, arc–continent, and continent–continent collisional
events [7–9]. Its main collisional tectonic period was from the late Archaean to the Middle
Triassic. The QOB experienced a long and complex collisional process from the rifting
system to a plate collisional system, varying from extensional to subducting and then to a
collisional environment [10–12]. The tectonic evolution was recorded and can be reflected
by the sedimentary layers in the QOB, which was divided into five main parts from the
old to the present: (1) the basement rock, which is Archean–Paleoproterozoic metamorphic
rocks; (2) Neoproterozoic metasedimentary rocks and igneous rocks; (3) Mesoproterozoic–
Paleozoic ophiolitic suites; (4) Paleozoic metasedimentary rocks, migmatites, and HP-UHP
metamorphic rocks; and (5) Paleozoic–Mesozoic granitoid plutons [1,6,13]. To constrain
the tectonic evolution of the QOB more clearly, a large amount of research has been carried
out on the geochemical and geochronological features of the different layers in the QOB.
Dong et al. [13] studied the Kuanping ophiolite, which represents a Mesoproterozoic ocean,
which helps ensure the time of the amalgamation of the north Qinling Terrain to the North
China Craton. The geochemical and geochronological study on the adakitic rocks and
the complex in the NQB reflect the subduction of the Qinling oceans and the tectonic
setting [14–16]. Furthermore, the pre- and post-collisional processes were also uncovered
by the geochemical and geochronological study on granite in the QOB [17,18].

In addition, in recent years, the detrital zircon U-Pb dating and Hf isotope were
widely applied in the analysis of tectonic evolution and provenance in basin and orogeny
research [19–23]. In addition, some research was carried out with the help of detri-
tal zircon dating in the QOB. Yang et al. [24] analyzed the provenance of the Jiyuan
basin with detrital zircon U-Pb data and established the unroofing pattern of the QOB.
Zhang et al. [25] investigated the Late Paleozoic and Early Mesozoic tectonic and paleo-
geographic evolution of central China through the study of the detrital zircon from the
western QOB. The tectonic evolution and sedimentary provenance of the basin in the NQB,
such as the Liuyehe basin and Lingguanmiao basin, were analyzed with the detrital zircon
dating result of metamorphic sedimentary rocks, showing the slab–arc–basin system in the
NQB from the Late Paleozoic to the Early Mesozoic [26,27] and the new intracontinental
orogeny after the Indosinian orogeny [28]. In addition, the whole-rock geochemistry of
metasedimentary rocks was used to study the sedimentary provenance in the QOB [29].
Dai et al. [30] studied the geochemical characteristics of meta-mud-siltstones from the
Danfeng ophiolite mélange and found they were formed during the Ordovician to the
Silurian, and the sedimentary set should be in a fore-arc basin of the active continental
margin. When compared with the NQB, the geological story of the SQB has not been
fully uncovered. Especially in our study area, Fengxian town, most of the detrital zircon
studies of sedimentary rocks are focused on the Early to Middle Devonian [31–34], while
there are fewer reports about the layers of the Late Devonian. This study focused on
the Late Devonian Xinghongpu Formation (Fm.) in the Fengxian area, using whole-rock
geochemistry, detrital zircon U-Pb dating, and Lu-Hf isotopes to uncover the sedimentary
provenance and tectonic setting for the metasedimentary rocks from the Xinghongpu Fm.
It was a supplementary study to the research on the sedimentary provenance and tectonic
evolution of the SOB.

2. Geological Setting

The SQB has experienced a complex tectonic evolution. From the end of the Neopro-
terozoic to the beginning of the early Paleozoic, the ancient Qinling Ocean opened and
gradually created an intensive extensional environment. This extensional environment
lasted until the Middle Ordovician and then transferred to the convergence stage with the
Yangtze plate subducting to the North China Craton. Thus, the SQB became the passive
continental margin of the Yangtze plate [10]. At the same time, the northern margin of the
Yangtze plate entered into a new extensive environment in the early Devonian. During
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this process, the Mianlue Ocean formed [11,23], which caused the separation of the passive
continental margin of the SQB from the Yangtze plate [3]. During the same period, a
rifting zone developed along Minxian-Lixian-Fengzheng-Shanyang, forming a series of
marine basins such as Zhengxun, Zhashan, Bansha, Fengtai, Xicheng, and Limin [35]. The
Fengxian area is located in the central SQB (Figure 1). The exposed layers in the Fengxian
are mainly Devonian, including the Middle Devonian Dafenggou Fm., the Middle–Late
Devonian Gudaoling Fm., and the Late Devonian Xinghongpu Fm. and Jiuliping Fm. [36].
The Gudaoling Fm. and the Xinghongpu Fm. have promising potential for the exploration
of lead-zinc and gold deposits. In addition, the Cretaceous Donghe group is also widely
spread in the study area, which is the deposits of the Mesozoic rift basin [37,38].
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Figure 1. Geological maps of the study area (modified from [36]). (A) Geotectonic sketch map of 
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Fengxian district showing sampling location. Legend: 1—Quaternary; 2—the Lower Cretaceous 
Zhoujiawan Fm.; 3—the Middle Jurassic Longjiawan Fm.; 4—the Lower Triassic Xipo Fm.; 5—the 
Lower–Middle Permian Shuixiakou Fm.; 6—the Upper Carboniferous Sixiakou Fm.; 7—the Upper 

Figure 1. Geological maps of the study area (modified from [36]). (A) Geotectonic sketch map
of China. (B) Tectonic framework map of the Qinglin Orogenic Belt. (C) Geological map of the
Fengxian district showing sampling location. Legend: 1—Quaternary; 2—the Lower Cretaceous
Zhoujiawan Fm.; 3—the Middle Jurassic Longjiawan Fm.; 4—the Lower Triassic Xipo Fm.; 5—the
Lower–Middle Permian Shuixiakou Fm.; 6—the Upper Carboniferous Sixiakou Fm.; 7—the Upper
Devonian Jiuliping Fm.; 8—the Upper Devonian Dacaotan Fm.; 9—the Upper Devonian Xinghongpu
Fm.; 10—the Middle–Upper Devonian Gudaoling Fm.; 11—the Middle Devonian Dafenggou Fm.;
12—the Lower Paleozoic Luohanzi Fm.; 13—the Lower Paleozoic Danfeng Group; 14—the Lower
Proterozoic Qinling Group; 15—geological boundary; 16—small fault; 17—brittle-ductile shear zone;
18—regional fault; 19—sampling location; 20—town.

The Xinghongpu Fm. is characterized by a huge suite of muddy sediments, which
can be divided into three parts from the bottom to the top [35]. Part 1 generally consists of
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slightly metamorphic clastic rocks intercalated with carbonate rocks. This part changed
upward with less calcium and more siliceous clastic. Part 2 mainly consists of muddy
components, with light green silty metasedimentary rock at the bottom. Calcium deposits
appeared as interlayers, such as silty limestone, in the middle and upper parts of this
part. The content of calcium in part 2 is higher than in part 1. Part 3 shows a similar
lithological variation to part 2. The lower part of part 3 is fine clastic rocks and mudstone
without any calcium deposits, while the calcium deposits developed as interlayers in the
middle part of part 3. The upper part of part 3 is characterized by thin muddy carbonate
rock. The overlying layer of part 3 from the Xinghongpu Fm. belongs to the Jiuliping
Fm., which spans the Late Devonian and the Early Carboniferous. It is marked with
many more carbonate deposits than what was developed in the Xinghongpu Fm. The
metamorphic degree of the sedimentary rocks from the Jiuliping Fm. is also higher than the
one developed in the Xinghongpu Fm. Thus, the sedimentary rocks from the Xinghongpu
Fm. are more suitable to understand the sedimentary provenance and tectonic setting of
the QOB in the Late Devonian. In this study, we picked 12 samples of slightly metamorphic
siltstone of the Xinghongpu Fm. along the profile that is 50 km east of Fengxian County
and 5 km north of Pingkan Town (Figure 1C). The metamorphic sandstone is yellow or
green as a weathered color in the field (Figure 2A) and demonstrates a microscopically
blastopsammitic texture (Figure 2B).
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Figure 2. Field photo (A) and photomicrographs (B) of metamorphic siltstone from the Xinghongpu
Fm. Qtz—quartz; Pl—plagioclase; Bt—biotite; Chl—chlorite.

3. Methods
3.1. Whole-Rock Elemental Geochemistry

The chemical analyses were conducted at the geochemistry lab of Geomillion Mineral
Testing Technology Co., Ltd., Xi’an, China. Before the experiment, fresh rock pieces
without cracks were crushed to a 200 mesh size. The major oxides were analyzed by X-ray
fluorescence spectrometry (XRF; equipment model is Axios) with the relative standard
derivation (2RSD) of major oxides less than 5%. The procedure for the major element
analyses was described by Kimura [39]. The trace elements were analyzed by ICP-MS
(equipment model was ICAP Qc), and the detailed procedures for the trace element analysis
were described by Liang et al. [40]. The relative standard deviations (RSDs) of trace elements
were within 5%.

3.2. LA-ICP-MS Zircon U-Pb Dating

The U-Pb dating and trace element analyses of zircon were conducted synchronously
by LA-ICP-MS at the geochemistry lab of Geomillion Mineral Testing Technology Co.,
Ltd. The laser sampling was performed using a New wave NWR213. An Agilent 7500ce
ICP-MS instrument was used to acquire ion signal intensities. Helium was applied as a
carrier gas. Argon was used as the make-up gas and mixed with the carrier gas via a T
connector before entering the ICP. Each analysis incorporated a background acquisition
of approximately 10 s (gas blank) followed by 40 s data acquisition from the sample. The



Minerals 2023, 13, 768 5 of 17

Agilent Chemstation was utilized for the acquisition of each analysis. Off-line selection
and integration of background and analyte signals, time drift correction, and quantitative
calibration for trace element analyses and U-Pb dating were performed by Glitter 4.4.
Zircon 91,500 was used as an external standard for U-Pb dating. Time-dependent drifts of
U-Th-Pb isotopic ratios were corrected using linear interpolation (with time). The preferred
U-Th-Pb isotopic ratios used for 91,500 were from Wiedenbeck et al. [41]. The uncertainty
of the preferred values for the external standard 91,500 was propagated to the ultimate
results of the samples. Concordia diagrams were created and weighted mean calculations
were performed using Isoplot/Ex_ver3 [42]. The trace element compositions of zircons
were calibrated against reference materials (NIST610) combined with Si as an internal
standardization. The preferred values of the element concentrations for the NIST reference
glasses were from the GeoReM database, http://georem.mpch-mainz.gwdg.de/sample_
query_pref.asp (accessed on 25 May 2023). In addition, the age concordance of the zircons
was not less than 80%, while the lower ones were eliminated. The zircon U-Pb dating
method was described in detail by Duan [43].

3.3. Zircon In Situ Lu-Hf Isotope

The in situ zircon Hf isotope analyses were performed using a New Wave UP213
laser ablation microprobe coupled to a Neptune MC–ICP–MS at the geochemistry lab of
Geomillion Mineral Testing Technology Co., Ltd. Meng et al. [44] described the method
of testing in situ Lu-Hf isotopes in detail. A stationary spot with a beam diameter of
40 or 55 um was used. Helium was used as a carrier gas and was combined with ar-
gon in a mixing chamber before being introduced to the ICP–MS plasma. The values of
176Lu/175Lu = 0.02658 and 176Yb/173Yb = 0.796218 were used to correct for the 176Lu and
176Yb isobaric interferences, respectively [45]. The zircon GJ1 was used as the reference
standard, yielding a weighted mean 176Hf/177Hf value of 0.282008 ± 27 (2σ). All Hf isotope
data were reported with an error of 2σ of the mean, and values of εHf were calculated using
a 176Lu decay constant of 1.865 × 10–11 yr–1 [46]. The depleted mantle model ages (TDMs)
were calculated based on the measured 176Lu/177Hf and 176Hf/177Hf values concerning
the depleted mantle with present-day 176Hf/177Hf = 0.28325 and 176Lu/177Hf = 0.0384 [47].
The average continent crustal (TC DM) model ages were calculated for the magma source
using the zircon’s initial 176Hf/177Hf value, assuming a mean crustal value of 0.015 [48].

4. Results

The major element, trace element, and rare earth element contents of 12 samples
analyzed in this study are listed in Supplementary Table S2. The zircon U-Pb dating and
Lu-Hf isotopic results of the sample PM02-2 are presented in Supplementary Table S1.

4.1. Major Elements

The element composition of the metasedimentary rocks was dominated by SiO2
(48.7~69.4 wt.%, average 61.1 wt.%), Al2O3 (7.55~18.1 wt.%, average 14.2 wt.%), and
CaO (1.48~14.9 wt.%, average 5.85 wt.%). In addition, these rocks also contained relative
low concentrations of Fe2O3 (3.05~7.37 wt.%, average 6.00 wt.%), K2O (0.54~4.28 wt.%,
average 2.56 wt.%), MgO (1.51~5.93 wt.%, average 3.31 wt.%), and Na2O (0.85~4.46 wt.%,
average 1.99 wt.%). The contents of other major elements (MnO, P2O5, and TiO2) were all
lower than 1 wt.%. The average contents of SiO2, Al2O3, Fe2O3, K2O, TiO2, P2O5, and MnO
of our samples were close to PAAS, while the content of CaO was much higher than the
one in PASS (Figure 3). The contents of MgO and Na2O were a bit higher than the ones
in PASS.

There was a negative correlation between the contents of SiO2 and Al2O3 and between
the contents of Al2O3 and CaO (Figure 4). No obvious correlation could be observed be-
tween the contents of Al2O3 and P2O5. However, the samples showed a positive correlation
between the contents of Al2O3 and TiO2, between the contents of Al2O3 and TFe2O3, and
between the contents of Al2O3 and K2O. The rocks were compositionally variable, but most
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samples shared similar geochemical characteristics (Figure 5), as shown by their respective
lg(SiO2/Al2O3) (0.52~0.94) and lg(TFe2O3/K2O) (0.17~1.07) values. Most samples fell
within the shale and wacke fields on Herron’s sedimentary rock classification diagram [49]
(Figure 5), while three samples fell in the Fe-Shale, Fe-sand, and Lith-arenite fields.
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4.2. Trace and Rare Earth Elements

Element enrichment factors were used to see the enrichment or depletion of an ele-
ment by comparing it with a selected standard value. In this study, the trace elemental
compositions of the samples were compared with the composition of PAAS [50] through
Al-normalization to identify significant deviations [51]. Element enrichment factors of
X (XEF) were calculated by XEF = (X/Al)Sample/(X/Al)PAAS. XEF > 1 represents that element
X was relatively enriched in the sample compared with X in PAAS, while XEF < 1 represents
the situation of depletion [51]. The XEF values of Cr, Co, Ni, Sc, Pb, Th, Sr, Zr, and Hf
were larger than 1, showing these trace elements were more enriched in the samples than
in PAAS, while the XEF values of Li and Rb were much lower than 1, indicating these
elements were depleted. As to the elements V, Cu, Ba, U, and Nb, the XEF values were
close to 1, indicating that they behaved similarly to PAAS. The total ∑REE content of the
Xinghongpu Fm. metasedimentary rocks varied from 106 ppm to 204 ppm. Moreover, the
samples were enriched in LREE (96.1~182 ppm) relative to HREE (10.1~22.0 ppm) and
showed prominent negative Eu anomalies (δEu = 0.58~0.89), and the ratio of (La/Yb)N was
7.89~11.8 (Supplementary Table S2).

4.3. Detrital Zircon U-Pb Dating

The analytical data are presented in Supplementary Table S1. Eighty zircons of the
sample PM01 were selected for U-Pb analysis, and 75 spots produced good results. The
zircons could be easily divided into two groups based on their CL image (Figure 6). Most
zircons contained oscillatory growth zoning and yielded relatively high Th/U values
(0.20~2.45), indicating a magmatic origin [44,52,53]. They are typically subhedral to eu-
hedral, subrounded to subangular, and 35~100 µm in size. Two of these zircons were
internally homogeneous with low Th/U values (less than 0.1) and were rounded and
allotriomorphic in shape, suggesting a metamorphic origin [54–56]. The youngest zircon
yielded an age of 363.2 ± 3.2 Ma with a magmatic zircon Th/U ratio (0.84), and the oldest
zircon yielded an age of 2502 ± 13 Ma (Figure 7A). The main age peaks of these zircons
were at about 440 Ma, 826 Ma, 970 Ma, and 1100 Ma (Figure 7B). They also contained a lot
of old zircons, whose ages ranged from 1200 to 2500 Ma.
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4.4. Zircon Lu-Hf Isotope

Zircon in situ Lu-Hf isotopic compositions of the dated 75 grains were also measured
(Supplementary Table S1). The values of 176Hf/177Hf of these analytical spots ranged from
0.281234 to 0.283003, and the values of 176Lu/177Hf of these analytical spots ranged from
9.5 × 10−5 to 6.858 × 10−3. The corresponding values of εHf(t) had a wide range interval
from −22.58 to +16.26, with most grains (>70%) giving negative εHf(t). The εHf(t) value
showed different characteristics in different age ranges. The number of zircons with positive
εHf(t) values nearly equaled the ones with negative εHf(t) values when their ages were older
than 1000 Ma, while the zircons with negative εHf(t) values dominated when their ages
were younger than 1000 Ma. The model ages (TDM2) were from 401 to 3141 Ma. Almost all
the zircons demonstrated that their model ages (TDM2) were larger than their 206Pb/238U or
207Pb/206Pb ages, while one zircon with 461 Ma as its 206Pb/238U age showed the opposite.

5. Discussion
5.1. Depositional Age of the Xinghongpu Fm

Detrital zircon’s age was usually used to ensure the earliest depositional age of
the layers because the deposition could not happen before the formation of the zircon,
which came from its provenance. As shown above, the youngest age found when
dating the zircon analyzed in this study was 363.2 ± 3.2 Ma (Figure 7A), indicating that
the depositional age of the Xinghongpu Group should be younger than 363.2 Ma. In
addition, the biological assemblage of the Xinghongpu Formation was classified into the
Ancyrodella rotundiloba alata assemblage zone, which belonged to the Late Devonian.
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Combined with the regional geological setting, this implied that the Xinghongpu group
should belong to the latest Devonian.

5.2. Provenance
5.2.1. Evidence from Whole-Rock Geochemistry

The sedimentary geochemistry of rocks, detrital zircon geochronology, and zircon
Lu-Hf isotope are useful tools widely used to distinguish the provenance of sediments.

Roser and Korsch [57] defined two functions (F1 and F2) to help distinguish the sedi-
ments from different provenances, including P1 (primarily mafic and lesser intermediate
igneous provenance), P2 (primarily intermediate igneous provenance), P3 (felsic igneous
provenance), and P4 (quartzose sediments of mature continental provenance):

F1 = −1.773 × TiO2 + 0.607 × Al2O3 + 0.76 × TFe2O3 − 1.5 × MgO + 0.616 × CaO + 0.509 × Na2O − 1.224 ×
K2O − 9.09,

F2 = 0.445 × TiO2 + 0.07 × Al2O3 − 0.25 × TFe2O3 − 1.142 × MgO + 0.438 × CaO + 1.475 × Na2O + 1.426 ×
K2O − 6.861.

Most of our samples fell into the P4 zone, while two fell into the P1 zone, and the
others fell into the P2 zone (Figure 8). It suggests that quartzose sediments of mature
continental provenance were the main provenance of the Xinghongpu Fm., and the mafic
and intermediate igneous provenance also contributed to the Xinghongpu Fm. Floyd and
Leveridge [58] proposed the Hf vs. La/Th diagram to distinguish the sedimentary source.
Our sample fell into the field of acidic arc source with a mixed felsic and basic source and
some ancient crustal material (Figure 9). In the Th/Sc-Zr/Sc diagram (Figure 10), two of
our samples show different chemical compositions from the other samples. These two
samples should be closely related to a mafic to intermediate igneous source marked by
high Fe content (Figures 8 and 9) and very close to the andesite (Figure 10). In addition, the
other samples did not show any compositional variation, suggesting they may not have
originated from igneous provenance (Figure 10). It suggests they should be controlled
by the mature continental source whose main compositional mineral was dominated by
quartz and feldspar.
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5.2.2. Evidence from Detrital Zircon U-Pb Age and Hf Isotope

Combining the U-Pb age with the in situ Hf isotope of the detrital zircons could help
constrain the provenance in complex situations. Seventy-five spots of detrital zircons
were analyzed for their U-Pb age and the corresponding Lu-Hf isotopes. The age of the
zircons ranged widely from 363.2 Ma to 2502 Ma, suggesting a complicated provenance
that contained old crust material. Only two zircons from our sample were aged with a
Devonian age (363.2 Ma and 416 Ma). Their εHf(t) values were −10.83 and 0.14, respectively.
The lack of zircons aged from 364 Ma to 415 Ma indicated that the paleoenvironment of the
study area in Devonian was a sag or a basin that could accept the deposits from ancient
sources and lacked volcanic activity. It was consistent with understanding the stratigraphy
and sedimentology of the Xinghongpu Fm. The zircon frequency histogram of our sample
behaved similarly to the zircon frequency histogram of the Yangtze Craton with age peaks
of 440 Ma, 826 Ma, 970 Ma, and 1100 Ma, lacking in the zircon frequency histogram
of the North China Craton (Figure 7B). However, the Neoproterozoic detrital zircons
(~0.8 Ga) from the Yangtze Craton were marked by positive εHf(t) values [25]. However, the
εHf(t) values of the zircons (~0.8 Ga) in our sample varied from −17.8 to 6.61 (only three of
17 showed positive values). It indicated that there were at least two sources that contributed
to the provenance, suggesting a complex provenance of the Xinghongpu Fm.

The Silurian zircons of our sample were aged from 437.2 Ma to 418.2 Ma, with negative
εHf(t) values (−9.9~−0.39). These were consistent with the zircons of granites and gneiss in
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the NQB [15,61], suggesting that the NQB should be a provenance zone of the Xinghongpu
Fm. This also indicated that the igneous source provided a large amount of material
as the clastics for the Xinghongpu Fm. The age of our Ordovician zircons varied from
479.4 Ma to 441 Ma. Most of them showed negative εHf(t) values (−16.75~−0.44), while
the zircons aged 461.3 ~ 465 Ma showed positive εHf(t) values (2.21~16.26). The positive
group was consistent with the zircons of the amphibolite in the SQB (Shi et al., 2013),
while the negative one should come from the gneiss in the NQB. Only one zircon was
aged with a Cambrian age of 510 Ma, showing a positive εHf(t) value (9.37). The Neo-
proterozoic zircons of our sample were aged from 984 Ma to 556.9 Ma, with varying
εHf(t) values from −22.58 to 8.98. The latest Neoproterozoic zircons marked by positive
εHf(t) values should come from the granitoid in the SQB [62], while the zircons with the
age of ~820 Ma and positive εHf(t) value were very consistent with the zircons from dioritic
intrusion and migmatite in Yangtze Craton [20]. The other Neoproterozoic zircons of our
sample were almost marked by negative εHf(t) value, which was common in the SQB
and the NQB. Most of the early Mesoproterozoic zircons (seven of 10) were marked with
negative εHf(t) values (−6.42~−1.25), while the other three zircons were marked with posi-
tive εHf(t) values. It was consistent with the quartz schist in the NQB [15,63]. In addition,
the middle–late Mesoproterozoic zircons of our samples were all marked with positive
εHf(t) values, which was similar to the zircons of gneiss in the NQB as well [15]. The
Paleoproterozoic zircons were also mostly marked by negative εHf(t) values, while the
zircons (aged 1675 Ma, 1606 Ma, and 2161 Ma) were marked by positive εHf(t) values.
There was only one zircon with a Neoarchean age, showing a positive εHf(t) value. These
Hf isotopic characteristics of zircon are similar to the ones from the NQB [15,63].

Above all, the potential provenance of the Xinghongpu Fm. was from multiple sources,
including the SQB, NQB, and Yangtze Craton. However, because the Mianlue Ocean
between the SQB and Yangtze Craton opened in the Early Devonian and existed until the
Middle–Late Triassic [11,23,25], it would hinder the transport of detrital material from the
Yangtze Craton to the SQB in the Late Devonian. The zircons showing similar geochemical
features to the Yangtze Craton were all older than 800 Ma. In that period, the SQB was an
extensional oceanic zone near the Yangtze Craton and accepted the clastics from Yangtze
Craton as depositions. This is why some old zircons of our sample geochemically behaved
similarly to the ones in the Yangtze Craton. Thus, the provenance of the Xinghongpu Fm.
was mainly the SQB and the NQB.

5.3. Crustal Evolution and Tectonics

The age and Hf isotope of detrital zircons could help understand regional tectonic
evolution [23,25,64] and assess plate tectonic reconstructions [22,65] for their wide age
range, which was hardly recorded by the whole rock.

5.3.1. Crustal Evolution

The age and the Hf isotopic features of zircons (Figure 11) could provide interpretations
on the regional crustal evolution. The main age groups of the detrital zircons of our sample
were divided into the four groups below.

Group 1 included the zircons aged from 416–480 Ma, with εHf(t) = −16.8~3.19 and
TDM2 = 1237~2479 Ma, except for one zircon aged 461.6 Ma with εHf(t) = 16.26 and
TDM1 = 417 Ma and, in addition, another zircon aged 510 Ma with εHf(t) = 9.37 and
TDM1 = 750 Ma. These suggested that most of the zircons came from remelting of the
ancient crust while there was a depleted-mantle-derived magmatic intrusion or volcanic
deposits developing during the Ordovician and Silurian in the study area, representing the
early Paleozoic crustal growth event.

Group 2 included the zircons aged from 740–1017 Ma, with εHf(t) = −22.6~8.98 and
TDM2 = 1626~3078 Ma, except the zircons aged 823.2 Ma, 824 Ma, 982 Ma, and 1017 Ma,
with positive εHf(t) values (6.53, 6.61, 8.98, and 6.5), indicating crustal growth events at
~823 Ma in the middle Neoproterozoic and at ~1000 Ma in the transitory stage from the
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Mesoproterozoic to the Neoproterozoic. In addition, the other zircons were characterized
by negative εHf(t) values, representing the remelting and recycling of the ancient crust.

Minerals 2023, 13, x FOR PEER REVIEW 12 of 17 
 

 

~823 Ma in the middle Neoproterozoic and at ~1000 Ma in the transitory stage from the 
Mesoproterozoic to the Neoproterozoic. In addition, the other zircons were characterized 
by negative εHf(t) values, representing the remelting and recycling of the ancient crust. 

Group 3 included the zircons aged from 1072–1787 Ma. This group of zircons could 
be divided into two subgroups according to the ages and different εHf(t) values: subgroup 
1 (1072~1146 Ma), with εHf(t) = −6.42~−1.25 and TDM2 = 1999~2361 Ma, except for two zircons 
aged 1120 Ma and 1137 Ma with εHf(t) = 2.14~8.81 and TDM1 = 1287 Ma and 1562 Ma, and 
subgroup 2 (1252~1675 Ma), with positive εHf(t) = −6.42~−1.25 and TDM1 = 1549~1969 Ma. 
These indicated crustal growth events from the end of the Paleoproterozoic to the early 
Mesoproterozoic, while in the late Mesoproterozoic, crustal remelting took place and be-
came dominant. 

Group 4 included the zircons aged from 1718–2502 Ma, except for one zircon (age 
2161 Ma), with a strong positive εHf(t) value (9.02) and TDM1 = 2174 Ma. The other zircons 
had negative or slightly positive εHf(t) values (−8.28~2) and TDM2 = 2680–3141 Ma. These 
suggested that crustal remelting was the main form of crustal evolution in this period. 

Above all, the remelting of old crust occurred almost all the time, and the Paleozoic 
and Neoproterozoic were the main crustal growth periods. 

 
Figure 11. Age (Ma) vs. εHf(t) diagram of PM01 from the Xinghongpu Fm. Data sources: the SQB 
data were from [15,62,66], the NQB data were from [15,61,63], Kunlun from [67,68], the Qilian data 
were from [69], the North China Craton (NCC) data were from [70,71], and the Yangtze Craton 
(Yangtze) data were from [20,72–75]. 

5.3.2. Tectonic Implication 
(1) Tectonic implication from detrital zircon 
Besides the crustal evolution reflected by the geochemical features of the detrital zir-

cons, the message of tectonic events could also be read out and interpreted. The age of the 
zircons with strongly positive εHf(t) values was concentrated in 461~465 Ma, ~823 Ma, 
982~1017 Ma, and 1426~1606 Ma. It indicated that in these periods, the zircons should be 
derived from a depleted mantle by magmatism very close to the extensional tectonic en-
vironment, while the age of the zircons with strongly negative εHf(t) values was concen-
trated in ~441 Ma, ~557 Ma, 760~782 Ma, and ~830 Ma. This group of zircons represented 
the melting of the ancient crust and its recycling, which may have happened in a colli-
sional tectonic setting. Combined with the geological and historical story, the zircons aged 
1426~1606 Ma with positive εHf(t) values should be close to the breakup of the Columbia 

Figure 11. Age (Ma) vs. εHf(t) diagram of PM01 from the Xinghongpu Fm. Data sources: the SQB
data were from [15,62,66], the NQB data were from [15,61,63], Kunlun from [67,68], the Qilian data
were from [69], the North China Craton (NCC) data were from [70,71], and the Yangtze Craton
(Yangtze) data were from [20,72–75].

Group 3 included the zircons aged from 1072–1787 Ma. This group of zircons could
be divided into two subgroups according to the ages and different εHf(t) values: sub-
group 1 (1072~1146 Ma), with εHf(t) = −6.42~−1.25 and TDM2 = 1999~2361 Ma, except for
two zircons aged 1120 Ma and 1137 Ma with εHf(t) = 2.14~8.81 and TDM1 = 1287 Ma and
1562 Ma, and subgroup 2 (1252~1675 Ma), with positive εHf(t) = −6.42~−1.25 and
TDM1 = 1549~1969 Ma. These indicated crustal growth events from the end of the Pa-
leoproterozoic to the early Mesoproterozoic, while in the late Mesoproterozoic, crustal
remelting took place and became dominant.

Group 4 included the zircons aged from 1718–2502 Ma, except for one zircon (age
2161 Ma), with a strong positive εHf(t) value (9.02) and TDM1 = 2174 Ma. The other zircons
had negative or slightly positive εHf(t) values (−8.28~2) and TDM2 = 2680–3141 Ma. These
suggested that crustal remelting was the main form of crustal evolution in this period.

Above all, the remelting of old crust occurred almost all the time, and the Paleozoic
and Neoproterozoic were the main crustal growth periods.

5.3.2. Tectonic Implication

(1) Tectonic implication from detrital zircon
Besides the crustal evolution reflected by the geochemical features of the detrital

zircons, the message of tectonic events could also be read out and interpreted. The
age of the zircons with strongly positive εHf(t) values was concentrated in 461~465 Ma,
~823 Ma, 982~1017 Ma, and 1426~1606 Ma. It indicated that in these periods, the zircons
should be derived from a depleted mantle by magmatism very close to the extensional
tectonic environment, while the age of the zircons with strongly negative εHf(t) values
was concentrated in ~441 Ma, ~557 Ma, 760~782 Ma, and ~830 Ma. This group of zircons
represented the melting of the ancient crust and its recycling, which may have happened
in a collisional tectonic setting. Combined with the geological and historical story, the
zircons aged 1426~1606 Ma with positive εHf(t) values should be close to the breakup of
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the Columbia supercontinent at ~1400 Ma. The Neoproterozoic zircons with strongly
positive εHf(t) values should be close to the oceanic subduction during the formation
of the Rodinia supercontinent at ~0.9~1.0 Ga, while the zircons with strongly negative
εHf(t) values were almost marked by very old TDM2 (>2.5 Ga), suggesting they may have
been derived from the crust during the formation of the Kenorland supercontinent.

(2) Tectonic setting in the Late Devonian
It has been shown that the chemical compositions of the sediments can be related to

plate tectonic processes, making geochemistry a powerful tool for recognizing ancient tec-
tonic settings [50,76–78]. The value of K2O/Na2O of sedimentary rock behaves differently
from its SiO2 content in different tectonic settings. Roser and Korsch [57] used K2O/Na2O-
SiO2 diagrams to distinguish the sedimentary rocks’ tectonic settings successfully: active
continental margin, passive continental margin, and island arc. The result shows that our
samples are plotted in the fields of the active continental margin and island arc (Figure 12).
Large ionic lithophile elements such as Th, Co, Zr, La, and Sc were also successfully used
to distinguish the sedimentary rocks’ tectonic environment. In the triangle series of dia-
grams proposed by Bahatia and Crook in 1986 [79], most of our samples are plotted in the
continental arc (Figure 12) and active continental margin fields. There are also two samples
plotted in the oceanic island arc field. It suggests that in the Late Devonian, the layers
of the Xinghongpu Fm. were deposited in an active continental margin setting with arc
systems. However, there was rare volcanism during the Devonian in the study area. The
latest volcanic deposition occurred in the Late Silurian. Combined with the distributional
characteristics of the zircon ages, the sedimentary rock in the Xinghongpu Fm. should
contain a lot of re-depositional igneous clastic from Silurian.

Minerals 2023, 13, x FOR PEER REVIEW 13 of 17 
 

 

supercontinent at ~1400 Ma. The Neoproterozoic zircons with strongly positive εHf(t) val-
ues should be close to the oceanic subduction during the formation of the Rodinia super-
continent at ~0.9~1.0 Ga, while the zircons with strongly negative εHf(t) values were almost 
marked by very old TDM2 (>2.5 Ga), suggesting they may have been derived from the crust 
during the formation of the Kenorland supercontinent. 

(2) Tectonic setting in the Late Devonian 
It has been shown that the chemical compositions of the sediments can be related to 

plate tectonic processes, making geochemistry a powerful tool for recognizing ancient tec-
tonic settings [50,76–78]. The value of K2O/Na2O of sedimentary rock behaves differently 
from its SiO2 content in different tectonic settings. Roser and Korsch [57] used K2O/Na2O-
SiO2 diagrams to distinguish the sedimentary rocks’ tectonic settings successfully: active 
continental margin, passive continental margin, and island arc. The result shows that our 
samples are plotted in the fields of the active continental margin and island arc (Figure 
12). Large ionic lithophile elements such as Th, Co, Zr, La, and Sc were also successfully 
used to distinguish the sedimentary rocks’ tectonic environment. In the triangle series of 
diagrams proposed by Bahatia and Crook in 1986 [79], most of our samples are plotted in 
the continental arc (Figure 12) and active continental margin fields. There are also two 
samples plotted in the oceanic island arc field. It suggests that in the Late Devonian, the 
layers of the Xinghongpu Fm. were deposited in an active continental margin setting with 
arc systems. However, there was rare volcanism during the Devonian in the study area. 
The latest volcanic deposition occurred in the Late Silurian. Combined with the distribu-
tional characteristics of the zircon ages, the sedimentary rock in the Xinghongpu Fm. 
should contain a lot of re-depositional igneous clastic from Silurian. 

 
Figure 12. Tectonic discrimination diagrams for the Paleoproterozoic metasedimentary rocks (after 
Roser and Korsch, 1988 [57]; Bhatia and Crook, 1986 [79]). Abbreviations for tectonic settings: A, 
oceanic island arc; B, continental arc; C, active continental margin; D, passive continental margin. 

6. Conclusions 

Figure 12. Tectonic discrimination diagrams for the Paleoproterozoic metasedimentary rocks (after
Roser and Korsch, 1988 [57]; Bhatia and Crook, 1986 [79]). Abbreviations for tectonic settings: A,
oceanic island arc; B, continental arc; C, active continental margin; D, passive continental margin.

6. Conclusions

The Xinghongpu Fm. was not deposited earlier than 363.2 Ma, which constrains its
depositional age to the Late Devonian. The provenance of the Xinghongpu Fm. was mainly
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from quartzose sediments of mature continental provenance, while mafic and intermediate
igneous provenances also contributed a bit. Ancient crusts from the NQB and the SQB were
the main sources for the provenance of the metasedimentary layers in the Xinghongpu
Fm. The tectonic setting of the Fengxian area in the central SQB is an oceanic basin in an
active continental margin environment with arc systems in the Late Devonian. The regional
crustal evolution was related to the breakup and formation of supercontinents such as
Columbia and Rodinia. The age peak (700~950 Ma) of zircon showed a co-relationship
with the formation (1.0~0.9 Ga) and breakup (750~720 Ma) of supercontinent Rodinia,
showing recycling continental material marked with negative εHf(t) and the juvenile crust
represented by the ones with the positive εHf(t). The zircons aged 2.1~1.7 Ga were all with
negative εHf(t) values and may represent the formation of the supercontinent Columbia.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/min13060768/s1: Table S1: Result of zircon U-Pb dating
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