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Abstract: Ore grades are monitored regularly in cave mines through drawpoint sampling. 
Automating grade monitoring through deploying X-ray fluorescence (XRF) sensors on the buckets 
of production loaders has been proposed as an alternative approach to address the issues around 
the traditional practice of drawpoint sampling. Bucket-mounted sensors can also be employed for 
bulk ore sorting underground. This study is aimed at evaluating the deployment of XRF sensors on 
production loaders as an opportunity for grade monitoring or bulk ore sorting in caving operations. 
The mill feed grade prediction performances of the drawpoint sampling program and mine 
planning software were assessed for the Cadia East panel cave mine. The results showed that the 
drawpoint samples underestimated the mill feed quality during a 10-month investigation period. 
The cave portions with bulk ore sorting potential were linked to the extraction level layout to 
estimate the number of drawpoints where sensors could be situated for diverting ore and waste. 
Samples obtained from the mine were tested to evaluate the ability of a lab-scale proxy of a bucket-
mounted XRF sensor system to measure copper and gold grades. R-squared values of 0.84 and 0.68 
were achieved between the predicted and measured copper and gold grades of the samples, 
respectively. Sensor test results are promising in revealing the potential to utilize XRF sensors 
underground. Future test work is encouraged to further validate the applicability of XRF sensors in 
an underground mining environment. 

Keywords: block caving; panel caving; grade monitoring; bulk ore sorting; X-ray fluorescence; 
sensors 
 

1. Introduction 
Block and panel caving are underground mining methods that involve undercutting 

an orebody to initiate caving and then progressively recovering caved ore through 
drawpoints [1,2]. Cave mining has become the primary method of choice for large, steeply 
dipping, relatively low-grade, and deeply situated orebodies, as it can offer high 
production rates at low operating costs that are comparable to open-pit mining [3,4]. 

Caving differs from open pits and other underground methods in terms of the lack 
of grade selectivity. In cave mining, following cave establishment, ore starts to fragment 
due to stresses in the cave back and subsequently flows and mixes in draw columns before 
reporting to drawpoints established on the extraction level [4,5]. There is limited control 
over recovered grades in caving since the fragmentation, gravity flow, and mixing of ore 
are variable and relatively uncontrollable events that are impacted by the draw strategy, 
the fragment size distribution of caved ore, and the undercutting rate and direction [6]. 
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Tools simulating the gravity flow in draw columns have been developed to minimize 
the risks involved in the design and operational aspects of cave mines [3,4,6,7]. Such tools 
are utilized for planning and scheduling production in caving operations by forecasting 
the properties of caved ore. GEOVIA PCBC, for instance, is a software package designed 
specifically for block and panel cave mines. The software applies various material mixing 
algorithms to geological block models to aid production scheduling by predicting ore 
grades at drawpoints [6,8]. 

Caving is not a selective mining method. Ore is drawn according to the production 
plans nominated by mine planning and scheduling software. Regardless, the grade of the 
ore is monitored regularly in block and panel cave mines through drawpoint sampling. 
Sampling typically involves collecting material from a drawpoint muck pile by hand or 
by using a shovel at a fixed time or a tonnage interval [9]. Drawpoint grades are reconciled 
to the block model to estimate draw column heights and remaining ore reserves [9] and 
can be used to calibrate ore mixing models applied to a specific cave mine for improved 
grade forecasting and production scheduling [8]. 

Issues relating to the sampling of drawpoints have been discussed previously [9]. 
These include the grade prediction bias that might arise due to the size of the rocks that 
can be sampled, the difficulty in maintaining a consistent sampling frequency without 
impeding production, and the health and safety risks faced by the sampling personnel 
due to the unpredictable nature of material movement at a drawpoint. Another concern is 
that sample sizes are small, e.g., tens of kilograms, which may not be representative. In 
addition, as cave mines are becoming larger operations, regular sampling of several 
hundred drawpoints can be a challenging task to perform, both logistically and 
financially. 

Integration of grade-measuring sensor technologies with mobile equipment for 
automated real-time grade monitoring has been proposed as an alternative to the 
conventional drawpoint sampling practice [4,6,9]. X-ray fluorescence (XRF), a surface 
analytical technique employed to determine the elemental composition of materials, is 
considered a candidate technology for monitoring drawpoint grades. XRF sensors have 
been fitted to shovels, excavators, and loaders, providing rapid grade measurements. 

For cave mines, such as Cadia East in Australia and New Afton in Canada, there have 
been attempts to implement bulk ore sorting to separate ore and waste. These attempts 
involved mounting sensors on the ore conveyor belt at the surface. A previous study for 
the Cadia East mine showed that mixing along the material handling system eliminates 
most of the heterogeneity and concluded that bulk ore sorting should be conducted as 
close to the drawpoints as possible [10]. The XRF shovel sensing system has been applied 
in open-pit mines for directing ore and waste to correct destinations as the material is 
mined [11,12]. It has been proposed that XRF sensors could be installed on the buckets of 
underground loaders for bulk ore sorting in cave mines to address the limited grade 
selectivity associated with cave mining [4,5]. 

This study is aimed at evaluating the deployment of XRF sensors on production 
loaders as an opportunity for automated grade monitoring or bulk ore sorting 
underground in cave mining operations. The mill feed grade prediction performances of 
the drawpoint sampling program and mine planning software were evaluated for the 
Cadia East panel cave mine. The panel cave portions with sorting potential were linked to 
the extraction level layout to estimate the number of drawpoints at which bucket-mounted 
XRF sensors could be deployed. Lab-scale tests were performed to evaluate the capability 
of XRF sensors in determining copper and gold grades of the Cadia East ore. The results 
presented in this study are significant for cave mining operations investigating the use of 
sensor technologies underground for automated grade monitoring or bulk ore sorting. 
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2. Methodology 
2.1. Assessing Performances of Drawpoint Sampling and PCBC in Predicting Mill Feed Grades 

Cadia East, located in New South Wales, Australia, is a gold-copper panel cave mine 
operating three panel caves referred to as PC1, PC2-West, and PC2-East. The caved ore at 
Cadia East is collected from drawpoints by load-haul-dump (LHD) units with a nominal 
payload capacity of 20 tonnes each and dumped into underground crushers. The crushed 
ore is transported to the surface via a belt conveyor operating at a rate of 4600 tonnes per 
hour and is stockpiled ahead of milling. The stockpile feeds two concentrators producing 
gold doré and gold-rich copper concentrate with a total milling capacity of 30 million 
tonnes of ore per annum [13]. 

The Cadia East drawpoints are sampled regularly, ideally once a week, to monitor 
caved ore grades. The sampling procedure involves collecting sub-samples from at least 
three different locations of a drawpoint muck pile and collecting them in 5 kg bags [13]. 
The samples are assayed for copper, gold, silver, molybdenum, and sulphur, as well as 
other elements. The drawpoint sample grades are then compared with the grades 
forecasted by the PCBC planning software to reconcile the production to the orebody 
block model and to update the remaining reserves. 

In this study, a drawpoint assay data set was employed to assess the performances 
of Cadia East’s sampling program and the PCBC planning software in estimating mill feed 
grades. The data set contained the grades of drawpoint samples collected weekly from 
August 2018 to May 2019, PCBC’s grade predictions and the grades of ore milled in the 
Cadia East concentrators during the same 10-month period. The number of drawpoints 
and drawpoint samples and the mean sampling frequency per drawpoint between the 
dates specified are shown in Table 1. 

Table 1. Statistics of Cadia East’s sampling program between August 2018 and May 2019. 

Panel Cave Number of Drawpoints Number of Drawpoint Samples Mean Sampling Frequency per 
Drawpoint (Tonnes) 

PC1 144 2497 871 
PC2-West 136 4169 2512 
PC2-East 182 5522 1730 

Total 462 12,188  

As part of the assessment, first, the relative differences between the weekly 
drawpoint sample grades and PCBC’s grade forecasts were determined. Second, the 
sample and PCBC grades were reconciled to the mill feed grades to determine the 
performances of each in terms of being able to predict the quality of ore feeding into the 
concentrators. The reconciliation of mine grades and mill feed grades was carried out on 
a monthly basis to compensate for the lag time for ore to travel to the surface and then 
pass through the coarse ore stockpile with a live capacity of 40,000 tonnes. In both cases, 
the calculations were carried out for the two major commodities of the Cadia East mine, 
copper and gold, using the following equation: 

Relative difference (RD) (%) = 
x - xreference

xreference
 × 100 (1)

The variables used in Equation (1) and the objectives of the respective relative 
difference calculations are presented in Table 2. 
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Table 2. Variables and objectives of relative difference calculations. 

Data Employed Variables Objective 

PCBC and drawpoint 
sample grades 

x: PCBC grades 
xreference: Drawpoint sample 

grades 

Assessing the performances of drawpoint sampling and 
PCBC grade predictions relative to each other 

Drawpoint sample and mill 
grades 

x: Drawpoint sample grades 
xreference: Mill grades 

Assessing the performance of drawpoint sampling in 
predicting the mill feed grades 

PCBC and mill grades x: PCBC grades 
xreference: Mill grades 

Assessing the performance of PCBC forecasts in predicting 
the mill feed grades 

2.2. Estimating the Number of Drawpoints with Potential to Apply Bulk Ore Sorting 
Bulk ore sorting systems should ideally be placed as close to the mining face as 

possible to be able to take full advantage of an orebody’s naturally occurring grade 
heterogeneity before it is deteriorated by blending practices and mixing during the 
handling of ore [4,10,14]. Assuming that a waste stream in parallel to the ore stream is 
integrated with the mine design, deploying bulk ore sensor technologies at the extraction 
level of a caving operation is considered the most advantageous method in leveraging the 
variability in ore grades [4,5]. 

An evaluation of the sorting potential of the Cadia East mine revealed that the low-
grade portions of one currently operating (PC2-East) and two future panel caves are 
amenable to preconcentration by bulk ore sorting [15]. Bulk ore sorting applied to specific 
portions of a cave’s footprint would require sensor technologies to be positioned at 
selected drawpoints that are identified as having high sorting potential. In this study, the 
portions of the Cadia East panel caves with sorting potential were linked to the mine’s 
extraction level layout to estimate the number of drawpoints where loaders equipped with 
XRF sensors could be situated. 

A previously built block model of the Cadia East mine was merged with the 
drawpoint coordinates using a Python script. The block model contained the theoretical 
improvement in the Net Smelter Return (NSR) of the ore in the case of a bulk ore sorting 
application at the extraction level. The cost and price assumptions and mill recovery 
models [13] used in the NSR estimations are presented in Table 3. 

Table 3. Cost and price assumptions and mill recovery models used in NSR calculations. 

Assumptions Unit 
With Bulk Ore Sorting Without Bulk Ore 

Sorting Concentrate Reject 

Cost 

Mining cost US$/t 4.88 4.88 4.88 
Processing cost US$/t 7.35 0 7.35 

Tailings 
management cost US$/t 0.6 0 0.6 

General and 
administration cost 

US$/t 2.14 2.14 2.14 

Sorting cost US$/t 0.4 0.4 0 
 Total 15.37 7.42 14.97 

Price 
Au US$/oz 1300 
Cu US$/lb 3.4 

Plant recovery 
models 

Metal Cave Model 

Au 
PC2-East Recovery (%) = 79.76 + 3.52 ln (Au) 
Cave A Recovery (%) = 80.65 + 2.88 ln (Au) 
Cave B Recovery (%) = 79.76 + 3.52 ln (Au) 

Cu PC2-East Recovery (%) = -50.64 Cu 2 + 47.91 Cu  + 76.27 
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Cave A Recovery (%) = 91.06 + 2.02 ln (Cu) 
Cave B Recovery (%) = 112.6 + 17 ln (Cu) − 23.4(Cu) 

A draw column radius of 14 m was assumed [13] to correctly assign the vertically 
clustered ore blocks with a size of 5 × 5 × 5 m3 each reporting to the drawpoints. The 
number of drawpoints where XRF sensors on LHDs could be employed was estimated for 
the PC2-East cave and the two future panel caves. The future caves were undisclosed for 
confidentiality and called “Cave A” and “Cave B.” The estimations were not performed 
for the PC1 and PC2-West caves, as they were found to not possess bulk ore sorting 
potential. 

For an underground bulk ore sorting application using XRF sensors on LHDs, the 
sorting cost per unit of material would need to be estimated considering the size of the 
mine, the cost and number of XRF sensors, the cost of establishing separate ore and waste 
streams, etc. For this study, a bulk sorting cost of US$ 0.4 per tonne of ore [16] was 
nominated as an approximate of the operating costs. 

The impact of mixing was not incorporated in the NSR estimations. It was anticipated 
that the production LHDs with 20-tonne capacities would observe a higher grade 
heterogeneity than the block model of the deposit (the 5 × 5 × 5 m3 block size corresponds 
to 345 tonnes) due to an approximately 18-fold difference in the scales of the selective 
mining units. Based on a suggested approach [17], it was assumed that the adverse 
influence of mixing on the sorting potential could be compensated for by the higher grade 
resolution that would be observed by the bucket-mounted sensors. 

2.3. Lab-Scale Evaluation of Bucket-Mounted XRF Sensors 
Seven belt-cut samples obtained from the Cadia East mine were tested to evaluate 

the capability of lab-scale bucket-mounted XRF sensors in measuring copper and gold 
grades. Drawpoint samples were not available at the time of the study. Therefore, a 
decision was made to use belt-cut samples for the XRF sensor tests. Another consideration 
was to select samples with significant grade differences that represent the variation that 
may be expected at the drawpoints. 

Samples weighing approximately 120 kg each were collected monthly between July 
2020 and May 2021 from the main trunk belt and were prepared for testing and multi-
element analysis. The samples had previously been crushed to −40 mm top size; therefore, 
they did not exactly represent the typical size distribution of the caved ore drawn from 
the Cadia East drawpoints. The samples were subsequently sent to MineSense’s testing 
facility in Vancouver, British Columbia, for the XRF sensor tests. Table 4 presents the 
samples’ copper and gold grades, determined by inductively coupled plasma atomic 
emission spectroscopy (ICP-AES) and fire assay methods at the ALS Geochemistry 
laboratory in Vancouver, British Columbia. 

Table 4. Copper and gold grades of the Cadia East bulk samples. 

Operating Cave Month of Collection Cu (%) Au (g/t) 
PC2-West July 2020 0.36 0.59 
PC2-East October 2020 0.43 0.99 
PC2-West November 2020 0.33 0.67 
PC2-East February 2021 0.31 0.67 
PC2-West February 2021 0.29 0.67 
PC2-East April 2021 0.44 1.21 
PC2-West May 2021 0.25 0.30 

ShovelSense, a grade control system developed by MineSense Technologies Ltd., 
integrates XRF sensors with mobile mining equipment, such as cable shovels, front-facing 
excavators, and front-end-loaders, to measure ore grades in real time. The ShovelSense 
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system scans the rocks as they flow into the bucket, with up to four XRF sensors installed 
in the brow. XRF spectra are collected at a 100-ms frequency in a window between 
approximately 1000 and 350 mm away from the sensor with wide-angle X-ray emitters. 
Bucket fill cycles typically allow for 2 to 7 s of scan time within the analysis window, 
which equates to 20 to 70 XRF shots per head and 80 to 280 XRF shots per bucket. This 
ensures that the XRF responses of coarse and fine fragments are captured as they roll 
through the sensing window, which is critical to delivering a representative scan of the 
material in the bucket. The XRF spectra are aggregated and converted into predictions of 
the element grades of interest. The real-time integration of ShovelSense grade 
measurements and local mine grade estimates allows the system to accurately classify ore 
and waste [11]. 

The Cadia East samples were tested with a lab-scale proxy of ShovelSense that is 
referred to as the Amenability Testing Machine (ATM), which mimics the flow of rocks 
that is observed in buckets of mining equipment with ShovelSense (Figure 1). The ATM 
allows rock samples of up to 600 kg to flow past a single XRF sensor while the XRF spectra 
are collected. The test setup includes a drum tipper, which secures the sample drum and 
tips the sample to flow past the XRF sensor into a hopper and receiving drum. The XRF 
sensor is mounted over the center of the flow chute at a height of 600 mm, simulating the 
sensor readings as they may be taken in a shovel, with the sample flowing within a 
working distance of 450 mm from the sensor head. The tests are repeated multiple times 
per drum, with cleaning between runs and different samples. Depending on the volume 
or mass of the sample, a single ATM run takes around two seconds. 

 
Figure 1. Amenability testing machine (ATM): (a) Idle; (b) Post-run. Sample drum is loaded, 
elevated, and dumped into hopper and receiving drum. During rock flow, XRF spectra are collected 
and processed to yield a single composite spectrum per run. 

The ATM tests were repeated at least five times for each Cadia East ore sample to 
determine the repeatability of grade measurements. The accuracy of copper grade 
measurements was determined by regression analysis of ICP copper grades and average 
copper K-alpha (Cu K-α) counts measured by the XRF sensor. A regression model 
predicting the gold grades of the samples was developed using the XRF spectra reported 
by the sensor. Copper, iron and molybdenum were selected for modelling gold grades, as 
gold is associated with these metals in chalcopyrite (CuFeS2), bornite (Cu5FeS4) and 
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molybdenite (MoS2) in the Cadia East ore [13]. Sulphur, on the other hand, is a lower-
energy element, the signal of which becomes attenuated in air due to the working distance 
between the sensor and the material. Hence, the ShovelSense X-ray detectors are unable 
to collect a measurable sulphur XRF response. Sulphur is also associated with gold in the 
Cadia East ore. However, sulphur was not included in the regression modelling of gold 
grades, as it cannot be measured by the XRF sensor. 

3. Results and Discussion 
3.1. Drawpoint Sample Grades vs. PCBC’s Grade Predictions 

Figure 2 shows the distribution of the relative difference between the weekly 
drawpoint sample grades and PCBC’s drawpoint grade predictions from August 2018 to 
May 2019. An inconsistency exists between the measured and predicted drawpoint copper 
grades: approximately 62% of the PCBC copper grade forecasts varied from the drawpoint 
sample copper grades by a relative difference of 10% or more (Figure 2a). A more 
significant discrepancy was observed for gold grade estimations, as revealed by an almost 
uniform distribution of the relative difference, which yielded a mean absolute difference 
of about 45% (Figure 2b). PCBC’s gold grade forecasts deviated from the drawpoint gold 
grades by at least 10% for approximately 81% of the data points assessed. Compared to 
the PCBC software, the sampling program tends to underestimate the metal grades of the 
drawpoint muck piles, which is evident by the positive mean difference values of 6.74% 
and 23.35% for copper and gold, respectively (Figure 2). 

 
Figure 2. Distribution of relative difference between weekly drawpoint sample grades vs. PCBC’s 
grade predictions from August 2018 to May 2019: (a) Copper; (b) Gold. 

A drawpoint fragmentation assessment undertaken using digital image processing 
techniques concluded for the PC1 cave of the Cadia East mine that the measured size 
distribution at drawpoints varied significantly as a function of the geotechnical domain 
and generally became finer as drawpoint tonnages increased [7]. Therefore, it was deemed 
that the variation in the size distribution of caved rock and the potential deportment of 
copper and gold into specific size fractions that cannot be sampled practically could be 
the factors leading to lower metal grade estimates with drawpoint sampling. The poorer 
match between measured and predicted gold grades might be related to the relatively low 
concentrations of gold in the ore, leading to challenges in obtaining representative 
samples for analyses. 

Figure 3 presents how the measured and predicted mine grades reconcile to the mill 
feed grades. The figure reveals that the mill feed quality was underpredicted by the 
drawpoint sampling program for almost every month investigated in the assessment. The 
mill feed copper grades were underestimated by about 2% to 10% monthly based on the 
drawpoint samples (Figure 3a). The mill feed gold grades also differed from the 
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drawpoint sample grades by amounts varying from −12% to +8% (Figure 3b). Overall, on 
average, the drawpoint sample grades fell short of mill feed grades by 6.7% for copper 
and 4.6% for gold (Figure 3). 

 
Figure 3. Change in monthly relative differences between mine (measured and predicted) and mill 
feed grades from August 2018 to May 2019: (a) Copper; (b) Gold. 

In contrast, PCBC performed rather satisfactorily in predicting the copper content of 
mill feed. PCBC’s monthly copper grade forecasts for caved ore deviated from the mill 
feed copper grades by ±6% on a monthly basis, yielding an overall difference of only −1.4% 
(Figure 3a). However, PCBC overestimated the gold grades of mill feed by up to 17% 
monthly, resulting in an overall difference of 5% (Figure 3b). 

Despite differing from the mill feed grades, the measured and predicted mine grades 
aligned with each other to a certain extent on a monthly basis rather than weekly, 
following similar grade difference trends for copper and gold, as shown in Figure 3. Even 
though the fluctuations in reconciled mine and mill grades could be caused by sampling 
errors and PCBC’s grade predictions, they may also be due to the errors made in the mill’s 
grade assessment of the processed material [18]. The difference between the 
measurements and mill data may also be due to ore mixing during transport and 
stockpiling, preventing the comparison of the same ore. Regardless, it can be concluded 
that the PCBC software performed more satisfactorily than the drawpoint sampling 
program, particularly in forecasting the mill feed copper grades. 

3.2. Potential to Apply Bulk Ore Sorting Underground at Cadia East 
Figure 4 presents the NSR map of the PC2-East cave when bulk ore sorting is 

hypothetically applied using XRF sensors on LHDs. The figure also shows the locations 
of the PC2-East drawpoints. The NSR maps of PC1 and PC2-West are not presented in the 
figure, as the caves were found to not show sorting potential. In addition, the maps of the 
future caves, Cave A and Cave B, are not presented due to confidentiality. 
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Figure 4. NSR map of PC2-East in case of bulk ore sorting application underground (plan view). 

The PC2-East cave is designed to operate with 8 extraction drives and a total of 182 
drawpoints. If sorting was applied to the sortable portions of PC2-East at a 0.1% Cu sorting 
cut-off grade, an improvement in the ore value of $0.20 per tonne could be achieved [15]. 
It was estimated that such a sorting practice would require equipping production LHDs 
with sensors at six drawpoints along two neighbouring extraction drives to 
preconcentrate caved ore, as shown in Figure 4. 

Similarly, for Cave A and Cave B, it was found that bulk ore sorting could improve 
the NSR of the ore drawn from the respective caves by $0.04 and $0.77 per tonne at sorting 
cut-off grades of 0.05% and 0.1% Cu [15]. For Cave A, deploying bucket-mounted sensors 
at two drawpoints along a single extraction drive was determined to be required to sort 
ore drawn from its footprint. The estimations showed that Cave B would necessitate 
situating mobile bulk sensors at 71 drawpoints throughout eight production drives (five 
on the north and three on the south side) of its extraction level. 

The results of the hypothetical bulk ore sorting application performed underground 
with mobile XRF sensors are summarized in Table 5. 

Table 5. A summary of hypothetical bulk ore sorting application performed underground with 
bucket-mounted sensors. 

Panel Cave 
Number of Drawpoints and 

Extraction Drives with Sorting 
Potential 

Sorting Cut-Off Grade 
(% Cu) 

Change in NSR when Bulk Ore 
Sorting Is Applied (US$/t) 

PC2-East 6 (2 extraction drives) 0.1 +0.20 
Cave A 2 (1 extraction drive) 0.05 +0.04 
Cave B 71 (8 extraction drives) 0.1 +0.77 

3.3. XRF Sensor Evaluation 
The results of the lab-scale evaluation of bucket-mounted XRF sensors for 

determining copper grades are presented in Figure 5. An R-squared value of 0.84 was 
achieved between the copper grades (determined by ICP analysis) and the average copper 
K-alpha counts (measured by ATM’s XRF sensor) for the tests conducted on seven bulk 
samples (Figure 5a). The tests yielded a measurement repeatability range with standard 
deviations between 0.016% and 0.039% Cu, as shown in Figure 5b. 
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Figure 5. Results of ATM-XRF sensor tests: (a) Comparison of average Cu K-α counts measured by 
ATM’s XRF sensor and copper grades of samples determined by ICP; (b) Distribution of copper 
grade measurements for each sample (SD: standard deviation % Cu). 

Figure 6 compares the lab-scale XRF sensor’s copper grade predictions for Cadia East 
and various copper porphyry deposits. Despite the results being in line with the results of 
previous lab simulations performed on various copper porphyry ores (Figure 6), a 
possible explanation can be proposed for the variation in copper grade measurements 
obtained for the Cadia East samples. Since XRF is a surface technique unable to penetrate 
the whole volume of rocks, the orientation of individual particles relative to the sensor 
location as they are being scanned during each test may lead to variations in grade 
measurements, thereby impacting the accuracy of grade predictions. Such variation that 
may be experienced in bulk ore sorting studies was identified as heterogeneity error [19]. 
The heterogeneity error is expected in lab simulations to a certain level, since, as described 
previously, a single XRF sensor is mounted on the ATM test device with a typical 2-s 
measurement window. In contrast, for a field deployment, the ShovelSense system can 
partially mitigate the heterogeneity error by employing two to four independent XRF 
sensors, scanning the rocks over a wide range of distances and gathering XRF responses 
across various rock surfaces for up to 7 s [11]. Nevertheless, more test work should be 
conducted to expand the results database and validate the system’s ability to produce 
precise grade measurements while scanning greater volumes of coarser material. 
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Figure 6. Comparison of copper grade predictions for samples from Cadia East and various copper 
porphyry deposits. 

Equation (2) shows the regression model developed to predict the gold grades of the 
samples using the raw spectral information provided by ATM’s XRF sensor: 

Au = 2.95 × 10 3CuKα −  1.01 × 10 3FeKα −  1.58 × 10 3MoKα + 1.18 (2)

where Au is the predicted gold content in grams per tonne of material, CuKα, FeKα and 
MoKα are the average copper, iron and molybdenum K-α counts measured by the XRF 
sensor. Figure 7 shows a plot of predicted and measured gold grades, where an R-squared 
value of 0.68 was achieved. Compared to the copper grades, the gold grades of the samples 
were slightly less accurately predicted by the ATM system, which was to some degree 
expected due to the technical challenges of detecting elements in low concentrations. 

 
Figure 7. Gold grades of bulk samples predicted using spectral information collected by ATM’s XRF 
sensor and gold grades determined by fire assaying. 

4. Conclusions 
An assessment of caved ore grades at the Cadia East mine showed a discrepancy 

between the grades measured by drawpoint samples and those forecasted by the PCBC 
software. The drawpoint sampling program underperformed compared to PCBC, as the 
mill feed quality was mispredicted, or, more precisely, underpredicted, with a more 
significant margin by the drawpoint samples during the 10-month assessment period. The 
variation in the size distribution of caved ore and the difficulty in collecting samples 
representing a whole drawpoint muck pile due to the likely deportment of copper and 
gold into specific size fractions were deemed as the potential factors leading to lower 
metal grade estimates obtained with the drawpoint samples. 

The automation of grade monitoring in cave mines through the integration of XRF 
sensors on load haul dump units can address the issues of the conventional grab sampling 
practice of drawpoints. A potential benefit of automated grade monitoring systems is to 
perform real-time grade measurements rather than waiting for samples to be assayed. 
Besides, such automated systems can provide more accurate grade estimations, as they 
collect larger samples that are likely more representative of the material at a drawpoint. 
In addition, a consistent grade control frequency can be achieved without interfering with 
the production, as the grade measurements are carried out concurrently with collecting 
caved ore from drawpoints. As the accuracy and frequency of drawpoint grade 
estimations are improved, a more developed production reconciliation can also be 
achieved. By automating grade control in cave mines, the health and safety risks presented 
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to the sampling staff can be eliminated, and the cost and labour involved in the process 
can be minimized. 

Alternatively, the bucket-mounted sensors can be employed at drawpoints to divert 
waste from ore early in the mining value chain. Low-grade portions of three Cadia East 
panel caves were determined to be amenable to bulk ore sorting. The portions of cave 
footprints with sorting potential were linked to the extraction level layout to estimate the 
number of drawpoints at which XRF sensors can be utilized for an underground ore 
sorting application. 

Seven bulk samples obtained from the Cadia East mine were tested to evaluate the 
ability of XRF sensors to measure copper and gold grades. The obtained results are 
promising, particularly in determining the copper grades of the Cadia East samples. More 
test work can further confirm the grade prediction capability of bucket-mounted XRF 
sensors. As XRF sensing is a surface analysis technique where only the outermost layer of 
the sample is analyzed, future tests should be performed with drawpoint samples, which 
typically have a coarser size distribution than the samples used in this work. Future tests 
should aim to determine whether accurate grade measurements can still be achieved 
when scaling up from laboratory testing to operational predictions. In addition, future test 
work should also address the challenges of employing grade-measuring sensor 
technologies in an underground mining environment, where varying amounts of 
moisture, dust, and heat are prevalent. 
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