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Abstract: Late Cretaceous granitoids are developed in the eastern and western districts of the Gejiu
ore district, but tin deposits mainly occur in the eastern district, and the reasons for the difference in
mineralization between the eastern and western districts are still controversial. Considering the main
factors controlling granite Sn fertility, the whole-rock geochemical characteristics of granites on both
sides are compared. LA-ICP-MS zircon U-Pb analyses of the Gejiu granites yielded two age periods: the
early phase from 79.2 to 83.3 Ma and the later phase from 73.8 to 75.6 Ma. The western district granites
have higher zircon εHf(t), CaO/Na2O, Ba, and Sr concentrations and lower Rb/Sr ratios than the eastern
district granites, indicating that the western district granites have more mantle-derived materials in the
source than the eastern district granites. Results of oxygen fugacity show that the western granites have
a higher oxygen fugacity condition. More depleted Ba, Sr, P, Eu and Ti characteristics with obviously
negative Eu anomalies in the eastern granites also have high Rb/Sr ratios and low Nb/Ta and Zr/Hf
ratios, indicating that the eastern granites experienced highly magmatic differentiation, attributed
to high volatile F contents that can reduce the viscosity and solidus of magma. Combined with the
differences in field observations and structural styles, on the whole, the western district granites have
higher oxygen fugacities and lower F contents and magmatic differentiation than those in the eastern
district granites, indicating that the western district granites are not conducive to mineralization.

Keywords: Late Cretaceous granite; magma source; melting condition; biotite; Gejiu tin ore

1. Introduction

As the main component of the Earth’s continental crust, granite plays an important role
in the evolution of the continental crust and the formation of many economic metallogenic
belts [1–4]. Granite-related deposits are important sources of copper, molybdenum, tungsten and
tin. Moreover, magmatic source, magmatic physicochemical property (P-T-ƒO2) and evolution
process (degree of magmatic fractionation) control the metallogenic potential of granitoids
and their genetic relationship with certain types of ore deposits [5–7]. In general, porphyry
Cu-Mo deposits are associated with oxidized magmas, while Sn-W deposits are related to
reduced, high-fractionated felsic magmas [6–9]. Cretaceous granitoids are widely distributed in
South China, and associated magmatic-hydrothermal deposits are also developed, which are
important Cretaceous metallogenic areas in China. However, the mineralization of different
ore-forming elements shows regional discrepancies, especially for tin mineralization.
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The Gejiu tin polymetallic ore district, one of the largest mining districts in the world,
is located in the western Cathysia Block of South China [10–19] (Figure 1). The total ore
reserves (including Sn, Cu, Pb, Zn, etc.) are more than 1000 Mt [20]. The Gejiu ore district
contains two parts, eastern and western, divided by an N-S striking Gejiu fault (Figure 1c).
Even though the late Cretaceous igneous rocks closely associated with the tin polymetallic
mineralization are, in theory, widely distributed in both parts [10–14,16,18,19], most of the
tin polymetallic deposits (Malage, Songshujiao, Gaosong, Laochang and Kafang deposits)
are located in the eastern district, while only sporadic small Pb-Sn ore bodies occur in
the western district [10–13,15,21,22]. This implies that other factors besides the magmatic
sources also affect tin mineralization. However, few predecessors have studied the essential
mechanism of the difference in mineralization distribution on both sides of the striking
fault in the Gejiu area [22]. In this paper, considering the factors controlling the tin fertility
of granites, a comprehensive study of Late Cretaceous granites from the Gejiu ore district
has been taken to compare their geochemical characteristics with those of the eastern and
western districts and further constrain the mineralization of the Gejiu Sn district.
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Figure 1. (a) Simplified map of main tectonic units in East Asia (modified after [16]). (b) Simplified 
geological map of Youjiang Basin displaying the distribution of late Cretaceous granitic rocks and 
related ore deposits (modified from [13,18]). (c) Simplified geological map of the Gejiu ore district 
(modified from [13,18]). ZDF, Ziyun–Du’an fault zone; PNF, Pingxiang–Nanling fault zone; HF, 
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2. Geological Setting and Sample Description

The Gejiu tin polymetallic ore district is located near the southwestern margin of
the South China Block, which experienced multi-stage arc magmatic activities related
to paleo-Pacific or Tethys plate subduction [10–14,18,23–26]. Several stages of back-arc
crustal extension related to the reorganization of the subduction zone formed the main
tin and tungsten mineralization. The Gejiu ore district is located near the city of Gejiu
and is bounded by the Yangtze Block to the north and by the Sanjiang fold belt to the
west (Figure 1a,b). It occupies about 1600 km2, and the strata in this district range from
Cambrian to Quaternary. The Late Triassic to Cretaceous strata are exposed due to the
Yanshanian tectonic movement [15]. The Middle Triassic Gejiu Formation and the Middle
Triassic Falang Formation are the main outcrops in this area. The Gejiu Formation is mainly
composed of carbonate (>3000 m thick), which is the host rock of the deposit in the Gejiu
area. The Falang Formation is mainly composed of clastic sediments and carbonate with
interlayered mafic lavas (1800 to 2800 m thick) [10–13]. Faults are well developed in the
Gejiu area, including the NNE-trending Longchahe faults, NE-trending Baishachong fault
and NS-trending Gejiu fault [11].

The Gejiu fault cuts through the whole district, and divides it into eastern and western
parts (Figure 1c). Most of the tin polymetallic deposits are located in the eastern part,
including the Malage, Songshujiao, Gaosong, Laochang, and Kafang deposits [11]. The
Gejiu granite is one of the largest batholiths in the western Cathaysia Block. Igneous rocks
in the eastern district are mainly concealed, including Baichachong, Malage–Songshujiao,
and Laochang–Kafang granitic intrusions, with few outcropped rocks in Baishachong,
Beipaotai, and Kafang areas [27] (Figure 1c). Igneous rocks in the western district are
mainly outcropped, including mafic, acidic and alkaline rocks, but the granite formed
during Yanshannian is dominant. Moreover, the Longchahe, Shenxianshui granitic, and
Jiasha gabbro intrusions are located in the western district (Figure 1c). Granitic rocks in the
Gejiu area can be divided into two types: porphyritic and equigranular [10,13]. Granitic
rocks from Longchahe and Malage–Songshujiao intrusions belong to the porphyritic type,
while granitic rocks from Baishachong, Shenxianshui, and Laochang–Kafang intrusions
belong to the equigranular type. The Jiasha intrusion is composed of gabbro and monzonite.

Numerous granite samples were collected from the Gejiu area (Figure 2). The phe-
nocryst content of the porphyritic granite from Longchahe and Malage–Songshujiao in-
trusions is about 40%, and grains consist of plagioclase, K-feldspar, quartz, and biotite
(Figure 2a–c). The groundmass is mainly comprised of plagioclase, K-feldspar, quartz,
and biotite, with minor accessory minerals, e.g., zircon, apatite, and titanite (<5%). The
plagioclase (~30%) has polysynthetic twins, with sericite alteration in some samples. The
K-feldspar (~30%) consists of orthoclase, microcline, and perthite. The microcline has
typical crosshatched twins, and the perthite has perthitic textures. Quartz (~25%) grains
appear subhedral or anhedral. The biotite (~10%) shows chloritization and muscovite
alteration in some samples. The equigranular granites from Baishachong, Shenxianshui,
and Laochang–Kafang intrusions include plagioclase (35%), K-feldspar (25%), quartz (25%),
and abundant biotite (10%), with minor accessory minerals, e.g., zircon and titanite (<5%)
(Figure 2d–f).
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Figure 2. Hand specimen photographs and photomicrographs of porphyritic granites (a–c) and
equigranular granites (d–f) from the Gejiu ore district. Bt, biotite; Kfs, K-feldspar; Mic, microcline;
Ms, muscovite; Pl, plagioclase; Pth, perthite; Qtz, quartz; Ttn, titanite.

3. Analytical Methods
3.1. Major and Trace Elements of Whole Rocks

Major and trace element (including rare earth elements (REE)) concentrations were
analyzed for whole-rock samples at the State Key Laboratory of Isotope Geochemistry of
the Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (SKLIG-GIGCAS).
The detailed analytical methods were described by Li et al. [28].

For major element analysis, a devolatilized or ignited sample (~0.6 g) was added
to lithium borate flux (~4.8 g, Li2B4O7), mixed well, and fused in an auto fluxer at a
temperature of 1250 ◦C. It was then cooled to form a flat molten glass disc, which was then
analyzed by a Rigaku 100e X-ray fluorescence spectrometer. Analytical uncertainties were
better than 1%. Trace elements were analyzed by a Perkin-Elmer ELAN 6000 ICP-MS. The
REEs were analyzed by cation exchange separation-inductively coupled plasma atomic
emission spectrometry (ICP-AES). The analytical precision and accuracy of trace elements
werebetter than 5%.

3.2. Zircon U-Pb Dating

Zircons were separated from the granite samples using magnetic and heavy liquid sep-
aration methods and were then purified by handpicking under the binocular microscope.
Approximately 100 zircon grains were mounted on an adhesive tape, enclosed in epoxy
resin, polished, and then photographed under both transmitted and reflected light. The
internal structures of the zircons were examined using the cathodoluminescence (CL) imag-
ing technique at the Analytical Center of the University of Science and Technology of China.
The U-Pb isotopic ratios of zircons were analyzed by an Agilent 7500a ICP-MS coupled
with a RESOlution M-50 laser ablation system at the Guangzhou Institute of Geochemistry,
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Chinese Academy of Science (GIG.CAS), following the procedures outlined by [6,23,24,29].
The spot size of the laser beam was set at ~31 µm. Off-line inspection and integration of
background and analytical signals, time-drift correction, and quantitative calibration for
trace element analyses and U-Pb dating were performed using ICPMSDataCal [30]. The
U-Pb ages of zircons were calculated using the ISOPLOT program [31].

3.3. In-Situ Zircon Hf Isotopes

In-situ zircon Hf isotope analyses were conducted on the U-Pb-dated spots using a
RESOlution M-50 laser ablation system attached to a Thermo Finnigan Neptune MC-ICP-
MS at the GIG.CAS. The laser-ablated spot size was 44 µm. The natural Penglai zircon
megacrysts were used as the reference material [32]. The detailed instrumental parameters
and analytical techniques are the same as reported by [23,29]. The mass fractionations of
Hf were calculated with a reported 0.7325 for 179Hf/177Hf [32]. The isobaric correction of
176Lu on 176Hf used the isotopic ratios of 176Lu/175Lu = 0.02655 and 176Yb/172Yb = 0.5887
during analysis [30,33].

3.4. Mica Compositions

Major elements of micas were determined by using a wavelength-dispersive JEOL
JXA-8230 electron microprobe (EMP) at the Instrumental Analysis and Research Center,
Guilin University of Technology. The analysis was made with an accelerating voltage of
15 kV and a beam current of 2 × 10−8 A. The diameter of the electron beam was 5 µm.
The calibration was based on a suite of mineral and oxide standards from the American
Standard Committee [34].

4. Results
4.1. Major and Trace Elements of Whole Rocks

The major and trace element compositions of granites from the Gejiu area are listed in
Table S1. The granite samples range from 64.2 to 76.6 wt.% SiO2, 12.9 to 16.2 wt.% Al2O3,
4.00 to 5.80 wt.% K2O, and 7.49 to 8.55 wt.% total alkali content (K2O + Na2O) (Table S1).
They show Mg# values from 10.7 to 39.5 and 1.01 to 2.44 for K2O/Na2O ratios and belong
to the calc-alkaline and shoshonite series (Figure 3a). They also show a peraluminous
character, with the alumina saturation index A/CNK varying from 1.01 to 1.24 (Table S1).
The Longchahe granite samples (western sector) from [10] have A/CNK ratios from 0.76
to 1.05, and most of these samples are metaluminous. The Laochang–Kafang granite
samples (eastern sector) from [10] show A/CNK values from 1.02 to 1.15, belonging
to peraluminous.
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The primitive mantle normalized spider diagram shows that Gejiu granites are char-
acterized by relative enrichments in Rb, Th, and U and depletions in Ba, Nb, P, Ti, and
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Zr (Figure 4a). However, granites from the eastern district show stronger anomalies than
those from the western district. Granites from the western district have relatively high
REE contents, with the ΣREE values ranging from 173 to 560 ppm, while granites from
the eastern district have relatively low REE contents, with the ΣREE values ranging from
101 to 314 ppm (Table S1). The chondrite-normalized REE patterns for all granite samples
(Figure 4b) exhibit obvious fractionation between light rare earth elements (LREEs) and
heavy rare earth elements (HREEs), with ratios of ΣLREE/ΣHREE and LaN/YbN rang-
ing from 1.36 to 32.1 and 0.82 to 66.1, respectively. The granites from the eastern district
(Baishachong, Malage–Songshujiao, and Laochang–Kafang intrusions) show more strongly
negative Eu anomalies with δEu values from 0.04 to 0.40 than those from the western
district (Longchahe and Shenxianshui intrusions) from 0.63 to 0.88.
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4.2. Zircon U-Pb Geochronology and Chemical Compositions

Zircon samples from six granite intrusions in the Gejiu ore district (LCH81–185 and
SXS81–198 from the western district; SSJ81–205, BSC81–216, KF81–238, and MLG81–274
from the eastern district) are transparent and mainly euhedral in morphology, rang-
ing from 50 to 200 µm in diameter. The CL images show concentric oscillatory zoning
(Figure S1), indicating their magmatic origin [36]. The zircon U-Pb dating data and chemical
composition are reported in Table S2.

As regards the western district, 26 zircons of the Longchahe granite (LCH81–185) have
high Th (76.6–1574 ppm) and U (429–4590 ppm) concentrations, with Th/U ratios ranging
from 0.10 to 1.88 (Table S2). The data cluster in two groups on the Concordia diagram, one
with a weighted mean 206Pb/238U age of 83.3 ± 0.98 Ma and the other with a weighted
mean age of 75.6 ± 1.4 Ma (Figure 5a). Zircon ΣREE contents range from 266 to 1007 ppm,
with the ratios of LREE/HREE ranging from 0.03 to 0.10 (Table S2). The δEu and δCe of
these zircons range from 0.13 to 0.46 and from 3.74 to 315, respectively, showing negative
Eu anomalies and strongly positive Ce anomalies (Figure S2a, Table S2).

Twenty-three zircons of the Shenxianshui granite (SXS81–198) in the western district
have high Th (349–4069 ppm) and U (378–20,771 ppm) concentrations, with Th/U ratios
ranging from 0.13 to 1.35 (Table S2). They yield a weighted mean 206Pb/238U age of
82.9 ± 1.3 Ma (Figure 5b). Zircon ΣREE content range from 510 to 2473 ppm, with
LREE/HREE ratios ranging from 0.01 to 0.11, and their δEu and δCe range from 0.07
to 0.40 and from 4.94 to 43.6, respectively, showing negative Eu anomalies and strongly
positive Ce anomalies (Figure S2b, Table S2).
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As for the eastern district, 27 zircons of the Baishachong granite (BSC81–216) have high
Th (101–17,519 ppm) and U (159–3656 ppm) concentrations, with Th/U ratios of 0.56~5.51
(Table S2). They yield a weighted mean 206Pb/238U age of 81.8 ± 2.0 Ma (Figure 5c). Zircon
ΣREE contents range from 348 to 918 ppm, with variable LREE/HREE ratios (0.54–1.32)
(Table S2), and their δEu and δCe range from 0.83 to 0.94 and from 8.16 to 76.5, respectively,
showing slightly negative Eu anomalies and strongly positive Ce anomalies (Figure S2c,
Table S2), indicating that the crystallization of zircons may be earlier than or simultaneous
with plagioclase.

Sixteen zircons of the Malage granite (MLG81–274) in the eastern district have high Th
(189 to 928 ppm) and U (349 to 5943 ppm) concentrations, with Th/U ratios ranging from
0.13 to 0.77 (Table S2). The data cluster in two groups on the Concordia diagram, one with
a weighted mean 206Pb/238U age of 82.4 ± 1.1 Ma, and the other with a weighted mean
age of 75.6 ± 1.1 Ma (Figure 5d). Zircon ΣREE contents range from 345 to 1137 ppm with
variable ratios of LREE/HREE (0.01–0.05) and their δEu and δCe range from 0.01 to 0.18
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and from 3.52 to 341.56, respectively, showing negative Eu anomalies and strongly positive
Ce anomalies (Figure S2d, Table S2).

Twenty zircons of the Songshujiao granite (SSJ81–205) in the eastern district have high
Th (188 to 873 ppm) and U (219 to 6778 ppm) concentrations, with Th/U ratios of 0.10
to 0.93 (Table S2). The data cluster in two groups on the Concordia diagram, one with
a weighted mean 206Pb/238U age of 83.1 ± 1.3 Ma, and the other with a weighted mean
age of 73.8 ± 0.78 Ma (Figure 5e). Zircon ΣREE contents range from 447 to 976 ppm, with
LREE/HREE ratios ranging from 0.01 to 0.05, and their δEu and δCe range from 0.05 to
0.23 and from 3.20 to 113.23, respectively, showing negative Eu anomalies and strongly
positive Ce anomalies (Figure S2e, Table S2).

Fifteen zircons of the Kafang granite (KF81–238) in the eastern district have high
Th (219–2104 ppm) and U (440–6769 ppm) concentrations, with Th/U ratios of 0.18~1.30
(Table S2). They yield a weighted mean 206Pb/238U age of 79.2 ± 2.2 Ma (Figure 5f). Zircon
ΣREE contents range from 404 to 1864 ppm, with LREE/HREE ratios ranging from 0.02
to 0.06, and their δEu and δCe range from 0.04 to 0.15 and from 1.91 to 666, respectively,
showing negative Eu anomalies and strongly positive Ce anomalies (Figure S2f, Table S2).

Zircon Ce4+/Ce3+ ratios are listed in Table S2 [37], The calculated zircon Ce4+/Ce3+

ratios of the Longchahe granite (LCH81–185) and Shenxianshui granite (SXS81–198) in
the western district range from 39.7 to 286, from 2.11 to 101, respectively (Table S2). The
calculated zircon Ce4+/Ce3+ ratios of the Songshujiao granite (SSJ81–205), Baishachong
granite (BSC81–216), Kafang granite (KF81–238), and Malage granite (MLG81–274) range
from 2.98 to 149, 0.79 to 5.19, 1.03 to 39.1, and 23.8 to 178, respectively (Table S2).

4.3. Zircon Lu-Hf Isotope Composition

Zircon samples from four granite intrusions in the Gejiu ore district (SXS81–198 from
the western district; SSJ81–205, KF81–238, and MLG81–274 from the eastern district) were
analyzed for their Hf isotopic composition, and their results are reported in Table S3.

As for the western district, 26 dated zircons of the Shenxianshui granite (SXS81–198)
exhibit εHf(t) values from −8.3 to +0.03, with corresponding two-stage Hf model ages
ranging from 979 to 1406 Ma. As for the eastern district, 20 dated zircons of the Songshujiao
granite (SSJ81–205) exhibit εHf(t) values from −10.7 to −5.8 and the corresponding two-
stage Hf model age is from 1270 to 1523 Ma. Fifteen dated zircons of the Kafang granite
(KF81–238) exhibit εHf(t) values from −10.5 to −6.9, with corresponding two-stage Hf
model ages ranging from 1327 to 1517 Ma. Sixteen dated zircons of the Malage granite
(MLG81–274) exhibit εHf(t) values from −9.5 to −5.7 and the corresponding two-stage Hf
model age is from 1271 to 1472 Ma.

4.4. Mica Composition

The chemical compositions of micas from the granite in the Gejiu ore district are listed
in Table S4. According to the Mg-(Fe2+ + Mn)-(Fe3+ + AlVI + Ti) diagram (Figure 6a), the
biotite grains from the Longchahe granite are classified as magnesian biotite, while those
from the Malage granite are ferro-biotite [38]. The biotite grains from the Longchahe granite
have high MgO and FeO contents of 10.5–11.4 wt.% and 20.5–22.5 wt.%, respectively, and
moderate Al2O3 contents of 14.3–15.0 wt.% with XMg values (Mg/(Mg + Fe)) from 0.45 to
0.49 (Table S4). The biotite grains from the Malage granite have high FeO contents (25.3–34.0
wt.%) and relatively low Al2O3 (4.25–15.0 wt.%) and MgO (4.25–7.51 wt.%) contents with
XMg values from 0.20 to 0.35 (Table S4).
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5. Discussion
5.1. Geochronology of the Gejiu Igneous Rocks

According to the in-situ dating of cassiterite in the metallogenic stage of the Gejiu
ore district, the metallogenic age is 83~85 Ma, which is closely associated with the Late
Cretaceous granitic plutons [14,17,41]. In this study, systematic LA-ICP-MS zircon U-Pb
dating for six samples of granite from the east and west sides of the Gejiu Fault in the Gejiu
ore district yielded two-period ages: the younger from 73.8 to 75.6 Ma and the older from
79.2 to 83.3 Ma, both belonging to the Late Cretaceous (Figure 5). However, this is slightly
different from the previous zircon U-Pb ages analyzed by SHRIMP, SIMS, or LA-ICP-MS,
which range from 76 Ma to 85 Ma [10–13,19]. We have identified a younger phase of
magmatic activity (73.8~75.6 Ma). Previous data reported that Gejiu ore-forming processes
involved ~94 Ma batholithic biotite monzogranites and ~72 Ma satellitic muscovite alkali-
feldspar granites [42]. Furthermore, they suggested that both types of rocks were two stages
of magmatic activity derived from a long-lived magma chamber. Regardless of whether the
above is the case or not, it shows that there is still a stage of small-scale magmatic activity
in the Gejiu ore district after the main metallogenic stage, which is consistent with the
73.8~75.6 Ma magmatic activity that we have identified.

5.2. Comparison of Metallogenic Differences between the Eastern and Western Districts in the
Gejiu Ore District

The ore-controlling factors related to granitic rocks generally include the magmatic
source or sources of ore-forming elements, their transportation and enrichment conditions,
and their precipitation and mineralization mechanisms. Previous studies have shown that
the main factors controlling granite Sn-W fertility are the magmatic source (ore-forming
elements, volatiles, etc.), partial melting conditions (T-ƒO2, etc.), and magmatic differentia-
tion [26,43–45]. Therefore, these factors are of great potential significance in revealing the
reasons for the metallogenic difference between the east and west sides of the Gejiu district
and in exploring the mineralization potential of other granites.

5.2.1. Magma Source

Previous studies proposed that the Gejiu Sn-polymetallic ore district is related to the
Late Cretaceous granites [12,14,17,41]. These granites share a related genesis, but their
metallogenic capacities are quite different [20,22]. Some studies suggest that these granites
are derived from different magma sources, and others suggest that they come from different
evolution stages of the same magmatic system [10–13,42]. Thus, whether the nature of
the magmatic source controls the relationship between Late Cretaceous granites and their
metallogenic capacities is still debated.

Based on the Nd-Pb-Hf-O isotope study, it is believed that the western and eastern
Late Cretaceous granites in the Gejiu ore district shared similar magma sources, which
originated from the Mesoproterozoic basement of the Yangtze Block [10,22,41]. However,
our zircon εHf(t) values (−8.32 to +0.03) and previous data of the western district Gejiu
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granite are slightly higher than those of the eastern district granite, which are from −10.7
to −5.7 (Table S3, Figure 7a,b), suggesting they have different melt sources. The western
district granites appear to contain more mantle-derived materials in the magma source
than the eastern district granites. The corresponding two-stage Hf model ages also have
different distribution ranges (Figure 7c,d), in which the western district granites plot the
range of the Late Mesoproterozoic period while the eastern district granites plot the range
of the Early Mesoproterozoic period. This significant difference is consistent with literature
data indicating that the granitoids from the western district have higher εNd(t) values than
those of the eastern district granites [10].
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We also find this difference in the major and trace element data. Typical crustal granites
usually have relatively low Sr content (<300 ppm) [46,47], while the source of granite that
contains mantle components will have high Sr and Ba concentrations [46,48,49]. Our
granites from the western district (Longchahe and Shenxianshui intrusions) and previous
data [10] show high Ba and Sr concentrations, ranging from 345 to 1830 ppm and 195 to
805 ppm, respectively, and relatively low Rb concentrations, ranging from 226 to 425 ppm
(Table S1). The granites from the eastern district (Baishachong, Malage–Songshujiao, and
Laochang–Kafang intrusions) show lower Ba and Sr concentrations, ranging from 7.49 to
513 ppm and 12.5 to 254 ppm, respectively, and higher Rb concentrations, ranging from 313
to 891 ppm (Table S1). This suggests the source of granites from the western district should
contain more mantle components, while the granites from the eastern district should have
a more crustal source, indicating magmatic sources may be important in controlling the
Gejiu tin deposit.

Compared to the granites from the western district, those rocks from the eastern
district show lower CaO/Na2O ratios and higher Rb/Sr and Rb/Ba ratios (Figure 8), which
are similar to the geochemical features of Permian-Triassic tin-bearing granites in the
eastern and western belts of Peninsular Malaysia [41,50]. On the whole, granites from
the eastern district display affinity for melts derived from clay-rich metapelitic sources,
while those rocks from the western district could originate from the partial melting of
clay-poor metagraywacke sources (Figure 8). According to the previous study [51], the
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average Sn content of the tin-bearing granites from the eastern district (Baishachong,
Malage-Songshujiao, and Laochang-Kafang intrusions) ranges from 22 to 29.8 ppm [9,52].
However, the average Sn content of the granites from the western district (Longchahe and
Shenxianshui intrusions) ranges from 1.15 to 13.97 ppm [51] (Table S1), thus the low Sn
content in these granites might not be conducive to the formation of a tin deposit. Therefore,
the western and eastern sources for the Gejiu granitic batholith may be different, and the
western district granites may be derived from more mantle-derived melts and clay-poor
metagraywacke sources compared with the eastern district granites.
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5.2.2. Melting Conditions

Tin has moderate incompatibility, so it is generally preferentially partitioned in the
melt phase [54]. In addition to the importance of the enrichment of ore-forming elements in
magmatic sources, partial melting conditions also play an important role in the enrichment
of ore-forming elements [55,56].

Magma Redox State

Oxygen fugacity plays a key role in determining the ore-forming potential of plutonic
bodies [57,58]. On the one hand, it controls the occurrence of variable elements in the
magmatic system; on the other hand, these elements have a strong influence on the redox
conditions of the magmatic system. Therefore, the redox state of magmas is commonly
associated with different types of mineralization [6,24,25,56,58]. Tin has two dominant
valence states (Sn2+ and Sn4+). At low oxygen fugacity, tin exists in the form of Sn2+ with
incompatible behavior, becoming enriched in residual magma [4]. However, tin exists as
Sn4+ at high oxygen fugacity with compatible behavior and incorporates early crystalline
titanium-bearing minerals such as biotite, magnetite, and ilmenite, becoming depleted in
residual magma [58,59]. And the transition from Sn2+-dominant valence to Sn4+-dominant
valence occurs in the narrow range of ƒO2 (FMQ = 1.0~2.0) [4,55]. Therefore, the redox state
of magma is generally considered to be a key parameter for the genesis of tin deposits [4,55].

The Ce4+/Ce3+ and δEu values of zircon are good indicators of oxygen fugacity
of the magmas producing tin granites [6,22–24,26,28,29,43]. In Figure 9, the majority
of the western district granites have a higher oxygen fugacity than the eastern district
granites. The chemical composition of biotite can also reflect oxidation conditions during
magma crystallization. The concentrations of Fe3+, Fe2+, and Mg2+ in biotite, which is
paragenetic with K-feldspar and magnetite, can be used to calculate the magmatic oxygen
fugacity [28,39,60,61]. The Fe3+-Fe2+-Mg diagram shows biotites from the western granites
were plotted between the HM and FMQ buffer lines, while biotites from the eastern granites
were plotted between the NNO and FMQ (Figure 6b), indicating the western granites have
a higher oxygen fugacity condition [61]. Generally, pelites, such as shale, are reduced in
nature, and their oxygen fugacities are significantly lower than those of FMQ buffers [62].
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Figure 8 shows that the eastern granites plot in a field of melts derived from a clay-rich
metapelitic source, suggesting that the reduced oxidation state might be inherited from the
pelitic source. The above results suggest that the western and eastern granites are derived
from magmas with different oxygen fugacity, with the western district granites having a
higher oxygen fugacity compared with the eastern granites.
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Magma Fractionation

Tin mineralization is generally considered to be related to highly fractionated granites,
which eventually enriched Sn in late magmatic-hydrothermal fluids [10,16,26]. On the
whole, the negative correlations between whole-rock P2O5, TiO2, Mg#, Sr, La/Y, δEu
and SiO2 contents indicate the possible fractionating phases were apatite, titanite, mafic
minerals (e.g., biotite), and feldspars (Figure 10). In the diagram representing the evolution
index (Figure 10c–f), the western district granites, especially Longchahe samples, are
different from the eastern district granite, showing a low degree of fractionation. In the
spider diagram (Figure 4a), the eastern district granites have more depleted Ba, Sr, P, Eu,
and Ti characteristics than the western district granites. In the REE distribution diagram
(Figure 4b), the eastern district granites show obvious Eu anomalies. The above chemical
characteristics of the eastern district granites indicate highly evolved magmatic rocks, while
those in the western district are less evolved magmatic rocks.

Previous studies have shown that some trace element pairs with similar physicochem-
ical properties can reflect the degree of magmatic differentiation, such as Nb-Ta and Zr-Hf.
Previous studies have shown that the Nb/Ta ratio decreases with magmatic differentia-
tion [63–65], and during the late magmatic fluid interaction, Nb and Ta may be fractionated
in highly evolved peraluminous granites, resulting in a decrease in the Nb/Ta ratio (less
than 5) [63,66]. Therefore, fractional crystallization and hydrothermal alteration can lead
to a low Nb/Ta ratio in highly evolved granitic melts. Moreover, it is suggested that the
Nb/Ta ratio of ~ 5 should be used to distinguish Sn-W-bearing granites from barren-bearing
granites [63,67]. Zr/Hf ratio is another effective differentiation index for granite melts.



Minerals 2023, 13, 691 13 of 20

Since zircon is the main mineral containing Zr and Hf, the crystallization of zircon will lead
to the gradual depletion of Zr relative to Hf in the residual melt [64,68]. In the Nb/Ta vs.
Zr/Hf diagram (Figure 11), the western district granites have higher Nb/Ta and Zr/Hf
ratios than the eastern district granites, indicating relatively low magmatic differentiation,
which is far away from the ore-forming granite field proposed by previous studies [63,67].
The whole-rock Rb/Sr ratio is usually used to indicate the extent of magmatic fractionation.
The western district granites have higher Rb/Sr rations than the eastern district granites,
also indicating less evolved granites.
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The high degree of fractionation may be due to the high F content in the magma.
The experimental data show that the addition of F significantly reduces the density and
viscosity of granite melt, which leads to the enhancement of crystal sedimentation [69].
Further, the increase in F in silicate melt can decrease the solidus temperature to as low
as 450~550 ◦C (4~5 wt.% F) [69,70], which greatly prolongs the duration of magmatic
fractionation. Compared with the western district granites (Figure 6c), the high F contents
of micas from the eastern district granites and the widespread exposure of fluorite indicate
that the eastern district granites are F-rich, which is consistent with the apatite study [71].
These are also consistent with petrographic and field observations, such as the fluorite
inclusions in plagioclase and the coexistence of fluorite with cassiterite [12,17].
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Sn is an incompatible element and prefers to remain in melts during granitic magma
crystallization, especially the deeper intrusions with low chlorine contents [52,72]. The Sn-
bearing concealed granites from the eastern Gejiu district have high Rb/Sr ratios (Table S1)
and low chlorine contents according to the chemical composition of mica (Table S4), which
promoted the enrichment of tin in the granitic magma. Volatile components in reduced
fractionated peraluminous magma (f O2 ≤ Ni-NiO buffer) can facilitate the solubility of
SnO2, which is conducive to the extraction and complexing of Sn [73,74]. The eastern
district granites have higher Li contents (>70 ppm) than the western district granites [51],
indicating that the high volatile component could improve the Sn mineralization in the
Gejiu area.

Magma Temperature

Another key factor for Sn enrichment in melts is melt temperature: low-temperature
melting (muscovite dehydrated melting) causes Sn enrichment in restite minerals (such as
biotite), while high-temperature melting (biotite dehydrated melting) causes Sn to enter
melts [45,75,76]. Previous studies have shown that the solubility of zircon in magma is
sensitive to temperature and less sensitive to other parameters [77], so the crystallization
temperature of magma can be estimated by the concentration of Zr in the whole rock.
The melting temperature of granite melts is estimated by the zircon saturation thermome-
ter [78]. Samples from the western granites yield slightly higher zircon saturation temper-
atures (754~855 ◦C, average of 820 ◦C) than the eastern granites (735~835 ◦C, average of
785 ◦C). This is consistent with the calculation results of the zircon titanium thermometer
based on the SiO2 and TiO2 activities assumed by felsic rocks [6,24,79] (Figure 9, Table S2).
Almost all of them indicate that the western granites have a slightly higher crystallization
temperature, and the high-temperature melting (biotite dehydrated melting) results in the
partitioning of Sn into melts [45,75,76]. However, why is there no large-scale tin deposit
in the western district? First of all, the western district granites are derived from melts
with more mantle-derived components and clay-poor metagraywacke sources compared
with the eastern district granites, which are not conducive to large-scale mineralization.
Secondly, the western district granites, having higher oxygen fugacity compared with
the eastern district granites, will increase the stability of biotite and sphene, resulting
in tin occurrence in the residual minerals in the source and depletion in the melt [45].
Thirdly, Sn mineralization is generally thought to be associated with highly fractionated
granites, and the western district granites have less evolved than the eastern district
granites. In summary, the western district granites have different magmatic sources and
melting conditions from the eastern district granites, which leads to a difference in their
metallogenic potential.
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5.2.3. Field Observations

In addition to the ore-controlling factors of magmatic source and melting conditions,
the role of sedimentary wall rocks and structural styles in the ore-forming process cannot
be ignored. The exposed sedimentary rocks in the Gejiu mining area mainly belong to
the Middle Triassic Gejiu Formation and Falang Formation [80]. The Gejiu Formation is
composed of limestone, argillaceous limestone, and dolomite limestone, which mainly
occur in the eastern district of the Gejiu mining area. The western district is mainly
composed of the Falang Formation, which includes siltstone and argillaceous limestone.
The rocks of the Falang Formation are deposited on the rocks of the Gejiu Formation [80].
Apart from the melting of crustal sources, the ore-bearing differences in sedimentary strata
may have different contributions to W-Sn mineralization [81]. Previous studies considered
that the wall-rock medium of the Gejiu Formation is enriched in organic carbon, sulfur, and
the initial enrichment of corresponding metal elements (e.g., Sn), while the strata of the
Middle Triassic Falang Formation do not have the above characteristics, which may lead
to the difference in metallogenic potential between the eastern and western districts [82].
Middle Triassic basalts are the oldest magmatic rocks exposed in the Gejiu mining area, and
Late Cretaceous intrusive rocks contain the largest amounts of magmatic rocks, ranging
from gabbro to granite [22]. In the eastern district, the majority of granitic intrusions are
not exposed, while the exposed area of the western district granites is about 320 km2,
which may lead to the denudation of tin-bearing rocks (Figure 1). Moreover, gabbro and
mafic microgranular enclaves occur in the western district, indicating more mantle-derived
materials than in the eastern district.

In addition to the N-S striking Gejiu Fault, there are three faults (striking E-W, NNE-
SSW, and NW-SE) in the eastern district, while NNE-striking is dominated in the western
district and E-W and NW-SE striking faults are rare. Xu et al. (2022) [22] showed that
during the Cretaceous granite emplacement, the stress field directions on both sides of the
Gejiu fault were different. In the Late Cretaceous, there is a (trans)-tensional environment to
the east of the Gejiu fault and a (trans)-pressional one to the west of the fault. In general, an
extensional environment has the potential to develop effective fluid channels, which may
lead to large ore deposits. However, in the western district, the granite intrusive bodies
were emplaced in an overall compression environment that is not conducive to hydraulic
fracturing and mineralization [22].

5.3. Geodynamic Implications

The Gejiu ore district is located in the western Cathysia Block of the South China Block,
belonging to the EW-trending Late Cretaceous igneous rock and Sn-W mineralization belt
in the southernmost margin of South China (Figure 12) [23,25,26]. However, there is still
a dispute over whether the EW-trending Late Cretaceous magmatism and associated ore
deposits were influenced by the Pacific tectonic regime or the Tethys tectonic regime [10,18].
The Pacific Plate changed its drift direction from southwest to northwest at about 125 Ma,
so it is difficult to reveal the EW-trending Late Cretaceous magmatism and associated ore
deposit belt [7,25,26,83]. Moreover, because the Neo-Tethys subduction zone is far away
from the South China Block, its influence has not received enough attention before. Recently,
more and more studies show that the South China Block was affected by both the Pacific and
Neo-Tethys tectonic regimes [18,23–26,84]. Zhang et al. (2017) [25] reconstructed the palaeo-
geographic location of Southeast Asia by GPlates and found that the Neo-Tethys trench was
close to the South China Block during the Cretaceous period. More and more studies have
shown that the Neo-Tethys Plate started to subduct beneath the South China Block at about
125 Ma through flat subduction; therefore, the subducted ridge could extend far away from
the subduction zone [7,23,25,83–85]. Moreover, an EW-trending Late Cretaceous igneous
belt and Sn-W metallogenic belt have been identified in the southernmost margin of South
China [23,25], which is parallel to the northward subduction of the Neo-Tethys Plate but
perpendicular to the northwest subduction of the Paleo-Pacific Plate. According to Li et al.
(2014) [28], the tectonic regime of the South China Block changed to WNW-ESE-oriented



Minerals 2023, 13, 691 16 of 20

transpression, which caused the cessation of extension-related magmatism. Considering
the Late Cretaceous NS-trending extension in South China and the long distance from
southwest China, we preferred the northward subduction of the Neo-Tethys Plate beneath
South China as its geodynamic mechanism (Figure 12). Accordingly, the Gejiu ore district,
located in the E-W metallogenic belts, should be related to the Neo-Tethys tectonic regime
(Figure 12). Moreover, during the Tethyan subduction, the western granites showed higher
temperatures, oxygen fugacity, and mantle-derived components than the eastern granites
in the Geijiu ore district.
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6. Conclusions

(1) Systematic LA-ICP-MS zircon U-Pb analyses of six samples from the eastern and
western districts in the Gejiu ore district yielded two-period ages: the younger from 73.8
to 75.6 Ma and the older from 79.2 to 83.3 Ma. We have identified a younger phase of
magmatic activity (73.8~75.6 Ma).

(2) The western district granites have higher oxygen fugacity and lower F content
and magmatic differentiation than the eastern district granites, indicating that the western
district granites are not conducive to mineralization. Different magmatic sources and
sedimentary-structural styles also indicate differences in mineralization potential between
the eastern district and the western district granites.

(3) The Gejiu ore district, located in the EW-trending Late Cretaceous granite and Sn-W
metallogenic belts, was formed by the northward subduction of the Neo-Tethys Plate.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/min13050691/s1, Figure S1: Cathodoluminescence im-
ages of zircon grains for Gejiu ore district, and the 206Pb/238U ages of analytical spots are marked in
red text. Figure S2: (a–f) Zircon chondrite-normalized REE distribution patterns of Gejiu ore district.
Table S1: Sheet 1-Whole rock major (in wt.%) and trace elements (in ppm) data of granitoids from
Gejiu ore district, China (This study). Sheet 2-Whole rock major (in wt.%) and trace elements (in
ppm) data of granitoids from Gejiu ore district, China [10]. Sheet 3-Average Sn and Li Contents
(ppm) of Gejiu igneous rocks taken from [51]. Table S2: LA-ICP-MS zircon U-Pb ages (Sheet 1) and
trace elements (Sheet 2) of granitoids from Gejiu ore district, China. Table S3: LA-MC-ICP-MS zircon
Hf isotopic compositions of the granite from Gejiu ore district, China. Table S4: Representative
compositions and strutural formula of biotite from Gejiu granite.
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