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Abstract: In this study, the curves of variation of melting temperature as a function of pressure were
determined for pressures up to 20 GPa using molecular dynamics (MD) calculations. The CLAYFF
force field is used for the simulated PT curve of the clay kaolinite structure. For this purpose, we have
adopted the Z-method to determine the melting point (Tm) and superheat limit temperature (TLS)
for different densities in kaolinite clay. In addition, various quantities, such as the radial distribution
function (RDF), the mean square displacement (MSD), and the diffusion coefficient were evaluated in
order to ensure the solid behaviour at the superheat limit temperature and the liquid behaviour at
the melting point for the equilibrated structure of kaolinite.
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1. Introduction

Nanoclays consist of one or two-dimensional octahedral and tetrahedral sheets stacked
together and can be classified into two types based on their arrangement of T and O layers:
tetrahedral-octahedral (TO) and tetrahedral-octahedral-tetrahedral (TOT). Examples of TO
nanoclays include kaolinite, halloysite, and serpentine, while montmorillonite, hectorite,
synthetic laponite, sepiolite, and palygorskite fall under TOT fully or partially stacked
structures [1–3]. Kaolinite is an uncharged layer of clay with a dioctahedral phyllosilicate
structure. It has a 1:1 layered aluminosilicate. The layers stack along the c-axis and are
composed of a repeating layer of an octahedral sheet of aluminium (O) and a tetrahedral
sheet of silicon (T) with a basal distance from the elemental layer which varies from 7.1 to
7.4 Å. Each layer is formed of a sheet of tetrahedral SiO4 forming six-membered silicate
rings connected by common oxygen atoms to a sheet of octahedral AlO6 forming four-
membered aluminate rings. The structure of kaolinite clay and its transformations during
heating have been studied for many years [4–11]. However, a huge lack of information
regarding the knowledge of thermodynamic properties with or without external stress
still exists.

The thermodynamic properties of kaolinite under high-temperature conditions have
not been sufficiently studied. Understanding the pressure dependence of melting temper-
ature is crucial for a solid material and especially for research fields related to geology
and earth sciences. Nowadays, molecular dynamics (MD) simulation is a well-established
technique in various fields, including soil and mineral sciences. This is particularly true
for the case of studies related to high pressures and high temperatures, which can hardly
be achieved experimentally. Among the superheating and melting studies based on MD
calculations are those of Matsui and Price, Chaplot et al., and Belonoshko et al. [12–15].

Murray presented the melting point of kaolinite in pure state at 2123 K under atmo-
spheric pressure [5], but in a clayey form, whereas Benazzouz et al. [9] used the molecular
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dynamics simulation calculation to evaluate the melting point at 1818 K at higher pres-
sure conditions equal to 8.85 GPa. This melting point value was investigated using the
Z-method and was used to investigate the phase diagram of kaolinite [9]. From computer
simulations of melting, it is observed that the limit superheating (TLS) is higher than the
melting temperature (Tm) by about 20%–30% [15].

In this work, the structural bulk of kaolinite under a high-temperature environment
was used to evaluate the melting temperature (Tm) and the limit of superheating (TLS). In
order to do so, we used the developed Z-method, which was widely applied in materials
modelling. The theory of the Z-method was first established by Belonoshko et al. [15]. The
Z-method helps to evaluate more easily the superheating and melting temperature values,
which are difficult to achieve experimentally. Some applications using the Z-method
were already devoted to various studies such as the properties of the Lennard–Jones
FCC crystal model at the limit of overheating [16], molybdenum at high pressure and
temperature [17], the atomistic model for homogeneous fusion [18], high-pressure–high-
temperature polymorphism in Ta [19], melting temperature of kaolinite [9], melting curve of
silica at high pressures [20], and the phase diagram and equation of state of chromium [21].

The MD simulations described here use the CLAYFF force field developed by
Cygan et al. to simulate the kaolinite structure [22]. One of the main features of the CLAYFF
force field is its flexibility within the clay lattice where the metal–oxygen interactions are
described by a van der Walls term and a Coulomb function. First, the CLAYFF force field
has already proven to be very effective in modelling the crystal structure of different phases
of hydroxide, oxyhydroxide, and clay [22]. Then, it was used for different materials such as
the structural, dynamic, and energetic properties of cementitious materials [23], the study of
the structural and vibrational properties of talc and pyrophyllite [24], the thermomechanical
properties of the Montmorillonite crystal, insulated clay nanoplate [25], the simulation of
hydration, and the elastic properties of montmorillonite [26]. Moreover, this method was
used in other previous topics to investigate, for instance, layered and nanoporous materials
and their aqueous interfaces [27]. Based on the above-mentioned studies, we investigate
here the high-pressure melting of kaolinite using the molecular dynamics method.

The paper is organised as follows. Section 2 gives the computational details and
method related to this study. Section 3 presents the results and discussion. The conclusion
is given in the final section.

2. Model and Computational Details

The atomic structure of kaolinite clay is the same as that described in our previous
study [9]. The structure of kaolinite shown in Figure 1 is originally based on crystallographic
data from Bish et al. [28], a unit cell of triclinic symmetry with lattice parameters a = 5.153 Å,
b = 8.941 Å, c = 7.390 Å, and angles: α = 91.926◦, β = 105.046◦, γ = 89.797◦. The basal
distance (thickness) of the unit layer is d = 7.1329 Å. The chemical composition of unit cell
is 2[Si2Al2O5(OH)4], which corresponds to 34 atoms, and its density is 2.6 g/cm3.

The simulation box used in our calculations is 4 × 2 × 3 unit cells in dimensions a, b,
and c (24 kaolinite unit cells), with a total of 816 atoms in the solid. The corresponding Lx,
Ly, and Lz dimensions are 20.614 Å, 17.881 Å, and 22.739 Å. Periodic boundary conditions
are applied in all three directions.

The potential energy of a simulated system includes the non-bonded energy and
the bonded energy. The non-bonded energy components are Coulomb interactions and
short-range van der Waals energy.
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Figure 1. Structure of kaolinite formed by 4 × 2 × 3 unit cells. O atoms are in red, the tetrahedral Si 
atoms in brown, octahedrally coordinated Al atoms are in grey, and H atoms are white. Projection 
view along the ZY-direction. 
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Figure 1. Structure of kaolinite formed by 4 × 2 × 3 unit cells. O atoms are in red, the tetrahedral Si
atoms in brown, octahedrally coordinated Al atoms are in grey, and H atoms are white. Projection
view along the ZY-direction.

The first non-bonded energy term (Coulomb interactions) varies just like the inverse
of the bond length between the i and j ions (rij). The following equation shows this energy:

ECoul =
e2

4πεo
∑
i 6=j

qiqj

rij
(1)

where qi and qj represent the charge of ion i and j respectively, derived from quantum
mechanics calculations, e is the electron charge, and εo is the dielectric permittivity of
vacuum (8.85419 × 10−12 F/m).

The second non-bonded energy term (van der Waals interactions) presents the interac-
tion between the two non-bonded atoms, represented by the conventional Lennard–Jones
(12-6) function, and it includes the short-range repulsion associated with the increase in
energy as the two atoms approach each other (Urep), the attractive term energy, (Uattr), and
the London dispersion forces:

EVDW = Urep + Uattr = ∑
i 6=j

D0,ij

(Ro,ij

rij

)12

− 2

(
Ro,ij

rij

)6
 (2)

where Do and Ro are the empirical parameters derived from the fitting of the model; this is
equivalent to the dissociation energy and equilibrium atomic separation, respectively.

The parameters of van der Waals between the interaction of two atoms are calculated
in accordance with the arithmetic and the geometric mean rules for the distance parameter,
Ro, and the energy parameter, Do, respectively [29].

Ro,ij =
1
2
(Ro,i + Ro,j) (3)

Do,ij =
√

Do,i × Do,j (4)
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The values of the non-bonded interaction parameters are given in Table 1. The bonded
energy is only used to describe hydroxyl groups. The bond stretch energy of the hydroxyl
bond (O-H) can be described by a harmonic (simple quadratic) expression:

Ebond−stretch−ij = k1(rij − ro)
2 (5)

where k1 is an empirical force constant, ro is the equilibrium bond length, r is the atom–
atom separation distance. The values for the CLAYFF-bonded parameters for hydroxyl
interactions are given in Table 2.

Table 1. Non-bonded parameters for the CLAYFF Force Field.

Species Type Symbol Charge (e) Do (Kcal/mol) Ro (Å)

hydroxyl hydrogen Ho 0.4250 0.1554 3.5532
hydroxyl oxygen Oh −0.9500 0.1554 3.5532
bridging oxygen Ob −1.0500 0.1554 3.5532

tetrahedral silicon St 2.1000 1.8405 × 10−6 3.7064
octahedral aluminum Ao 1.5750 1.3298 × 10−6 4.7943

Table 2. Bonded parameters for the CLAYFF Force Field.

Bond Stretch

Species i Species j K1 (kcal/mol Å2) ro (Å)

oh Ho 554.1349 1.000

Molecular dynamics calculations at the thermodynamic equilibrium were performed
using Nosé–Hoover method in the DL_POLY code, developed in Daresbury Labora-
tory [30].

The ensembles used in most MD simulations are isothermal–isobaric (NPT), micro-
canonical (NVE), canonical (NVT), and grand-canonical (µVT), where the variables N, P, T,
V, E, and µ represent, respectively, the number of particles, the pressure, the temperature,
the volume, the energy, and the chemical potential. In this work, the standard ensembles
implemented are the NPT (the number of particles N, the pressure P, and the temperature T
are fixed) with barostat and thermostat relaxation times of 0.5 and 0.5 ps, respectively; and,
in the second calculation, the NVE (the number of particles N, the volume V, and the energy
E are fixed during the simulation). The Nosé–Hoover thermostat was used to control the
temperature [31]. The pressure was kept constant using a Melchionna modification of the
Hoover algorithm [32] in which the equations of motion involve a Nosé–Hoover thermostat
and a barostat. A thermostat and a barostat were used for the NPT ensemble.

The motion equations were integrated by using the Verlet leapfrog integration algo-
rithm [33,34] with a time step of 1 fs (1 × 10−15 s) and 0.5 fs to ensure the conservation of
energy. The Ewald summation technique [35] is considered as the most satisfactory method
for treating these Coulombic long-range interactions, using a tolerance of 1 × 10−5. For
short-range interactions, either spherical or “minimum image” cutoff criteria are commonly
used [29,34]. The cutoff radius rc = Lx/2, where Lx is the smallest box length (Lx = 1.788 nm).
For van der Waals interactions, the cutoff used is between 0.8 and 0.85 nm.

Different samples (solid structure) were prepared at 200 picosecond (ps) using equilibra-
tion NPT MD simulation and performed at atmospheric pressure 0.1 MPa [9], 1 GPa, 5 GPa,
and 10 GPa at 300 K. Figure 2 shows the kaolinite structure at 0.1 Mpa after equilibration.
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Figure 2. Kaolinite structure after equilibration NPT MD simulation.

Z-Method to Quantify Melting

The Z-method [15,16] is used to find the melting temperature ™ and superheating
limit temperature (TLS) of kaolinite clay. The temperature of melting occurs when the
Gibbs free energies of the solid and liquid phases are equal, as shown in the calculations
of Morris et al. [36]. Unlike the two-phase (also called co-existence) method, molecular
dynamics simulations, the Z-method uses single-phase (solid). The Z-method takes its
name from the characteristic shape of the isochoric curve. In this work, the calculations
have been achieved in the NVE (N number of atoms, volume V, energy E) ensemble. The
volume remains fixed throughout the isochoric curve.

The isochore consists of three branches (See the figure below with the Z curve). The
first is crystalline (the solid branch). It can be seen that, before arriving at the temperature
limit of superheating (TLS), the structure remained solid because the system of interaction
of atoms is equilibrating when the initial kinetic energy is low, and then as this energy starts
to increase with T, the system approaches and enters in the superheated solid phase across
the melting curve. With all these different temperatures, we obtain an almost straight line
to the point of TLS, which is the upper cap of the letter Z.

A second branch with negative slope is a transition from a crystalline state to a liquid
state. Once TLS isochore is reached, the temperature drops to Tm due to the latent heat of
melting (i.e., the energy required to change the phase of a substance from solid to liquid)
being removed from the kinetic energy. This part is called the intermediate branch that
starts with TLS and ends with Tm, which is a discontinuity in the straight line. Finally, once
the temperatures are above Tm, the system begins to be liquid and then forms an almost
straight line (a liquid branch) that is the lower cap of the letter Z.

Therefore, the point at the end of the solid branch represents the temperature limit
of superheating, TLS, and the first point which is at the beginning of the curve is the
melting temperature, Tm. All details regarding this method are provided in the works of
Belonoshko et al. [15,16].

3. Results and Discussion

In a previous work, we have determined the melting point and the temperature limit
of superheating at pressure, using the Z-method [9]. Here, we will determine the melting
and superheating limit curves.
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In the first time, the sample was equilibrated with the NPT ensemble. We performed
simulations to obtain the variation of volume and density of the kaolinite structure as
a function of pressure, P, for a temperature T = 300 K. For a given pressure, the points
obtained corresponding to volume and density are shown in Figure 3a,b, respectively. We
may see that the density of kaolinite structure increases with increasing pressure.

Thereafter, we performed the Z-method simulations, and the computed isochore for
each density is shown in Figure 4. This figure shows the melting curve with pressure
corresponding to different densities. Each (pressure, temperature) point in the isochoric
curve was obtained in the NVE ensemble after performing 800,000 time steps, equivalent
to 400 ps.
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The melting point is estimated at the lowest point of the liquid branch, while the
superheated limit temperature is estimated at the highest point in the solid branch. The
averaged values of superheated limit temperature and the melting point are shown in
Table 3. The obtained melting point values are compared with the unique experimental
value given by Murray equal to 2123 K [5]. The limit of superheating values is clearly in
good agreement with values of temperature superheating calculated using MD calculations
in the NVT ensemble given by Benazzouz and Zaoui [8]. The superheating temperature
simulated are given between 1990 K and 2550 K in pressures ranging from 6 GPa to
20 GPa [8].

Table 3. Melting point and superheating limit temperature values for kaolinite with pressure and the
percentage between Tm and TLS.

Temperature Limit of
Superheating (K) Melting Point (K) Percentage between

TLS and Tm
PLS TLS Pm Tm

6.81 * 1970.8 * 8.85 * 1817.9 * 7.8%
7.85 2029 9.98 1893 6.7%
12.50 2273.9 13.32 2096.9 7.8%
19.15 2549.5 20.07 2290.9 10.1%

* [9].

The limit superheated temperature, TLS, is higher than the melting temperature, Tm,
in good agreement with a previous work of [15]. In Table 3, we present a percentage of
this difference.

In order to confirm the behaviour of the solid superheating limit temperature, TLS, and
the behaviour of liquid at the melting temperature, Tm, various properties were measured
such as the radial distribution function (g (rij)), coordination numbers (n (rij)), and mean
square displacement (MSD) at different temperatures. The radial distribution function for
the various atom–atom pairs is a measure and a good indicator to determine the correlation
between atoms within a system. To calculate the RDF between the atoms, we use the
following expression:

gij(r) =
1

4πρjr2

dnij

dr
(6)

where ρj is the number density of particles of type j in the system and dnij is the number of
particles of type j situated in a spherical layer of thickness dr at distance r from a particle of
type i. The coordination number of particles of type j around a particle of type i gives the
value of the following integral.

nij(r) = 4πρj

r∫
0

gij(r)r2dr (7)

where ρj is the number density of the atoms of type j.
Radial distribution functions (RDF) and coordination number, n(r), were calculated for

all atom pairs. As an example of this, the Si-O_S (silicon—surface oxygen) and O_H-O_H
(oxygen—oxygen) RDF with temperature and their related coordination numbers are pre-
sented in Figure 5. In this figure, we show the RDF for density ρ = 2.57 g/m3 (P = 13.32 GPa)
at different temperatures 1597.1 K, TLS = 2274 K, 2097 K, Tm = 1818 K, and 2390.1 K cor-
responding to temperatures on the solid branch, the superheating limit temperature, the
melting point and the temperature on the branch liquid, respectively. These results are
compared to those obtained from the DM calculations using the Z-method [9].
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Figure 5. Si-O_S and O_H-O_H RDF with temperature and their related coordination numbers for
ρ = 2.57 g/m3.

The first peak, corresponding to the shortest distance between two neighbouring
atoms, decreases with increasing temperature. This phenomenon is repeated and is clearly
perceptible in the figures for the pairs of atoms. It explains the differences in structure and
the liquid state of the structure of kaolinite at the melting point.

The second properties calculation used to confirm the liquid structure of kaolinite at
the melting temperature is mean square displacement (MSD). Figure 6 shows the mean
square displacement plotted as function of time (up to 400 ps) for density ρ = 2.76 g/m3 at
20.07 GPa. This figure presents the MSD of two examples Al and O_H atoms at T = 1726.7 K
(solid branch), TLS = 2549.5 K, Tm = 2290.9 K, and T = 2934.7 K (liquid branch). The MSD
slop at Tm is more important than TLS. It can be noticed that for Al and O_H atoms at
T ≥ Tm (liquid branch), the MSD increases rapidly with time, which explains certainly the
liquid state of the structure. In the solid branch, the MSD at T = 1726.7 K and TLS = 2549.5 K
increases but with a low value (slopes less weak) for O_H atom.
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Figure 6. Mean square displacement, MSD, of Al and O_H atoms with time for ρ = 2.76 g/m3.

The diffusion coefficients are calculated to complete the characterisation of the solid
and liquid states obtained. The diffusion coefficients of all atoms, Al, Si, O_A (apical
oxygen), O_S (surface oxygen), O_H (hydrogen oxygen), and H were computed. The
diffusion coefficient, D, is related with the MSD by Einstein expression according to:

D = lim
t→∞

1
6t

〈
| ri(t)− ri(0)|2

〉
(8)

where ri(0) and ri(t) are the initial and final positions of the centre of mass of the particle
at time t, and <|ri(t) − ri(0)|2> is the mean square displacement (MSD) averaged over
the ensemble. The diffusion coefficient is calculated graphically from the slope of MSD
versus time.

As we may see, the diffusion coefficient is significantly higher in the liquid branch than
in the solid branch. A significant increase in the diffusion coefficient is noticed in the liquid
isochore branch. Table 4 shows the diffusion coefficient values for all atoms, Al, Si, O_A,
O_S O_H, and H at different temperatures for ρ = 2.76 g/m3. The value of its diffusion
coefficient for Al in the liquid isochore branch obtained from the slope of MSD in Figure 6,
D = 4.73 × 10−9 m2/s, is in good agreement with those obtained for the liquid diffusion.
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Table 4. Values of diffusion coefficient for all atoms, Al, Si, O_A, O_S O_H, and H at different
temperatures.

Diffusion Coefficient (10−9 m2/s)

Temperature/Atoms Al Si O_A O_S O_H H_

T = 1726.7 K 0.01 0 0 0 0 0

TLS = 2549.5 K 0.66 0.02 0 0.004 0 0

Tm = 2290.8 K 1.19 0.20 0.23 0.23 0.46 0.45

T = 2934.7 K 4.73 1.91 2.51 2.38 3.68 3.69

Figure 7 presents an example of the variation of diffusion coefficient for Si and O_S
atoms as function of temperature for ρ = 2.76 g/m3. Here, it can be seen that the difference
in diffusion is clear; the diffusion coefficient is much higher in the liquid branch than in
the solid branch. In the solid blanch, the diffusion coefficients are almost zero because the
atoms in a solid cannot diffuse away from their equilibrium positions, compared to those
of the liquid branch.
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The variation of the diffusion coefficient for O_A and H atoms as function of pressure
is shown in Figure 8. The diffusion coefficient decreases with pressure. There is a difference
between the values of diffusion at the superheating limit temperature and at the melting
point. The diffusion coefficient of these atoms at Tm is greater than the one at TLS by a
factor larger than 8. This can be used to confirm once more the liquid phase at Tm.

Finally, the points of the melting curve obtained in this work were fitted using a
unified equation, proposed by Kechin for the melting curve at high pressure [36,37]. The
melting equation is given as follows:

Tm(P) = T0(1 + P/a)be−cP (9)

where P is the pressure, Tm(P) is the melting temperature at this pressure, and T0 is
the melting point at zero pressure. The values of the fitted parameters (T0, a, b and c)
corresponding to melting are given in Table 5. Figure 9 shows the melting curve with the
pressure up to 20 GPa and the Kechin fit curve of these points. There is no experimental
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nor theoretical melting curves to compare with our present work. We may determine the
melting points, Tm, at any pressure, the melting point at zero pressure, T0, equal to 1100.9 K.
The same equation is used to fit the superheating limit temperature curve as shown in
Figure 10. The fitted parameters for the Kechin equation are given in Table 5.
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Table 5. Fitted parameters for the Kechin equation.

Parameter Fitted T0 (K) a (GPa) b c (Gpa−1)

Melting curve 1100.9 143.6 83.7 0.509

superheating limit curve 1567.4 256.4 93.4 0.326
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4. Conclusions

In summary, we have calculated the melting point and the superheating limit tempera-
ture of kaolinite clay for different densities using the Z-method based on classical molecular
dynamics simulation by means of the CLAYFF force field. These important values have
been deduced from the simulated isochore (PT) in the microcanonical, NVE, ensemble at
different pressures. The obtained melting points, Tm, are 1893 K, 2096.9 K, and 2290.9 K cor-
responding to the pressures 9.98 GPa, 13.32 GPa, and 20.07 GPa, respectively. The obtained
superheating limit temperatures TLS are 2029 K, 2273.9 K, and 2549.5 K related to pressures
7.85 GPa, 12.5 GPa, and 19.15 GPa, respectively. Several measurable quantities, such as
the radial distribution function, coordination numbers, mean square displacement, and
diffusion coefficients, were used to confirm melting and superheating temperatures in the
isochore curve. Finally, the melting and superheating limit curves were plotted for kaolinite
clay and their corresponding melting equations were proposed. These melting and super-
heating limit equations are given as follows: Tm(P) = 1100.9×

(
1 + P/143.6)83.7e−0.509P

and TLS(P) = 1567.4×
(
1 + P/256.4)93.4e−0.326P , respectively.
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