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Abstract: Surface subsidence in coal mine areas can cause serious geological hazards. After a coal
seam is mined, the overlying rock layers fracture, collapse, and expand; the fractured and bulking
rock masses are then continuously compacted under the action of overburden load, which eventually
leads to surface subsidence. Overburden isolated grout filling via surface boreholes, and high-
pressure grouting to mining-induced fissures under the hard rock layer, uses the grouting pressure to
compact the lower fractured and bulking rock masses in advance, replacing the subsidence void and
effectively controlling the surface subsidence. The characteristics of rock mass collapse, bulking, and
compaction associated with mining and grouting are the key to the design of grouting parameters and
surface subsidence control. In this paper, a theoretical model of the rock masses’ compactness during
grouting injection is proposed, which determines the compaction of rock masses under the action of
grouting filling. An experimental study was conducted to reproduce the grouting pressure evolution
and the rock masses compaction in response to grout filling. The results indicated that the rock
mass compaction was small in the no-pressure stage, and that the low-pressure and pressure-boost
stages were key to generating the compaction effect of the grout filling. It was found that compaction
grouting substantially increased the filled volume by transforming the fractured and bulking space of
the rock masses into a filled space. Using engineering measurement data, the rock masses compaction
law for grouting is verified. This paper provides a theoretical basis for the design of overburden
grouting parameters and the evaluation of subsidence control effectiveness.

Keywords: surface subsidence; fractured and bulking; grouting filling; grouting pressure; compactness

1. Introduction

In civil and mining engineering, grouting technology is one of the most important
methods to maintain the stability of the ground surface, e.g., reinforcing fractured rock
foundation, water-rich and soft strata, karst cave areas, and other fractured rock areas [1–4].
Underground mining leads to the destabilization of strata, and the surface will have a
wide range of collapse [5–7]; sometimes mining even cause landslides [8–11], which will
undoubtedly produce great potential danger to public safety [12–16]. An effective method
of maintaining the stability of the surface in mining areas is filling the mining-induced space
by grouting [17–20], thereby suppressing the overburden structural instability induced by
coal mining [21–23].

Previously, researches on the causes of surface subsidence and the overburden in-
jection space were conducted [24–27]. The general process of surface subsidence caused
by longwall mining is as follows. The longwall face is mined to form a hollow area, and
the immediate roof (the rock layer located directly above the coal seam) is in a state of
tension under the action of gravity and the load of the overlying rock layers [28,29]. As the
hollow area increases, the overhanging area continues to increase and generate downward
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movement and bending. When the tensile deformation exceeds the tensile strength, the
rock layer breaks into nonuniform size rock pieces, and then bulking occurs [30,31]. The
overlying rock layers cannot maintain the original laminated stable structure and fractures
occur, leading to a further increase in the height of the bulking and fractured zone [32–34].
Under the action of the overlying rock layers load, the fractured and bulking rock masses
are continuously compacted. Similarly, the rock layers at higher levels continue to sink,
and the strata movement gradually propagates to the ground surface, eventually causing
surface subsidence [35–37].

In the above process, the thick and hard rock layers in the overburden (typically
referred to as “key strata”) can play a temporary isolation role in blocking strata movement
(i.e., sinking and subsidence) [38]. Before the key strata break, the load from the upper
rock layers is burdened by the key strata, delaying the compaction process of the lower
fractured and bulking rock masses and also reducing the rate of subsidence of overlying
rock and surface. Conversely, if the key strata break, strata movement will rapidly develop
upward, resulting in accelerated compaction of the fractured and bulking rock masses and
accelerated subsidence of the ground surface [39,40].

Overburden isolated grouting during longwall mining is a highly efficient method
of reducing surface subsidence via grouting which was developed to take advantage of
the role of key strata in controlling surface subsidence [17,20]. In this technology, multiple
surface boreholes are constructed above the longwall panel to the key strata. During
longwall mining, high-pressure grouting is applied to fill the mining-induced fracture
under the key strata through the surface boreholes before the key strata break. The grouting
pressure compacts the fractured and bulking rock masses below the key strata in advance,
and the injection fill replaces the potential sinking space associated with rock layers, thus
controlling surface subsidence [19]. This technology has been successfully applied for the
subsidence control during longwall mining under populated areas in more than a dozen
coal mine areas in China, and the subsidence reduction rates have been controlled by 90%
or more [18].

Both the grouting-induced compaction process and the degree of the fractured and
bulking rock are key factors affecting subsidence control and are also an important basis
for grouting design. The recompaction process of collapsed rock under the action of grout
filling is the focus of research in the field of grout filling and subsidence reduction, because
the injected object of grout filling is the rock fracture and the compacted object is the
lower fractured and bulking rock masses, which has the characteristic of nonvisibility and
changes based on the location [41–43]. Currently, surface boreholes are often constructed
after grouting to investigate the filled body and assess the compaction of the grout filling
to rock masses. For example, the main grouting zone was determined via drilling [18];
theoretical models of filled body distribution and estimation methods of the grout-filling
volume were proposed [44]. However, a small number of boreholes cannot determine the
complete compaction of the overall overburden [45,46]. Because of the time-consuming and
costly nature of drilling and coring, it is impractical to construct high-density exploratory
boreholes above the entire grouted area. In addition, studies have been conducted to
investigate the distribution of the grouting pressure, as well as the flow and consolidation
patterns of the filled slurry, which have contributed to the understanding of the compaction
of grout-filled rock masses [47,48]. Nevertheless, research concerning the entire process of
the compaction response of fractured and bulking rock masses under the action of grout
filling is still limited.

Accordingly, this study uses a combination of theoretical analyses, experiments, and
engineering data validation to investigate the above issues. First, a theoretical basis reflect-
ing the compaction of rock masses under grout-filling conditions is established. On this
basis, physical modeling experiments are constructed to reproduce the entire process of the
rock masses compaction response under the action of grout filling to determine the rock
masses compaction, compaction grouting-induced increase in the filled volume, and its
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generation mechanism. Finally, engineering case data are used to verify the compaction
response law of the rock masses under the action of overburden isolation grout filling.

2. Theoretical Basis

In grouting injection into the overburden of isolated panels during longwall mining,
the high-pressure filling generates a supporting effect on the overlying key strata and
controls the surface subsidence. At the same time, it compresses the rock masses below
the isolation layer and the grouting pressure is transmitted to the underlying rock through
the isolation layer (the rock layer immediately below the filling zone), which continuously
compacts the fractured and bulking rock masses. The amount of rock masses compaction
under the action of grout filling is the vertical displacement generated by the isolation layer
(Figure 1).
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Figure 1. Schematic cross-section of the isolated overburden grout injection technique.

Hence, the spatial relationship between the isolation layer deformation, the mining
height, and the residual fractured and bulking of the collapsed rock can be expressed as:

M = Hi + Hc

(
Kp′ − 1

)
(1)

where M is the longwall working face mining height (m); Hc is the height of the caving
zone (m), where the height of the caving zone is usually 3–5 times the longwall working
face mining height, and is generally determined by field measurements; Kp′ is the residual
bulking coefficient of the collapsed rock masses, generally 1.03–1.16 [49]; and Hi is the
amount of isolation layer displacement (m). To measure the degree of compaction of the
rock masses, we define the compaction degree of the rock masses λ such that:

λ =
Hi

M− Hc

(
Kp′ − 1

) (2)

When the surface subsidence coefficient (ratio of maximum surface subsidence to the
height of mined space underground under the longwall mining condition) is 1, the mining
height, isolated layer displacement, and surface subsidence are equal; the collapsed rock
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masses is completely compacted without a residual bulking space; and the self-weight
compaction degree of the rock layer reaches 100%. The rock masses compaction during
injection is the sum of the compaction of the grouting and the self-weight compaction of
the rock formation, while the displacement of the isolation layer under the grouting filling
action is the sum of the thickness of the filling body h and the movement of the key strata
Sk. Assuming that the movement of the key strata Sk is equal to the surface subsidence Ss,
the total rock compaction λ during the grout filling can be expressed as:

λ =
h + Ss

M− Hc

(
Kp′ − 1

) (3)

The surface subsidence Ss during the grouting process can be monitored and obtained,
and the filled body thickness h can be solved for using the morphological model of filling
established by [50], where the filled body distribution is assumed to satisfy the ladder
platform distribution in space (Figure 2). In Figure 2, ϕ is the angle of full subsidence, and
H is the distance between the injection horizon and the roof of the coal seam.
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Figure 2. Diagram of the inclination profile and spatial distribution of the filled body: (a) filling body
space distribution and (b) filling body inclination profile [50].

3. Experimental Research
3.1. Experimental System

According to the geometric similarity ratio of 1:400, a three-dimensional experimental
system was established. The main body of the experimental device was composed of a
frame, bottom plate, and top cover plate, with a Plexiglas plate thickness of 20 mm; the
inner length, width, and height of the experimental device were 1000 mm, 500 mm, and
300 mm, respectively. Longwall face mining was simulated via long movable plates (with
a length of 350 mm, a width of 50 mm, and a height of 20 mm); 14 pieces were arranged
in the mining area, and the simulated mining range was 700 mm (strike) and 350 mm
(inclined). The extraction plate serial numbers are M 1–14 in order along the longwall face
mining direction, and a space of 150 mm was left between the mining area and the inner
boundary of the device to simulate the boundary protecting the coal column. During the
experiment, the mining longwall face was simulated by pulling out the strip extraction
plate to reproduce the process of mining overburden movement.

The three-dimensional experimental system consisted of a main visualization experi-
mental device, a strip plate that simulated coal seam mining, physical modeling material, a
slurry preparation and filling unit, an adjustable speed mixer, a constant rate slurry pump,
pressure sensors, displacement sensors, data monitor instruments, and data acquisition
software (Figure 3).
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Figure 3. Mining and overburden isolation injection filling physical modeling system.

To monitor the rock masses’ collapse and compaction at different pressure stages
during the grout-filling process, the grouting pressure and the compaction amount of the
fractured and bulking rock masses were monitored via pressure and displacement sensors,
respectively. Both the pressure and displacement sensors were set on the upper cover of the
device, and a total of 8 pressure sensors and 20 displacement sensors were arranged on the
cover. The pressure sensors were arranged as follows. Sensor P1-1 was set 40 mm from the
grouting borehole to monitor the pressure at the bottom of the grouting hole. At 200 mm
and 100 mm along the longwall working face inclination direction, sensors were placed to
monitor the pressure −40 mm, 240 mm, 440 mm, and 640 mm from the hole; the pressure
sensors were numbered P1-1, P2-1–P2-3, P3-1–P3-3, and P4-1 along this direction. Of these
sensors, P2-1–P2-3 formed the pressure measurement line LP2 and P3-1–P3-3 formed the
pressure measurement line LP3.

To monitor the compaction amount of the fractured and bulking rock masses at
different locations in the filling zone during the grouting process, four rows of displacement
sensors were evenly arranged at intervals of 200 mm along the longwall working face
mining direction, with a sensor spacing of 75 mm in any given row; that is, there were four
compaction measurement lines along the working face, namely QD1, QD2, QD3, and QD4,
at distances of −60 mm, 140 mm, 440 mm, and 640 mm, from the grouting borehole. In
addition, there were five compaction measurement lines along the working face: ZD1, ZD2,
ZD3, ZD4, and ZD5 (Figure 4).
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3.2. Experimental Materials

A simulation material made by mixing sand, calcium carbonate, gypsum, and water
was used to simulate the multiple layers of rock within the collapse and fracture zones.
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Because the sinking of the key strata under the injection filling condition is small, an upper
cover plate was used instead of key strata such that the slurry movement and the rock mass
compaction process could be clearly demonstrated. The difference in the water–ash ratio of
the slurry in the experiment has little effect on the final results since the water bleeds from
the fill. With reference to the water–ash ratio of the slurry in the grout-filling project, the
water-to-ash ratio of the slurry in the experiment is determined to be 1.6:1.

The above-simulated materials are highly susceptible to disintegration when exposed
to water, and therefore they cannot simulate isolation layers that are in direct contact with
the grouting level. On the basis of the method described in [51], a new simulation material
that does not disintegrate when exposed to water was formulated using paraffin, hydraulic
oil, talcum powder, river sand, and straw powder to simulate a multilayered isolated rock
layer; the simulation material was laid layer by layer in the experimental setup to construct
the simulation stratum (Table 1).

Table 1. Model laying parameters.

Lithology Thickness
(cm) Material Material Ratio Layers Strength (kPa)

Isolation layers 4 Paraffin: hydraulic oil: talcum powder: river
sand: straw powder 1:2:5.7:34.2:1 4 95

Soft rock layers 6 Sand: calcium carbonate: gypsum: water 3.5:3.5:1.5:1 6 70
Soft rock layers 6 Sand: calcium carbonate: gypsum: water 3.5:3.5:1.5:1 6 70
Soft rock layers 6 Sand: calcium carbonate: gypsum: water 3.5:3.5:1.5:1 6 70

Key strata 4 Sand: calcium carbonate: gypsum: water 3:3.5:1.5:1 4 78
Immediate roof 4 Sand: calcium carbonate: gypsum: water 3.5:3.5:1.5:1 4 70

3.3. Experimental Process

Prior to the start of the experiment, the airtightness of the filling experimental system
was checked and the pressure sensor, displacement sensor, and data acquisition software
were debugged. During the experiment, the strip plate was pulled out from the bottom of
the experimental device by 35 cm every 12 min. The single mining volume was 350 cm3,
which simulated the mining of the workface 14 times in total, that is, the plates were drawn
14 times in a given experiment to extract the total volume. The grouting pump volume
was set to 20 mL/min, and the grout filling began as the M3 plate was withdrawn (the
total mining distance of the longwall face was 15 cm). At this moment, the longwall face
mining past the grouting hole was 4 cm, and when the longwall working face mining was
completed, the grouting filling was stopped.

4. Results and Discussion
4.1. Rock Masses Compaction Associated with Grouting

Influenced by the distribution law of the grouting pressure, the compaction response
characteristics of the fractured and bulking rock masses at different locations during
grouting differ, and there are obvious spatial differences in the compaction volume at each
location. For example, the compaction volume near the inclination lines −40 mm, 240 mm,
440 mm, and 640 mm from the filling borehole during the different pressure stages satisfies
the distribution characteristics of larger in the middle and smaller at the boundary.

To analyze rock masses compaction in response to grouting, the pressure inside the
mining-induced fracture zone is divided into three stages: no pressure, low pressure, and
pressure boost. During the different pressure stages, the pressure at different locations
along the longwall workface strike distance from the borehole shows the same increasing
trend as the borehole pressure but the pressure values are not equal. The pressure values at
each position of the inclined direction at the same distance from the borehole are nearly
equal, indicating that the pressure at any position in the filled area can reflect the pressure
in the inclination section (Figure 5). During the no-pressure stage, the pressure is zero in
the entire filled zone. During the low-pressure stage, the pressures at 240 mm, 440 mm,
and 640 mm from the grouting borehole are 60%, 37%, and 19% of the borehole pressure,
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respectively. During the boost stage, the pressures at these locations reach 90%, 84%, and
51%, respectively, of the borehole pressure. This indicates that the grouting pressure in the
filling zone decreases along the longwall advance direction.
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During the no-pressure stage, the ultimate compaction amount of the rock masses
at QD1, QD2, QD3, and QD4 is 3.41 mm, 1.99 mm, 1.22 mm, and 1.09 mm, respectively.
During the low-pressure stage, the ultimate compaction amount at the above locations is
5.73 mm, 7.06 mm, 5.79 mm, and 1.33 mm, respectively. During the pressure-boost stage,
the ultimate compaction amount at the above locations reaches 9.6 mm, 11.7 mm, 17.6 mm,
and 9.9 mm, respectively (Figure 5).

According to the monitoring results, the compaction amount of the fractured and
bulking rock masses during the no-pressure stage is small and reflects only the self-gravity
compaction volume generated by the broken rock layer. During the low-pressure stage, the
grout filling starts to compact the underlying fractured and bulking rock masses; however,
this compaction effect is small. During the pressure-boost stage, the compaction volume of
the fractured and bulking rock masses increases significantly compared with those during
the no-pressure and low-pressure stages; the pressure-boost stage is key with respect to
the compaction effect of the grout filling on the underlying rock masses, and the largest
compaction volume of the rock masses is observed in the middle of the working face.

Furthermore, the compaction degree of rock masses is determined by using the in-
jection fill thickness. The key strata did not deform during grouting, and therefore the
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thickness of the filled body is equal to the amount of rock masses compaction. The ultimate
compaction of the rock masses corresponding to the three pressure stages of no pressure,
low pressure, and pressure boost during the grout-filling process can be solved by using
Equation (2). The values of the parameters were a mining height M 2 cm, the caving
zone height Hc 6 cm, and the residual bulking coefficient of the collapsed rock masses
Kp′ 1.03. According to the experimental monitoring results, the maximum thickness of
the filled body in the no-pressure stage was 3.4 mm. During the low-pressure stage, the
accumulated maximum thickness of the filled body was 7.1 mm, and the thickness of the
newly incremental filling body during this stage was 3.7 mm. The accumulated maximum
thickness of the filled body during the pressure-boost stage was 17.6 mm, and the thickness
of the newly incremental filled body during this stage was 10.5 mm (Figure 6a).
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(a) relationship between the ultimate rock masses compaction, the borehole pressure, and the working
face mining distance and (b) rock masses compaction in no-pressure, low-pressure, and pressure-
boost stages.

The self-weight compaction generated by the fractured and bulking rock masses dur-
ing the no-pressure stage was 19%. After entering the low-pressure stage, the cumulative
compaction of the fractured and bulking rock masses under the action of grouting was
39% and the new compaction within this stage was 20%. After entering the pressure-boost
stage, the cumulative compaction of the fractured and bulking rock masses under the action
of grouting reached 97% and the new compaction during this stage was 58% (Figure 6b).
Therefore, the compaction of rock masses under the grouting pressure in the pressurized
stage (including the low-pressure and pressure-boost stages) was 78%, indicating that the
pressurized stage is key with respect to the compaction of the lower rock masses.

4.2. Mechanism of Filling Volume Increase under Compaction Grouting

As discussed before, the fill volume is primarily attributed to the compaction of
the fractured and bulking rock masses under the grouting. In this regard, the injection
volume can be referred to as pressure-induced filled volume. The spatial distribution of
pressure-induced filled volume is closely related to the compaction degree of the lower
rock masses.

From the experimental results, the volume of the filling body during the no-pressure
stage is 240 mL, while the total filled volume during the pressurized stage (including the
low-pressure and pressure-boost stages) is 2400 mL. Therefore, the pressurized stage is key
to the pressure-induced filled volume increase (Figure 7).

Under the conditions of grout filling, the rock masses compaction at different locations
from the borehole along the inclined direction is maintained at a low level during the no-
pressure stage. Meanwhile, entering the low-pressure and pressure-boost stages, the new



Minerals 2023, 13, 633 9 of 15

compaction volume far exceeds the self-weight compaction of the rock masses generated in
the no-pressure stage. Compared with the no-pressure stage, the newly added compaction
volumes in the middle of each inclined measurement line during the pressurized stage are
1.68 mm, 2.28 mm, 11.76 mm, and 1.66 mm. The newly added compaction amounts in the
middle of the inclined measurement lines are 6.47 mm, 9.74 mm, 14.2 mm, and 8.79 mm,
respectively (Figure 8).
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Figure 8. Rock masses compaction at different distances from the borehole at different pressure
stages. (a) Inclined measurement line QD1 compaction, −40 mm from the borehole. (b) Inclined
measurement line QD2 compaction, 240 mm from the borehole. (c) Inclined measurement line QD3
compaction, 440 mm from the borehole. (d) Inclined measurement line QD4 compaction, 640 mm
from the borehole.
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According to Equation (2), the newly added compaction of the filling zone inclined
measurement lines under the filling pressure is 5%, 8%, 65%, and 9%, and the newly added
compaction in the middle of the measurement lines is 36%, 54%, 78%, and 48%. Therefore,
the rock masses compaction at different locations in the filling zone is significantly increased
under the action of the grouting pressure. The pressure-induced filled volume significantly
exceeds that for the no-pressure stage. During the grout-filling process, the newly added
compaction in the middle of the filled zone tends to be much larger than at the boundary.
The distribution of the grouting newly added compaction filling amount is characterized
by a large middle region and a small boundary (Figure 9), which is consistent with the
characteristics of the end-state distribution of the filled body. Therefore, the essence of the
filling pressure-induced increase in the filled volume is to replace the future compaction
space generated by the self-weight of the rock masses in advance and convert it into a filled
volume via the compaction effect of the grouting pressure on the fractured and bulking
rock masses.
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Figure 9. Spatial distribution of newly added compaction filling amount during grout filling.
(a) Distribution of the newly added compaction filling amount at the inclined measurement line
QD1, −40 mm from the borehole. (b) Distribution of the newly added compaction filling amount
at the inclined measurement line QD2, 240 mm from the borehole. (c) Distribution of the newly
added compaction filling amount at the inclined measurement line QD3, 440 mm from the borehole.
(d) Distribution of the newly added compaction filling amount at the inclined measurement line QD4,
640 mm from the borehole.
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5. Case Study
5.1. Compaction of Rock Masses Response to Grouting in Linhuan Coal Mine

The Linhuan coal mine is located in Huaibei, Anhui Province, China, and an overbur-
den isolation grout-filling mining test was performed in the II1034 longwall workface to
protect surface buildings (Figure 10). The II1034 working face has a regular rectangular
arrangement, with a strike length of 544 m; the mining width is 110 m, and the mining
height is 3 m. Grouting was implemented in the adjacent working face II1032. On the basis
of the actual measurement data from the working face II1034, the accumulated volume of
the injected compacted filling was calculated to be 93,761 m3, of which the total mining dis-
tance of the working face during the no-pressure stage was 90 m with 3035 m3 of grouting
injection and the total mining distance of the working face during the pressurized stage
was 544 m with 90,726 m3 of grouting injection.

According to [19], the filling thickness distribution model indicated that the maximum
thickness of the filled body was h = 0.67 m during the no-pressure stage, and during
the pressurized stage, the maximum filled body thickness was h = 2.49 m. After grout
filling, the cumulative newly added subsidence of the ground surface was 150 mm and
the compaction volume of the rock masses during the no-pressure stage was Hi = 0.71 m;
meanwhile, the compaction volume of the rock masses under the action of grout filling
during the pressurized stage was Hi = 2.6 m. Taking a residual bulking factor of Kp′ = 1.03
and through field drilling investigation, the height of caving zone Hc = 9 m obtained and
substituting these parameters into Equation (3), the total compaction of the fractured and
bulking rock masses under the action of grout filling reached 98%, where the compaction
generated by the self-weight of the rock masses during the no-pressure stage was 26% and
the compaction of the rock masses under the action of grout filling during the pressurized
stage was 72% (Figure 11).

The conclusions of the case study are consistent with the results of the experimental
study, where the amount of self-gravity compaction that can be generated by a longwall
mining rock masses is replaced under the grouting pressure and converted into the fill-
ing volume.

5.2. Compaction of Rock Masses Associated with Grouting in Haizi Coal Mine

The Haizi coal mine is located in Suixi, Anhui Province, China. To ensure safe mining
under the hard rock layer, overburden isolation injection filling was implemented on the
II1022 and II1024 working faces, with working face strike lengths of 560 m and 520 m,
respectively, mining widths of 210 m and 160 m, respectively, and mining heights of 2.5 m
(Figure 12).
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Figure 12. Plan view of II1022 [17].

Two years after the grouting filling project was completed, a surface investigation
borehole was constructed above the II1022 working face to detect the fly ash filling in the
overburden to test the filled effect. The results of the drilling investigation found that the
thickness of the fly ash in the filled section was 1.67 m, the maximum subsidence of the
ground surface controlled by the grout-filling process was 0.53 m, and the residual space
height of the fractured and bulking rock masses was only 0.1 m. Therefore, the compaction
of the fractured and bulking rock masses under the grout-filling condition was Hi = 2.2 m
and the compaction of the rock masses under the grout-filling condition was 91.7%, as
calculated by Equation (3), verifying the rock masses compaction response law under the
action of overburden isolated grout filling.



Minerals 2023, 13, 633 13 of 15

6. Conclusions

This paper established a model for the compaction of collapsed rock masses during
grouting, conducted physical modeling experiments, reproduced the recompaction process
of rock masses under the action of grouting, and performed engineering verification based
on the results of grouting engineering and filling effect borehole investigations.

A rock compaction model under the action of grout filling was established. The model
assumed that the rock masses compaction amount during the grout filling is the same as the
displacement of isolated layers Hi and that the displacement of the isolated layers is the sum
of the filled body thickness h and the surface subsidence Ss. The model determines the total
rock masses compaction under grout-filling conditions as λ = (h + Ss)/[M − Hc(Kp′ − 1)], the
grout compaction as λ = h/[M − Hc(Kp′ − 1)], and the rest as the self-weight compaction of
the rock masses formation.

Experimental studies were performed, and the compaction characteristics of grout-
filling collapsed rock masses were obtained. To study the compaction response charac-
teristics of rock masses under the action of the grouting pressure, a three-dimensional
grout-filling experimental system was established to perform experimental research. The
pressure in the grout-filling process was distributed in three stages: no pressure, low
pressure, and pressure boost. The self-gravity compaction of the rock masses during the
no-pressure stage was small, about 19%, and the low-pressure and pressure-boost stages
were key to generating the compaction effect of the grout filling accounting for 20% and
58%, respectively. It was revealed that the distribution of the newly added compaction
filling amount is characterized by a large central region and a small boundary and that the
essence of the pressure-induced increase in the grouting volume is to replace the future
compaction space generated by the self-weight of the rock masses in advance by com-
pacting the fractured and bulking rock masses via grout filling and converting it into a
filled volume.

The slurry compaction process was analyzed using grout-filling engineering data from
the Linhuan and Haizi coal mines in Huaibei, China. Under the action of grouting filling,
the total compaction of the rock masses is more than 90%. The rock masses compaction
response law under the action of grouting injection into the overburden of isolated panels
during longwall mining was verified, providing a theoretical reference for the design of
injection filling parameters and the evaluation of the filling effect.
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