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Abstract: High-ash Indian coals are primarily used as thermal coal in power plants and industries.
Due to the presence of sulfur in thermal coal, flue gas is a major environmental concern. Conventional
methods (Ultimate Analysis of Coal) for sulfur content estimation are time-consuming, relatively
costly, and destructive. In this study, Fourier-transform infrared (FTIR) spectroscopy has emerged as
a promising alternative method for the rapid and nondestructive analysis of the sulfur content in coal.
In the present study, the actual sulfur content in the coal samples was determined using Ultimate
Analysis (CHNS analyzer). In contrast, mid-infrared FTIR spectroscopic data (4000–400 cm−1) were
used to analyze the functional groups related to sulfur or its compounds in the coal samples to
predict the sulfur content. A comparison of sulfur estimated using a CHNS analyzer and predicted
using mid-infrared spectroscopy (FTIR) data shows that it can accurately predict sulfur content
in high-ash Indian coals using the piecewise linear regression method (Quasi-Newton, QN). The
proposed FTIR-based sulfur prediction model showed a coefficient of determination (R2) of up to 0.93,
where the total no. of samples (Coal + KBr pellets, n) was 126 (using 17:1 split, K-fold cross validation).
The root-mean-square error (RMSE, wt.%) is 0.0035, mean bias error (MBE, wt.%) is −0.0003, MBE
(%) is 3.31% and mean absolute error (MAE, wt.%) is 0.0020. The two-tailed t-test and F-test for mean
and variance indicated no significant difference between the pair of values of observed sulfur (SCHNS,

wt.%) using CHNS data and the model predicted sulfur (SFTIR, wt.%) using FTIR data. The prediction
model using mid-infrared FTIR spectroscopy data and the Quasi-Newton method with a breakpoint
and loss function performs well for coal samples from the Johilla Coalfield, Umaria. Thus, it can be a
valuable tool for analyzing sulfur in other ash-rich coals from various basins worldwide.

Keywords: sulfur content; Fourier-transform infrared spectroscopy (FTIR); Quasi-Newton (QN)
method; high ash; Indian coal

1. Introduction

Coal is a mixture of heterogeneous materials composed of organic and inorganic
substances [1–3]. Sulfur in coal is present in organic and inorganic forms [4]. It is an
important parameter for determining the suitability for various applications, such as power
generation and steel production. It can negatively affect the environment, climate, and
industrial processes. Organic sulfur in coal refers to sulfur that is chemically bonded to the
organic matter in coal. It can be difficult to remove it from coal during processing, and it
can also contribute to air pollution when coal is burned. Inorganic sulfur refers to sulfur
that is not chemically bonded to the organic matter in coal. It can occur in various forms,
such as sulfates, sulfides, and elemental sulfur. It is typically found to be less harmful to the
environment while burning. Pyrite is the primary inorganic sulfur impurity in the majority
of coals [4–6].
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Sulfur dioxide (SO2) emissions primarily come from burning fossil fuels, such as coal,
oil, and industrial processes involving sulfur-containing materials. The majority of SO2 in
the atmosphere is the result of human activity, specifically emissions from coal-fired thermal
power plants, where practically all sulfur in coal is oxidized to SO2 during combustion [7].
Improper coal combustion produces a range of pollutants, including sulfur dioxide (SO2),
nitrogen oxides (NOx), particulate matter, and carbon dioxide (CO2). Various technologies
have been developed to remove or reduce the amount of sulfur dioxide emitted during
combustion [8]. One common approach is to use flue gas desulfurization (FGD) systems,
which can remove up to 95% of SO2 emissions from a power plant. FGD systems typically
use a variety of methods, such as wet scrubbing with a calcium-based reagent or dry sorbent
injection, to capture and remove sulfur dioxide from flue gas [9,10]. Thus, rapid estimation
of the sulfur content in coal used in thermal power plants is essential for operational
(removal processes) and environmental aspects.

In addition to FGD systems, switching to alternative fuels and improving the efficiency
of combustion processes can reduce the emission of toxicants from coal-fired thermal power
plants [11,12]. The chemical nature of aerosols is critical for understanding their overall
input to the atmosphere and related climate change issues. Carbonaceous aerosols are
highly absorbing in nature, whereas sulfate aerosols are usually highly scattering in nature.
This impacts the atmospheric temperature, cloud processing (seeding and modifying),
and climate [13]. Thus, estimation of the sulfur content in coal is important because
these emissions lead to acid rain, which can harm crops, forests, and bodies of water
and contribute to respiratory problems in humans [14]. Long-term exposure to sulfur
oxides (SOx), particularly SO2 released by coal-fired power plants, can increase the risk of
developing cardiovascular disease (CVD) and ischemic heart disease (IHD) [15,16].

Apart from health-related impacts, sulfur can decrease the quality of coke, which is
used to produce iron and steel in industrial processes. This can lead to increased costs and
lower efficiency in the production process. High-ash thermal coal is considered a lower
quality fuel than other types of coal but is still widely used in power plants worldwide
due to its low cost and availability. However, the high ash content of coal can pose several
challenges to power plant operators, and the foremost challenge is ash accumulation on
boiler surfaces. The leftover ash can stick to boiler tubes and other components, reducing
their efficiency and increasing the risk of equipment failure [17].

The sulfur content in coal can vary significantly depending on the type and origin
of the coal. Knowing the sulfur content of coal allows for the appropriate management
and use of the resource and can help ensure compliance with environmental regulations.
Many countries have implemented regulations and standards to limit the amount of
sulfur emitted from power plants and encourage the use of cleaner and more efficient
technologies. For instance, the limits for thermal power plants in India are already specified
in the Environment (Protection) Amendment Rules, 2015 [18]. Here are some approximate
ranges of sulfur content in coal seams from major coal-producing countries: China is
the world’s largest producer and consumer of coal [19], and the sulfur content of its coal
can vary widely, from less than 0.2% to more than 5%, with an average of approximately
1.5% [20–22]. In the United States, it ranges from less than 0.2% to more than 5%, depending
on the region and type of coal [23]. Coal from the Appalachian region tends to have a
higher sulfur content [24], whereas coal from the Powder River Basin in Wyoming has a
relatively low sulfur content. The sulfur content in Russian coals can vary widely, with
some coals containing less than 0.5% sulfur and others containing up to 5% sulfur or
more [25]. Coal from the Bowen Basin in Queensland tends to have low sulfur content,
whereas coal from the Hunter Valley in New South Wales can have sulfur contents ranging
from 0.5% to 1.5% [26]. Indonesian coal is known for its relatively low sulfur content, with
typical sulfur levels of less than 1%. In the European Union’s coal, sulfur content range
from approximately 0.5% to 3% in Germany, Poland, Spain, and the United Kingdom [27].

In India, SO2 emissions have been increasing recently due to the country’s rapidly
growing economy and population [13]. The Indian Government has been implementing
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policies to reduce SO2 emissions, such as stricter emission standards for vehicles and
industries, as well as promoting renewable energy sources [28]. Therefore, it is important
to determine the sulfur content of coal before using it to minimize negative impacts.

The sulfur content of coal can vary greatly depending on the location and type of
coal being mined in India. It also depends on the organic source, mineralogy, depositional
environment, and tectonics. However, basinwise variation is a more specific way to
understand the variation in the sulfur content in coal. Coal from the Eastern flank of
India, for example, Damodar and Jharia Basin, generally has moderate sulfur content (e.g.,
Raniganj coalfield, 1%–2%). The Godavari Basin (e.g., Godavari Valley coalfields, <0.5%)
and the Western Coalfields (e.g., Nagpur and Chandrapur coalfields, <0.5%) generally
have low sulfur contents. The northeastern states of India, such as Assam and Meghalaya,
generally have a higher sulfur content than coal from other regions. Assam’s coal has a
sulfur content as high as 4%–5%, whereas coal from Meghalaya has as high as 6%–7%. On
the other hand, coal from the western and southern regions of India, such as Maharashtra
and Andhra Pradesh, tends to have lower a sulfur content, e.g., 0.5%–1% [29].

The traditional method for measuring the sulfur content in coal, such as Ultimate
Analysis, is time-consuming. The input samples are also combusted during the estimation
process in the CHNS analysis, making the process destructive in nature. Depending upon
the type of CHNS analyzer equipment, Elementar’s vario MACRO cube’s special thermal
conductivity detector (TCD) and the sample size (10–20 mg) provide better repeatability.
Due to the inherent heterogeneity of coal, Advanced Purge and Trap (APT) technology
enables the instrument to measure samples with even uncommon cases and provides the
highest precision and accuracy in estimation [30].

To find cheaper, easier, and more efficient approaches, several researchers have suc-
cessfully implemented a wide variety of advanced techniques all over the world [31].
Previous works tried to formulate a method to quickly predict coal’s intrinsic and elemen-
tal properties [32,33]. Many assistances and pioneering strategies have been acquainted
with meeting the challenge of improving the estimation accuracy. Some of the major
methods which were being used for determining the sulfur content of coal are as follows:
Pyrolysis–Gas Chromatography [34,35], X-ray absorption near-edge structure spectroscopy
(XANES), X-ray photoelectron spectroscopy (XPS) [36], X-ray diffraction (XRD) [37], energy-
dispersive X-ray fluorescence (ED-XRF) [38], visible Spectrophotometry (VIS) [39], in-
ductively coupled plasma-atomic emission spectroscopy (ICP-AES) [40], laser-induced
breakdown spectroscopy (LIBS) [41–44], thermogravimetric–Fourier-transform infrared
spectroscopy (TG–FTIR) [45], and Fourier-transform infrared spectroscopy (FTIR) [46–50].
All these methods have their own advantages and limitations. The choice of method
depends on the analysis’s specific requirements and available equipment.

In the present study, we devised a series of empirical equations and a mathematical
model for the first time. Piecewise nonlinear regression and the Quasi-Newton (QN)
method were used to estimate the sulfur content in high-ash Indian coals using the FTIR
Spectroscopy data. The primary objectives of this study were as follows:

• The use of nondestructive techniques, such as FTIR, has the potential to be a rapid
and effective method for estimating sulfur content in high-ash Indian coals. This
technique is based on the principle that sulfur compounds (such as sulfates, sulfides,
and thiophenes) in coal absorb infrared radiation at specific wavelengths, which can
be used to identify and quantify the presence of sulfur.

• The FTIR method is quick and efficient because it does not require additional time for
sample preparation and can be performed onsite in coal mines or power plants. It also
has the advantage of being able to detect low levels of sulfur, which is important for
compliance with environmental regulations.

The present work is structured as follows: In Section 2, the geological setting of the
study area is described. Section 3 provides information on the sample location and selected
method. The observed (ultimate) and model-predicted (FTIR) results, discussion on the
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prediction model, and its validity are presented in Section 4. Finally, the article concludes
in Section 5. The complete procedure is summarized in the flowchart shown in Figure 1.
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Figure 1. The flowchart summarizes the methodology, techniques, and comparative validation
analysis carried out in this study.

2. Geological Setting of the Study Area

Coal deposits are unevenly scattered throughout the world. According to the most
recent assessment of global coal reserves, approximately 75% of recoverable reserves are
concentrated in five countries: the USA (23.2%), Russian Federation (15.1%), Australia
(14%), China (13.3%), and India (10.3%). Global coal production and consumption increased
by 5.9% and 6.3% in 2021. In worldwide coal production, India stands 3rd in the row with
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13.47 EJ, which increased by 6.9% in 2020. In the worldwide consumption of coal, India
ranks 2nd with 20.09 EJ, showing an upsurge of 15.8% in demand compared to the previous
year, 2020 (1 Exajoule (EJ) = 40 million tons of hard coal or 95 million tons of lignite and
sub-bituminous coal) [51,52].

Indian coal is generally separated into two geological periods, Gondwana Coalfields
(~250 million years old) and Tertiary Coalfields (~15–60 million years old) [53]. Gondwana
coals contain less moisture and a higher carbon percentage than Tertiary coals and include
a significant amount of sulfur and phosphorus. The central-north part of India (Andhra
Pradesh, Chhattisgarh, Jharkhand, Madhya Pradesh, Maharashtra, Orissa, Telangana, and
West Bengal) represents major Gondwana Coalfields, and the northeastern part (Assam,
Arunachal Pradesh, and Meghalaya) have Tertiary Coalfields [29].

The Johilla Coalfield is situated in the Umaria District of Madhya Pradesh, India. This
coalfield is positioned on the western flank of the Son Valley Basin and is part of the larger
Damodar–Son Coalfield system [54]. The geology of the Johilla Coalfield is characterized by
a sequence of sedimentary rocks, including sandstones, shales, and coal seams. These rocks
were laid down during the Late Carboniferous to Early Permian period, approximately
300 million years ago. The coal seams in the Johilla Coalfield are inclined, with an average
dip of 30–40 degrees [54–56]. They are also faulted and folded, resulting in complex mining
conditions. The coal seams in the study area are typically thick and continuous, with an
average thickness of approximately 2–3 m. They are primarily composed of sub-bituminous
coal and have a high ash content (up to 50%), corresponding to lower-grade coal with a
lower heating value than that of bituminous coal [57].

In the Johilla Region, there are two persistent coal seams, the Johilla top and Johilla
bottom, which are primarily sub-bituminous to high-volatile bituminous. The organic
matter is composed of rich black debris, including biodegraded and structured materials.
It mainly consists of land-derived plant fragments and roots at various stages of degra-
dation [57,58]. The high V/I ratio in Johilla coals indicates a high level of maturation.
However, the likelihood of oil generation from the source is low due to its high porosity
and permeability. Umaria coals have negligible coal bed methane (CBM) potential [59–61].

This area is considered a highly prospective area for coal mining, with estimated
reserves of approximately 200 million tons. The coalfield is considered to be a major source
of energy for the region, with several large-scale open-pit coal mines and power plants in
operation. The coal produced in this coalfield is mainly used for power generation, cement,
and metallurgical coke production. The Johilla Coalfield also contains significant reserves
of limestone, which is used in cement production, and clay, which is used in the ceramics
industry [54–56].

Among Johilla coals, Durain has the highest mineral matter content, whereas Fusain
has the lowest. The mineral matter is present in various forms, such as massive impreg-
nation, intimate mixing, deep intergrowth, filling of micropores, and cavity filling. The
mineral matters associated with the coal identified under the microscope are pyrite, clays,
siderite, and quartz [62–65]. Trace element analysis showed that these coals have low
concentrations of W, Sc, Pb, and Be, but notable levels of Y, Ca, and Ni. The highest
accumulation of trace elements is found in Barium [66].

The lower Gondwana sandstone in the Johilla coalfield area formed in a highly mixed
environment, reflecting a combination of marginal, fluvial, aeolian, and beach condi-
tions [67]. The geomorphology of the area indicates an early stage of maturity, characterized
by a dendritic drainage pattern [68,69]. The hilly terrain serves as a source for groundwater
recharge [69]. The megaflora and microflora in these beds indicate a transition zone be-
tween the upper Karharbari and lower Barakar formations, which suggests that the climate
in the Son Valley was cooler than that in the Damodar Basin [70].

The location of the mines/colliery from where respective samples were collected
and used in this study is shown over the generalized elevation map of the Umaria Dis-
trict (Figure 2) modified after the groundwater information booklet of the Umaria Dis-
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trict [71] For a detailed description about the sample location/mine/colliery, please refer
to Section 3.1.
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and 6—Vindhya UG.

The stratigraphy of the Umaria Coalfield is represented by Gondwana rocks (Upper
Carboniferous to Triassic) consisting of Talchir Formation (Upper Carboniferous to lower
Permian) followed by Barakar (lower Permian) and Supra-Barakar Formations [54]. The
Supra-Barakar Formation is divided into the Pali-Tiki (upper Permian) and Parsora (Up-
per Triassic) formations. This is overlain by Chandia Beds (Lower Cretaceous), Lameta
beds (Upper Cretaceous), and Deccan trap (Upper Cretaceous to Eocene) formations [55].
Lithologically, the Talchir Formation is characterized by the association of fine- to medium-
grained greenish sandstones, shales, and boulder beds (tillite). The Barakar Formation
consists of sandstones, shales, and coal seams of the Lower Gondwana sequence from the
Lower Permian age [56]. This is the major coal-bearing strata occurring as a triangular-
shaped area measuring approximately 15 km2 in the Johilla Coalfield. The Pali-Tiki For-
mation comprises coarse-grained sandstone with feldspar grey shale, greenish to mottled
clays, carbonaceous shale, and thin coal beds. Variegated shales, clay, and coarse-grained
sandstone dominate the Parsora Formations. White clays and medium-grained sandstones
depict the Chandia Formations of the Lower Cretaceous. A thin blanket of Lameta beds
with greenish sandstones and impure cherty limestones overlapped the Gondwana sed-
iments and was succeeded by basalt flows and dolerite dykes of the Deccan Traps and
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recent soil and alluvium [63,68]. The lithostratigraphic succession of the Umaria Area is
described in Table 1, respectively.

Table 1. Regional litho-stratigraphic succession near the Johilla Coalfield, Madhya Pradesh, showing
the targeted formation (Barakar) for study, marked by $ modified after [54–56,63,68].

Age Formation Lithology

Recent soil, alluvium

Upper Cretaceous
to
Eocene

Deccan Trap basalt flows, dolerite dykes

Upper Cretaceous Lameta

greenish sandstone, poorly compacted,
rarely hard and cherty sandstone, Impure
limestone at places cherty, Greenish
Mudstone
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3. Material and Method
3.1. Sampling

In Table 2, details about the coal sampling sites of the study area are provided, which
are also illustrated in Figure 2. For the present study, a total of eighteen (18) coal samples
were collected from the 05 underground projects (Kudri UG, Pali UG, Pinoura UG, Umaria
UG, and Vindhya UG) and 01 opencast project (Kanchan OCP) of the Johilla Coalfield,
Son–Mahanadi Basin, by following the guidelines of ASTM D-2234 [72]. The samples were
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crushed and sieved to −212 µm sizes as per the standard methods (ASTM D-4749, [73]) for
Ultimate and FTIR analyses.

Table 2. Coal sampling site details of the Johilla Coalfield, Son–Mahanadi Basin, Madhya Pradesh, India.

Sl. No. Sample Mine/Locality/
Colliery Seam Latitude Longitude Elevation

(in Meters)

1. JKOB1
Kanchan OCP JB 23.3451000 80.8600717 443.302. JKOL1

3. JKOL3

4. JKUB1
Kudri UG JB 23.3469217 80.9624067 470.405. JKUL1

6. JKUL3

7. JPAB1
Pali UG JB 23.3538700 81.0498233 466.408. JPAL1

9. JPAL3

10. JPIB1
Pinoura UG L1B 23.3397483 80.9363333 502.4011. JPIL1

12. JPIL3

13. JUMB1
Umaria UG IV 23.5209883 80.8516617 454.1014. JUML1

15. JUML3

16. JVIB1
Vindhya UG L1B 23.3363750 80.9055150 500.2017. JVIL1

18. JVIL3

Explanation: OCP—opencast project, UG—underground project, JB—Johilla bottom seam, L1B—local seam
bottom, IV—seam no. IV.

3.2. Ultimate Analysis

To determine the elemental composition of the coal, the powdered samples were
first sieved to obtain a size of −212 µm. Approximately 10 mg of the sample was then
wrapped in a tin boat and placed on an automated sample holder of the CHNS analyzer,
following the guidelines stated in ASTM D-4239 and D-5373 [74,75]. The Ultimate Analysis
was conducted using the Vario Macro Cube of Elementar at the Department of Applied
Geology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Jharkhand,
India. This benchtop instrument was designed to simultaneously determine the CHNS
in samples up to the gram range with high precision and accuracy. During the analysis,
the sample was treated at approximately 1150 ◦C and 850 ◦C in combustion and reduction
tubes, respectively, at a pressure of 1200–1300 mbar in the presence of helium gas purging at
a rate of approximately 600 mL/min continuously, and oxygen (O2) dosing at 50 mL/min
for 5 min. The determination of nitrogen (N), carbon (C), and hydrogen (H) was completed
in the respective sequence through the process of adsorption and desorption. Finally, sulfur
was determined using an infrared detector assembled with the equipment, which can detect
even minute levels of sulfur in the sample [30].

3.3. Fourier-Transform Infrared (FTIR) Spectroscopy

FTIR spectroscopy is a widely used nondestructive technique for identifying the
functional groups present in coal [76]. The model and make of the FTIR equipment used in
this analysis is INVENIO S, BRUKER OPTIK, GmBH (Ettlingen, Germany). In this method,
coal samples were typically ground to a fine powder (−212 µm size) and uniformly mixed
with KBr powder (IR spectroscopy grade, Uvasol, Kallumbromid, Germany) at a ratio of
1:100. Simultaneously, the FTIR optical bench was flushed with nitrogen gas for 2 h at
a rate of approximately 200 L/h before analysis to minimize the effect of moisture and
other gases. The prepared mixture of coal and KBr was poured into a hydraulic dye and
spread evenly. Later, this dye was placed under a hydraulic press (~6 tons for 5 min) to
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make the pellets. The circular thin KBr pellets were inserted into the standard sample
holder with a quick-lock base plate. The door of the sample analysis chamber was closed
for analysis. The sample pellets were irradiated with infrared radiation, and the resulting
absorption spectra were measured and analyzed. The spectra were clipped for the desired
frequency range (wavenumber: 4000–400 cm−1). The resultant FTIR data were plotted as
an absorbance vs frequency plot (Y-X plot). The absorption spectra of coal samples are
typically complex and may contain contributions from other components, such as water,
minerals, and organic compounds.

Sample Preparation for Modeling

From 18 coal samples, a total of 126 (07 for each) sample pellets (mix of coal and
KBr powder) were prepared at fixed, known concentrations in wt.% (0.10%, 0.20%, 0.30%,
0.40%, 0.60%, 1.00%, and 1.40%) (Figure 3). The spectral response from the Bruker FTIR
was recorded individually for 126 sample pellets. Out of 18 coal samples (that is, 126 pellets
at fixed coal contents), 119 Coal + KBr pellets were used as the “training set” in the model
development, and the coefficients were used to predict the sulfur content in 07 Coal + KBr
pellets (“test set”) prepared from 01 coal sample using a 17:1 split (“Training set”: ”test
set”; using K-fold cross validation (CV) technique). Thus, the above procedure was re-
peated 18 times so that 17 coal samples (or 119 pellets) were available for modeling, and
01 independent coal sample (or 07 pellets) was used for validation of the model. Thus, the
predicted sulfur values from the “test set” were independent of the “training set” used in
the development of the model based on the QN method.
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The predicted values (SFTIR, wt.%) of 126 pellets from the FTIR were compared with
its known value (SCHNS, wt.%) from CHNS analysis. It is notable that the KBr spectral
signature from the FTIR was used as a common reference for baseline correction. The final
spectral signature of the 126 pellets from the FTIR was obtained by subtracting the KBr
response. The values of the FTIR response from specific zones were computed, and usually
the area and height (of peak) in these zones were found to be positive. To avoid negative
values after baseline correction, pellets of different contents showing negative values in
the area or height were not considered as input parameters for model generation. In the
current experiment, 05 pellets FTIR responses were discarded out of 126, due to negative
values, which were typically found in the lowest concentration (at 0.10%) of sample (pellets
prepared at 0.10% of JKOB1, JKUB1, JKOL3, JKUL3, and JPAL3 samples). Thus, the present
study used a total of 121 spectral signatures for modeling.

3.4. Quasi-Newton Method

The Quasi-Newton (QN) method is a generalization of the Newton–Raphson method,
a second-order optimization technique that uses the gradient and Hessian matrix of the
function to estimate the parameters. It is a numerical optimization technique used to
estimate the parameters of a model or function [77]. In estimation problems, the QN
method can be used to estimate the parameters of a statistical model by minimizing the sum
of squared errors between the observed data and model predictions. This can be performed
by iteratively updating the estimates of the parameters and Hessian approximation until
the sum of the squared errors reaches a minimum. By approximating the Hessian matrix,
the Quasi-Newton method can achieve faster convergence and better performance than the
Newton–Raphson method. The Quasi-Newton method can be applied to both experimental
data and theoretical models. Theoretically, this method can be used to optimize the model’s
parameters to match the experimental data [78]. A loss function (Observed–Estimated) was
used to minimize the difference between the observed and estimated values.

4. Results and Discussion
4.1. Elemental Composition of Coal

The Ultimate Analysis of Coal provides important information about the quality and
suitability of coal for different applications. It is a method of determining the elemental
composition of the samples. This method involves the quantitative analysis of the major
and minor elements present in coal, i.e., carbon (C), hydrogen (H), nitrogen (N), sulfur
(S), and oxygen (O by difference). The results of this analysis are typically expressed as
weight percentages of each element present in the sample. The sulfur content in the samples
ranges from 0.64 wt.% in JUML3 to 5.72 wt.% in JKUB1. The coal formation process and
the depositional environment’s effect during coalification justify the higher sulfur content
in the coal samples. A detailed account of the Ultimate Analysis of Coal samples is given
in Table 3.

Table 3. Elemental composition of coal sample from the Johilla Coalfield.

Mine Sample
Ultimate Analysis (wt.%)

N ad C ad H ad S ad O dif

Kanchan
OCP

JKOB1 1.29 65.29 4.15 0.83 28.45
JKOL1 1.39 63.80 3.84 0.72 30.26
JKOL3 1.28 62.98 4.04 0.78 30.92

Kudri UG
JKUB1 1.12 53.38 3.54 5.71 36.25
JKUL1 1.09 61.06 3.84 0.70 33.31
JKUL3 1.25 60.14 3.66 0.72 34.23

Pali UG
JPAB1 1.32 67.98 3.56 2.19 24.95
JPAL1 1.28 68.89 3.51 0.96 25.36
JPAL3 1.23 68.95 3.50 2.19 24.13
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Table 3. Cont.

Mine Sample
Ultimate Analysis (wt.%)

N ad C ad H ad S ad O dif

Pinoura
UG

JPIB1 1.18 63.92 3.89 1.35 29.66
JPIL1 1.17 56.42 3.86 1.01 37.54
JPIL3 1.06 64.10 4.10 0.70 30.04

Umaria
UG

JUMB1 1.26 63.83 3.82 0.74 30.35
JUML1 1.36 64.53 3.77 0.64 29.70
JUML3 1.29 63.25 3.78 0.62 31.06

Vindhya
UG

JVIB1 1.35 59.38 3.61 1.57 34.10
JVIL1 1.39 59.60 3.53 1.67 33.80
JVIL3 1.26 63.32 3.53 0.92 30.97

Mean 1.25 62.82 3.75 1.33 30.84
Standard Error 0.02 0.95 0.05 0.28 0.87
Median 1.27 63.56 3.78 0.88 30.64
Mode 1.29 - 3.84 0.72 -
Standard Deviation 0.10 4.04 0.21 1.20 3.68
Sample Variance 0.01 16.35 0.04 1.45 13.56
Minimum 1.06 53.38 3.50 0.62 24.13
Maximum 1.39 68.95 4.15 5.71 37.54

Explanation: N—nitrogen (wt.%), C—carbon (wt.%), H—hydrogen (wt.%), O—oxygen (wt.%), S—sulfur (wt.%),
ad—as determined basis, and diff—calculated by difference.

4.2. Identification of Functional Group

In the present study, the identification process of functional groups began with sample
preparation. A set of seven (07) pellets were prepared from every sample. In each set of
pellets, the amount of KBr was fixed at 220 ± 0.20 mg. The portion of the coal sample
ranged approximately between 0.10, 0.20, 0.30, 0.40, 0.60, 1.00, and 1.40 percent. The
spectral signatures from each Coal + Kbr pellet were recorded individually. Thus, a total of
126 spectral signatures were recorded; in other words, one signature was recorded for each
pellet. This signature also contains the spectra of KBr, which was mixed with the sample.
To remove this conglomeration, the spectral signature of only the KBr pellets was recorded
and used as a baseline spectrum. The signature recorded from each sample pellet was
subtracted from the baseline spectrum, and the resultant spectrum was used for further
calculations. The systematic variation in intensity (absorbance) due to known incremental
concentration variation can be seen in Figure 4, where the 07 spectral signature of JPAB1,
coal + KBr pellet is shown along with the potential peaks sensitive to sulfur.

The FTIR technique utilizes the absorption of infrared radiation. This method can
identify and quantify several compounds by analyzing their absorption spectra at specific
wavelengths. Organo-petrographic constraints (macerals and degree of coalification),
aliphatic bonds, weak bonds, and nonorganic substances within coal are vital in estimating
sulfur content. Some of the major sulfur compounds in coal are sulfates, sulfides, and
thiophenes. The characteristic absorption peak of sulfoxide (S=O) occured at ~1050 cm−1,
an asymmetric stretch of sulfones (S=O) occured at ~1300 cm−1, and a symmetric stretch at
~1150 cm−1. Sulfonates present a strong absorption peak near ~1350 cm−1 for asymmetric
stretching and near ~1175 cm−1 for symmetric stretching. Similarly, in mercaptans (thiols),
a stretch of the weak band occurs near ~2550 cm−1. Fourteen (14) peaks were identified
and used in the present work. Area and height were calculated for all 14 peaks using
the detailed account of peak assignment relating to their functional groups, as defined
in Table 4.
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Figure 4. Systematic changes in the level of intensity (absorbance) as observed for Coal + KBr pellets
at 07 known concentrations (Seven pellets made at 0.10%, 0.20%, 0.30%, 0.40%, 0.60%, 1.00%, and
1.40% of Coal in Coal + KBr pellets) using FTIR for one of the samples (JPAB1). The location of peaks
for sensitive/functional groups related to sulfur in coal is marked as series from P1, P2, . . . , P14 (as
shown in Table 4).

Table 4. Assigned band details concerning the functional groups of the sulfur compound used in this
study, modified after [79,80].

Peak
Wavenumber Peak

Intensity Functional Groups
Start End Center

P1 442.794 455.650 452.794 w

S–S stretchingP2 455.650 494.216 469.935 s
P3 494.216 505.642 499.931 s
P4 505.642 594.201 538.497 w

P5 664.192 674.190 671.335 s C–S stretching
P6 674.190 718.470 694.189 s

P7 1019.856 1064.135 1032.714 s S=O stretching

P8 1156.979 1181.261 1165.552 s SO2 symmetric stretching

P9 1306.958 1319.813 1314.103 s

SO2 asymmetric stretching
P10 1319.813 1338.382 1324.101 s
P11 1338.382 1346.952 1342.670 s
P12 1359.808 1374.091 1368.381 s
P13 1374.091 1385.518 1376.951 s

P14 2538.213 2553.925 2546.788 w S–H stretching
Explanation: s—strong, w—weak.

4.3. Model Estimation

A numerical iterative method based on the QN method with a breakpoint was em-
ployed to model the nonlinear and linear relationship between the functional groups of
sulfur compounds (Table 4) that directly correlate with their content in coal samples. The
QN strategy was utilized to limit irregularities and errors in yield estimation and mini-
mize the least square function with the help of a predefined iterative calculation using the
piecewise linear regression method.
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While considering the breakpoint, the model generates two different variants of the
coefficient for the given variables (left and right equations, QNbp_L and QNbp_R) [78]. It
is observed that the S% estimated from the left equation (QNbp_L where bp_L = with
breakpoint, L = left equation) may provide the closest estimated value compared to the
observed experimental value in most of the cases. However, in some cases, out-of-range
S% values are estimated by the left equation as compared to the experimental values. Thus,
the interquartile range (IQR) was calculated to detect and remove this out of range value(s)
(if any) by flagging the values over the maximum and minimum limit, which is ±1.5×IQR,
which is calculated using the QNbp_L. Thus, if the estimated value of S% from QNbp_L is
out of range, the average S% value was obtained by averaging the S% obtained from the
left (QNbp_L) and right (QNbp_R) equations and is denoted as S% from QNbp(avg) (bp = with
breakpoint, avg = average). This strategy of using a threshold to detect out-of-range values
also helps to minimize the error in estimating the sulfur content in unknown sample(s),
thereby improving the efficacy of the FTIR-based estimation of S%.

Using this approach, the resultant values provided the best possible estimate of sulfur
content. The resultant S% values are denoted as QN ≈ QNbp_L(con), where (con) represents
conditional values. The above-mentioned procedure is summarized by the conditions
described below:

Case 1: If the predicted sulfur content (SFTIR, % from QNbp_L) is within the range
of A–B (as defined below), then the value from the QNbp_L model is considered as equal
to QN.

Case 2: If the predicted sulfur content (SFTIR, % from QNbp_L) is outside the range of
A–B), then the value from the QNbp(avg) model is considered as equal to QN.

Where, A = Q1− (IQR× 1.5); B = Q3 + (IQR× 1.5); QNbp(avg) = (QNbp_L + QNbp_R)/2;
QNbp_L = left equation from QNbp model; QNbp_R = right equation from QNbp model

Further, if any modeled S% value is a below zero (or negative) value, then for this
specific sample, the estimated modeled S% value was taken as 0.

A detailed statistical analysis was carried out to test the performance of the proposed
model using FTIR data employing the spectral response of the functional groups assigned
to the sulfur compounds. The measures of central tendency (Mean), measures of dispersion
(Standard deviation), measures of systematic error (MBE), measures of the magnitude of
error (MAE), and measures of dispersion in residuals (RMSE) were calculated using the
standard formulas [81].

The scatter plot with the linear fit (Figure 5) shows the results obtained from the
experimental (CHNS) and modeled (FTIR) S%. It showed a relatively high coefficient
of determination (R2 = 0.93). Moreover, lower RMSE, MBE, and MAE values and high
R2 indicate a strong linear relationship between the observed sulfur (SCHNS, wt.%) using
CHNS data and the model-predicted sulfur (SFTIR, wt.%) using FTIR data. The FTIR method
delivers rapid results as compared to traditional Ultimate Analysis.

The boxplot depicts that the sulfur content observed in the coal sample through
the traditional methods (using Ultimate Analysis) and the proposed methodology (using
FTIR spectroscopy) in this study is significantly equivalent in a range, as shown by the
interquartile range and mean. MBE (in wt.%, average = −0.0003), MBE (in %, ≈3.31%), and
MAE (0.0020, wt.%) are relatively low, which is visible in the distribution of the mean bias
error in Figure 6. MBE, wt.% ranges from approximately −0.010, wt.% to 0.018, wt.%. It
was observed that the samples prepared at 0.20%, 0.30%, 0.40%, 0.60%, 1.00%, and 1.40%
concentrations provided better results than the ones at 0.10%.
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Figure 5. The scatter plot shows the correlation between the observed sulfur (SCHNS, wt.%) using
CHNS data and the model-predicted sulfur (SFTIR, wt.%) using FTIR data with the measures of error
RMSE (%) = 36.36%; MBE (%) = 3.31%; and R2 ≈ 0.93. Where SCHNS–observed sulfur using CHNS
data; SFTIR—model-predicted sulfur using FTIR data; N—no. of data points; R2—coefficient of deter-
mination; RMSE—root mean square error; MBE—mean bias error; and MAE—mean absolute error.
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A two-tail paired t-test for mean (
−
x) was conducted at 95% CL and α = 0.05, and 99%

CL and α = 0.01, to examine if there was a significant difference between the means (µd) of
S (in %) obtained from the two groups (that is, between the observed (SCHNS, wt.%) and
model-predicted (SFTIR, wt.%) S values).

For two-tail paired t-test: Null Hypothesis: H0: µd = 0; and Alternative Hypothesis:
H1: µd 6= 0.
From the two-tail paired t-test (Table 5), it is concluded that in the null hypothesis Ho

is accepted. Therefore, it is evident that the mean of the observed values (SCHNS, wt.%)
is significantly similar to the mean of the model-predicted values (SFTIR, wt.%) at 95%
confidence level, where α = 0.05 and 99% confidence level, where α = 0.01.
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Table 5. Results of two-tail paired t-test for comparison of the different means of sulfur content
obtained via the model-predicted (SFTIR, wt.%) and observed (SCHNS, wt.%) methods.

Pair
−
x S2 n df

95% Confidence Level & α = 0.05 99% Confidence Level & α = 0.01

tstat p-Value tcritical H0: µd = 0 tstat p-Value tcritical H0: µd = 0

SFTIR(wt.%) 0.0075 0.0001
121 120 1.0529 0.2945 1.9799 T 1.0529 0.2945 2.6174 T

SCHNS(wt.%) 0.0078 0.0001

Similarly, a two-tail F-test was conducted for variance (S2) at 95% CL, where α= 0.05,
and 99% CL, where α= 0.01, to examine the significant difference between the observed
(SCHNS, wt.%) and modeled-predicted (SFTIR, wt.%) variance.

For two-tail F-test: Null Hypothesis: H0: σo
2 = σp

2; and Alternative Hypothesis: H1:
σo

2 6= σp
2.

From the two-tail F-test (Table 6), it is concluded that the null hypothesis H0 is accepted.
Thus, it can be inferred that the variance of the observed (SCHNS, wt.%) values (σo

2) is
significantly similar to the variance of the model-predicted (SFTIR, wt.%) values (σp

2), at 95%
confidence level, where α = 0.05 as well as the 99% confidence level, where α = 0.01. The
acceptance region (Fstat < Ftable) for the F-test, at the 95% confidence level, is 0.6980–1.4327,
and at 99% confidence level, is 0.6229–1.6055.

Table 6. Results of two-tail F-test for comparison of the difference in the variance of sulfur content
obtained via model-predicted (SFTIR, wt.%) and observed (SCHNS, wt.%) methods.

Pair
−
x S2 n df

95% Confidence Level & α = 0.05 99% Confidence Level & α = 0.01

Fstat p-Value CI H0: σo
2 = σp

2 Fstat p-Value CI H0: σo
2 = σp

2

SFTIR(wt.%) 0.0075 0.0001
121 120 1.2620 0.2040 (0.6980, 1.4327) T 1.2620 0.2040 (0.6229, 1.6055) T

SCHNS(wt.%) 0.0078 0.0001

In Figure 7, the coal sample’s observed sulfur content is shown along with its modeled
estimated value. It was observed that the model estimate (SFTIR, using FTIR data) accurately
predicted the sulfur content in coal as compared to the experimental value (SCHNS), with
variations primarily stemming from JKUB1 samples. The high content of sulfur in this
sample created a regional high for the other samples. Apart from this, all the modeled
values (SFTIR, wt.%) were closer to their observed experimental values (SCHNS, wt.%).
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4.4. Comparison with Previous Studies

There are several methods used in the previous studies to estimate the sulfur content
in coal, namely, laser-induced breakdown spectroscopy (LIBS) with the inclusion of the
partial least square regression (PLSR) method, X-ray diffraction (XRD), and visible infrared
spectroscopy (VIS) with a convolutional neural network (CNN) (Table 7). Among them,
the FTIR data-based model is one of the easiest and most convenient methods for rapidly
estimating the sulfur content. This FTIR data-based model provides relatively better results
having R2 = 0.93 and RMSE (wt.%) = 0.0035 as compared to LIBS, XRD, and VIS having
R2 = 0.92; 0.99, and 0.92 and RMSE = 0.898, NA, and 0.053, respectively.

Table 7. Comparison between the methods for estimating sulfur content in coal in previous studies
and the present study.

Sl. No. Reference Method Location Nature and Number of the Samples R2 RMSE

1. [31] LIBS with PLSR - Coal (Blends);
N = 60 0.92 0.898

2. [36] XRD Spain Coal (Sub-bituminous);
N = 20 0.99 -

3. [38] VIS with CNN China Coal;
N = 90 Testing + 10 Training 0.92 0.053

4. This Study FTIR with QN India Coal;
N = 121 0.93 0.0035

Explanation, R2—coefficients of determination, RMSE—root mean square error, LIBS—laser-induced break-
down spectroscopy, PLSR—partial least square regression, XRD—X-ray diffraction, VIS—visible infrared spec-
troscopy, CNN—convolutional neural network, FTIR—Fourier-transform infrared spectroscopy, and QN—Quasi-
Newton method.

5. Summary and Conclusions

In this study, the FTIR data-based model was found to accurately predict the sulfur
content in high-ash Indian coals, which is an important characteristic that can affect its
combustion properties and environmental impact. According to the proposed FTIR data-
based sulfur prediction model, the coefficient of determination (R2) was ~0.93, based on a
sample size (n) of 121. The model had a relatively low RMSE of 0.0035 wt.%, RMSE (%) of
36.36%, and MBE (%) of 3.31%. Furthermore, both the two-tailed t-test and F-test for mean
and variance indicated that there was no significant difference between the observed sulfur
(SCHNS, wt.%) values and the sulfur predicted by the model (SFTIR, wt.%) using FTIR data.
It is notable that the FTIR data-based technique for the determination of sulfur in coal has
several advantages as follows:

• Rapid and nondestructive analysis: The FTIR-based model is quick and efficient for
estimating the sulfur content, which is useful for quality control and troubleshooting.
This allows sample analysis without altering its composition.

• High accuracy and precision: FTIR can provide highly accurate and precise measure-
ments of sulfur content with a relatively low bias.

• Cost effective: FTIR is a relatively low-cost equipment that is easy to use and maintain,
making it a popular choice for industrial and laboratory applications. The number
and cost of consumables required for analysis are much lower compared to a typical
macro CHNSO analyzer.

Considering the variability in other datasets, the model presented in this study can be
further improved by using additional data from various basins/coalfields for studies in the
future. The RMSE and mean bias (MBE, in %) are expected to reduce further with additional
data. The influence of grain size on the spectral response in FTIR and the estimation model
needs further investigation. It is recommended that the proposed FTIR data-based model
can be potentially applied, with suitable modifications, for determining the sulfur content
in other types of natural samples, such as soil, shale, petcoke, etc.
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