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Abstract: The degree of difficulty in crushing an ore depends on the composition of the ore itself.
Due to different types and compositions of ores, the crushing mechanism of ores during the crushing
process is also different. In order to quantitatively analyze the impact crushing characteristics of
mineral components in ores, this paper takes pure mineral quartz, pyrrhotite, and pyrite as the
research objects and uses the universal drop weight impact crushing test equipment and standard test
methods developed by the JK Mineral Research Center of the University of Queensland, Australia,
to conduct JK drop weight tests on these three pure mineral samples. The results show that the
particle size distribution of impact crushing products is wide, covering all particle sizes from “0” to
close to the feed particle size, and the yield distribution of each product particle size is relatively
uniform. There are critical values and “energy barrier” effects for the impact-specific crushing energy.
The impact-specific crushing energy has a significant impact on the particle size composition and
crushing effect of the crushing product, and there is an interactive effect between the impact-specific
crushing energy and the feed particle size and mineral type. The impact crushing resistance of the
sample can be characterized by using Mohs hardness, impact crushing characteristic parameters,
impact crushing resistance level, and the yield limit value t10 of the characteristic crushing particle
size. The overall characterization results have good consistency.

Keywords: JK drop weight test; pure mineral; impact; crushing characteristics

1. Introduction

The crushing operation of ores is widely used in solid mineral resource processing
fields such as mining, the chemical industry, metallurgy, building materials, thermal power,
etc. [1–3]. The crushing process of ore plays a very important role in mineral processing
production, with its infrastructure costs accounting for about 60% of the construction cost of
the concentrator, and production costs accounting for 40% to 50% of the concentrator [4,5].
As one of the most important main pieces of equipment in the concentrator, crushing equip-
ment production and processing capacity directly affect and limit the scale efficiency of the
concentrator. More importantly, the crushing operation is the material preparation stage for
the subsequent separation of minerals in a concentrator, and the particle size composition of
its product significantly affects the quality of the beneficiation product, thereby affecting the
technical and economic benefits of the concentrator [6–8]. Nowadays, with the continuous
development and utilization of mineral resources, ore grade is gradually depleted, and
the quality of resources is gradually declining. Many mineral resources of high grade
that are easy to mine, easy to grind, and easy to select have been gradually exhausted,
replaced by low-grade and complex mineral raw materials [9,10]. These low-grade ores
with complex compositions have a large number of constituent minerals and significant
differences in their physical and chemical properties, which seriously affects the subsequent
separation efficiency of crushed products and the economic and technical indicators of
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the concentrator [11–14]. Therefore, optimizing crushing operations, improving crushing
efficiency, and reducing crushing costs are of great significance to the mineral resource
processing industry in the reduction of production costs and improvements to resource
recovery and utilization [15–19].

For metallic mineral resources, ores are usually composed of two or more minerals,
and their mineral composition and ore properties are very complex [20,21]. There are
significant differences in the physical, chemical, and mechanical properties of different
mineral components in the same ore, and subsequent separation operations have different
particle size requirements for different mineral components. In addition, the difference
in the crushing resistance of different mineral components is essentially a comprehensive
manifestation of the difference in impact resistance and grinding resistance [22–25], and
the macroscopic result is the selective crushing of minerals. Although relevant scientific
researchers discovered the selective crushing phenomenon a long time ago and have since
carried out corresponding theoretical research work [26–28], no one has yet studied the
selective crushing phenomenon from the perspective of mineral impact crushing.

Therefore, this article selects quartz, pyrrhotite, and pyrite, which are common compo-
nents in one ore, as a single pure mineral to conduct a drop weight test. By studying the
impact crushing characteristics of three pure mineral samples, the particle energy relationship
equations for the impact crushing resistance and impact crushing characteristics of the three
pure minerals are studied, further revealing the influence of factors such as impact-specific
crushing energy on the crushing characteristics of pure minerals and providing the most direct
basic data for the subsequent overall equilibrium dynamic simulation of grinding tests.

2. Materials and Methods
2.1. Materials

In order to study the impact crushing characteristics of a single pure mineral, three
natural pure minerals, quartz, pyrrhotite, and pyrite, were purchased as test samples.
After crushing, screening, and mixing, these three pure minerals are ready for testing. The
chemical element analysis results of the three pure minerals are shown in Tables 1–3. The
crushing equipment included a jaw crusher (XPC-100 × 150), and the screening equipment
included a vibrating screen (Analysette 3). The chemical element analysis equipment used
included an X-ray fluorescence element analyzer (S8 TIGER).

Table 1. Chemical components of quartz.

Component SiO2 Fe2O3 MgO Al2O3 S CaO

Content (%) 99.15 0.49 0.12 0.081 0.065 0.062

Component Mn Cr Ni Cu Zn Others

Content (%) 0.0059 0.0047 0.0038 0.0035 0.0022 0.0119

Table 2. Chemical components of pyrrhotite.

Component SiO2 CaO TFe Zn S Pb

Content (%) 29.41 0.18 37.76 0.94 25.94 0.18

Component Al2O3 As K2O Pb Others

Content (%) 1.85 3.34 0.20 0.18 0.02

Table 3. Chemical components of pyrite.

Component SiO2 CaO TFe S Ti MgO

Content (%) 1.67 0.19 53.07 43.84 0.20 0.13

Component Co Al2O3 MgO As K2O Others

Content (%) 0.12 0.48 0.13 0.11 0.07 0.43
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2.2. Drop Weight Test Equipment and Principle

The drop weight test equipment used in this article included a drop weight test
machine developed by the JK Mineral Research Center (JKMRC) of the University of
Queensland, Australia (as shown in Figure 1). This piece of equipment has good stability
and safety in operation, and the JKMRC has implemented a supporting data processing
program. Therefore, this equipment has been widely used internationally. The test principle
is to use drop weights of different weight (which can generate different impact energy) to
vertically drop impact mineral particles from a set height, collect and screen the impact
crushing products, and obtain the impact crushing characteristics of minerals.
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2.3. Methods

The drop weight test includes two types: the JK drop weight test and SMC drop
weight test, which require different particle size ranges for the tested sample. The particle
size range of samples for the JK drop weight test is relatively wide, including five groups of
particle sizes within the range of −63 + 13.2 mm. The particle size range of samples for the
SMC drop weight test is also relatively wide, including five groups of particle sizes within
the range of −22.4 + 19 mm or −31.5 + 26.5 mm. Therefore, before the drop weight test, it
is necessary to select an appropriate impact test type based on the particle size of the tested
sample. Among the three tested samples selected in this article, quartz and pyrrhotite have
relatively coarse particle sizes that can be broken into the different particle sizes required
for the JK drop weight test; thus, the JK drop weight test was used to study them. However,
pyrite samples are regular cubes with a narrow particle size range, and it is suitable to use
the SMC drop weight test to study them.

2.3.1. JK Drop Weight Test

Quartz and pyrrhotite were screened into five particle sizes: −63 + 53 mm, −45 + 37.5 mm,
−31.5 + 26.5 mm, −22.4 + 19 mm, and −16 + 13.2 mm. The corresponding number of particles
for the five particle sizes was 30, 45, 90, 90, and 90. Each particle size of mineral was divided
into 3 equal groups.

2.3.2. SMC Drop Weight Test

The pyrite was screened and 90 pyrite particles of −22.4 + 19 mm were selected and
evenly divided into 3 groups. The specific gravity of each group of pyrite particles was
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measured and their average specific gravity was calculated as the specific gravity of pyrite.
Based on this average specific gravity, 100 particles of −22.4 + 19 mm were selected from
the pyrite sample and evenly divided into 5 groups for drop weight impact testing.

2.3.3. Impact Crushing Characteristic Parameters

According to the screening analysis of impact crushing products and the calculation
method provided by the JKMRC, the impact crushing characteristic parameters A and b of
three minerals can be obtained.

Based on the particle size analysis of quartz, pyrrhotite, and pyrite impact crushing
products, drawing particle size characteristic curves, and using the origin function to fit
regression analysis, a particle size distribution model for mineral impact crushing products,
the DoseResp model, can be obtained, as shown in Equation (1) [29]; thus, the cumulative
yield under the sieve of any required particle size can be calculated.

y = A1 +
A2 − A1

1 + 10(logx0−x)·p (1)

where x is the sieving particle size (mm), y is the corresponding cumulative weight per-
centage of undersized particles (%), A1 and A2 are the upper and lower asymptotes of the
particle size characteristic curve (%), logx0 is the particle size at (A1 + A2)/2 (mm), and p is
the absolute value of the maximum slope on the particle size curve (%/mm).

For a single mineral, the cumulative yield under the sieve for any specific mesh size
in 15 groups of crushing test products can be calculated based on the above DoseResp
particle size distribution model. According to JKMRC recommendations, a particle size in
the crushing product that is less than one tenth of the feed particle size is generally used as
a characteristic particle size. The cumulative yield under the sieve corresponding to this
characteristic particle size reflects the degree of fragmentation of the mineral, represented
by the symbol t10. t represents the cumulative mass percentage below the sieve and
10 represents the ratio of the feed particle size to the mesh size of the analysis product’s
particle size composition. According to 15 sets of t10 values and Ecs (that is, the impact
kinetic energy per unit mass of mineral, expressed in kWh/t), a scatter plot of t10-Ecs
can be drawn. Using the functional relationship of t10-Ecs (shown in Equation (2)) for
fitting analysis, impact crushing characteristic parameters A and b can then be obtained for
the mineral.

t10= A(1 − e−b × Ecs) (2)

The t10-Ecs relationship was proposed by Leung [30] and verified by Napier Munn et al. [31]
on the basis of a certain relationship between particle size distribution and Ecs after mineral
crushing. This relationship has good engineering significance. Because the t10-Ecs relationship of
various grinding equipment is constant [32], and the values of A and b are only determined by
mineral properties, this relationship can be applied to the selection and optimization of various
grinding equipment. Equation (2) is also known as the particle energy relationship equation
for materials. The value of A × b can be used to measure the impact crushing resistance of ore.
Based on the JK database, the test parameters (A × b) and the corresponding relationship with
ore properties are shown in Table 4.

Table 4. The relationship between experimental parameters and ore properties.

Parameters Very Hard Hard Medium Hard Medium Medium Soft Soft Very Soft

A × b <30 30~38 38~43 43~56 56~67 67~127 >127
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3. Results and Discussion
3.1. Impact Resistance Characteristics of Quartz and Particle Size Characteristics of Its Impact
Crushing Products

In this study, an impact crushing test of quartz was conducted according to the
standard JK drop weight method. Through screening and analysis of impact crushing
products, 15 sets of particle size/energy combination results were obtained, and the specific
analysis is as follows.

3.1.1. Analysis Results of the Particle Size Composition of Impact Crushing Products
Obtained by the JK Drop Weight Test

The cumulative yield under the sieve of quartz impact crushing products was plotted
with semi-logarithmic coordinates. The test results of five particle sizes of quartz, namely
−63 + 53 mm, −45 + 37.5 mm, −31.5 + 26.5 mm, −22.4 + 19 mm, and −16 + 13.2 mm, are
shown in Figure 2.
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As can be seen from Figure 2, the shape of the particle size distribution characteristic
curve of the crushing products of five particle sizes of quartz under the impact of different
Ecs is similar, and the position of the particle size distribution curve of the crushing products
is closely related to Ecs and feed particle size. For the same feed particle size, an increase in
Ecs shifts the particle size distribution curve to the upper left corner. This means that for
crushing products of arbitrary particle size, the higher the Ecs, the greater the cumulative
yield under the sieve. It can also be seen from Figure 2 that the three product particle size
characteristic curves of quartz are getting closer at both ends and farther away from the
middle. This indicates that the yield of fine and coarse particle sizes in the crushing product
is relatively small, while the yield of intermediate particle sizes is relatively large.

Looking at the original data of the five particle sizes in Figure 2, it can be seen that
the impact action produces significantly more coarse particles than fine particles. For
example, among the five particle sizes, the cumulative yield for the −0.106 mm particle
size in the crushed product was as high as 10.87% and as low as 0.36%. The maximum
yield for the −0.106 + 0.038 mm particle size was 4.47%, and the minimum yield was 0.16%,
which means that the yield of each fine particle size was relatively low, indicating that the
impact action has a smaller contribution to the formation of fine particle sizes from quartz
crushing than it does coarse particle sizes. Therefore, it can be preliminarily predicted that
in the grinding process of quartz, the impact action of grinding media has an important
contribution to the formation of coarse particle sizes in the product.

3.1.2. Particle Energy Relationship Equation for Impact Crushing of Quartz

As described in Section 2.3.3, t10 (%) refers to the cumulative yield under the sieve
of particles in the crushing product whose particle size is less than one tenth of the feed
particle size. Considering that the feed is a particle group with a certain particle size
range, feed particle size is calculated based on the geometric average of the upper and
lower particle sizes of each particle level (hereinafter referred to as the nominal particle
size). For example, the nominal particle size of the −63 + 53 mm particle size is 57.8 mm,
and one tenth of its particle size is 5.78 mm. Based on the method in Section 2.3.3, the
regression analysis results of the particle size distribution characteristic curve of quartz
impact crushing products are listed in Table 5. The value of t10 and its corresponding Ecs
are fitted and analyzed to obtain the impact crushing characteristic parameters A and b of
quartz. The fitting curves are shown in Figure 3, and the fitting results are listed in Table 6.

Table 5. Regression analysis results of the impact crushing particle size distribution curve of quartz.

Particle Size (mm) Nominal Particle Size (mm) Ecs (kWh/t) Fitting Coefficient (R2) t10 (%)

−63 + 53 57.8
0.4 0.9979 24.64

0.25 0.9972 13.61
0.1 0.9983 5.20

−45 + 37.5 41.1
1.0 0.9979 44.97

0.25 0.9986 11.83
0.1 0.9982 4.99

−31.5 + 26.5 28.9
2.51 0.9986 63.16
1.0 0.9968 39.87

0.25 0.9994 11.27

−22.4 + 19 20.6
2.47 0.9971 57.99
1.0 0.9981 38.75

0.25 0.9989 8.18

−16 + 13.2 14.5
2.5 0.9989 54.79
1.0 0.9985 30.77

0.25 0.9981 7.70
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Table 6. Fitting results of t10-Ecs for quartz under impact crushing.

A b A × b Fitting Coefficient (R2) Impact Crushing Resistance Level

67.3350 0.8334 56.12 0.968 Medium Soft

Combining Tables 4 and 6, the impact crushing resistance of quartz can be categorized
as “medium soft”. It can be seen that quartz is not easily broken under impact. By
substituting the values of A and b into Equation (2), the particle energy relationship equation
for the impact crushing of quartz can be obtained, as show in Equation (3).

t10 = 67.335 × [1 − exp(−0.8334Ecs)] (3)

3.1.3. Variation Characteristics and Influencing Factors of the Yield of Coarse and Fine
Particle Sizes of Crushed Products

From the crushing data, it can be seen that in the impact crushing products of five
feed particle sizes, each particle size has a distribution. In order to better describe the
crushing effect and impact crushing characteristics, based on the approximate particle
size of coarse and fine grinding classifications in industrial grinding, this article uses the
“dichotomy” method to divide the crushing product into coarse and fine particle sizes, that
is, using 0.106 mm as the boundary size between coarse and fine particles, defining the
+0.106 mm particle size in the crushing product as the coarse particle size, and defining the
−0.106 mm particle size in the crushing product as the fine particle size. This is beneficial
for studying the yield relationship and influencing factors of these two particle sizes in the
crushing product.

Based on the cumulative yield data of each product particle size, the particle size
composition distributions of the +0.106 mm coarse particle size and −0.106 mm fine
particle size in each crushed product under different impact crushing energies and different
feed particle sizes were calculated for quartz, and the results are shown in Figures 4 and 5,
respectively. In Figure 4, the ordinate of each particle size is the relative cumulative yield
after subtracting −0.106 mm from the original cumulative yield under the sieve for each
particle size.
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From Figures 4 and 5, it can be seen that the yield of each particle size of +0.106 mm is
significantly higher than that of each particle size of −0.106 mm, indicating that the impact
action mainly produces particle sizes of +0.106 mm. Moreover, the effects of Ecs and feed
particle size on the yield of the coarse and fine particle sizes are different. For the coarse
particle size of +0.106 mm, the higher the Ecs and the smaller the feed particle size, the
more the distribution curve shifts to the upper left corner and the higher the degree of
quartz fragmentation. For the fine particle size of −0.106 mm, the higher the Ecs, the greater
the cumulative yield under the sieve, but the effect of feed particle size has no obvious
regularity. Specifically, when Ecs is 2.5 kWh/t, the cumulative yield under the sieve of each
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particle size increases as the feed particle size decreases. When Ecs is 0.1 or 0.25 kWh/t, the
cumulative yield under the sieve for each particle size of −0.106 mm is independent of
the feed particle size and does not exceed 1.32%. When Ecs is 1.0 kWh/t, the cumulative
yield under the sieve of each particle size of −0.106 mm is weakly correlated with the feed
particle size, but there is no fixed rule. Therefore, from the perspective of fine particle size
generation, when Ecs = 1.0 kWh/t it seems to have a critical effect, equivalent to an “energy
barrier” value. That is, when Ecs > 1.0 kWh/t, the cumulative yield under the sieve of each
particle size of impact crushing product increases with the increase in Ecs and decreases
with the increase in feed particle size. When Ecs < 1.0 kWh/t, the cumulative yield under
the sieve of each particle size of impact crushing product increases with the increase in Ecs
but is independent of the feed particle size. The concept and numerical value of this critical
specific energy may have important guiding significance in industrial applications.

3.1.4. Effect of Ecs on the Particle Size of Crushed Products

According to Equation (3) from Section 3.1.2, it is possible to estimate the crushing
degree of quartz under any Ecs condition. According to the principle that a crushing test
under the same Ecs condition should have no less than three feed particle sizes, the results
in Table 5 are plotted as a scatter plot of feed particle size and t10 values, and the results are
shown in Figure 6.
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Figure 6. Trend diagram of the crushing resistance of quartz with particle size.

As can be seen from Figure 6, under the same Ecs condition, feed particle size and t10
have a linear correlation.

It can be assumed that the linear relationship between the two is given by the following:

t10= a + k × Di (4)

In Equation (4), Di is the feed particle size of quartz, a is the intercept, and k is the slope.
From Figure 6, when Ecs is 2.5 kWh/t, k = 0.58. When Ecs is 1.0 kWh/t, k = 0.49. When

Ecs is 0.25 kWh/t, k = 0.14. This indicates that the smaller the Ecs, the lower the slope of the
linear relationship between the t10 value reflecting the degree of crushing and feed particle
size, and the weaker the impact of feed particle size.
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3.2. Impact Resistance Characteristics of Pyrrhotite and Particle Size Characteristics of Its Impact
Crushing Products
3.2.1. Analysis Results of the Particle Size Composition of Impact Crushing Products
Obtained by the JK Drop Weight Test

The test results of five particle sizes of pyrrhotite, namely −63 + 53 mm, −45 + 37.5 mm,
−31.5 + 26.5 mm, −22.4 + 19 mm, and −16 + 13.2 mm, are shown in Figure 7.

Minerals 2023, 13, 632 12 of 22 
 

 

 

0.1 1 10 100
0

10

20

30

40

50

60

70

80

90

100
(a)

 
                    Size (mm)

 

 

C
u

m
u

la
ti

v
e 

p
er

ce
n
ta

g
e 

o
f 

u
n

d
er

si
ze

 (
%

)

 1.01 kWh/t

 0.25 kWh/t

 0.10 kWh/t

 0.1 1 10 100
0

10

20

30

40

50

60

70

80

90

100
(b)

 
                    Size (mm)

 

 

C
u
m

u
la

ti
v
e 

p
er

ce
n
ta

g
e 

o
f 

u
n
d
er

si
ze

 (
%

)

 1.01 kWh/t

 0.25 kWh/t

 0.10 kWh/t

 

0.1 1 10 100
0

10

20

30

40

50

60

70

80

90

100

 
                    Size (mm)

 

 

C
u

m
u

la
ti

v
e 

p
er

ce
n
ta

g
e 

o
f 

u
n

d
er

si
ze

 (
%

)

 2.51 kWh/t

 1.03 kWh/t

 0.25 kWh/t

(c)

 
0.1 1 10 100

0

10

20

30

40

50

60

70

80

90

100

 
                    Size (mm)

 

 

C
u
m

u
la

ti
v
e 

p
er

ce
n
ta

g
e 

o
f 

u
n
d
er

si
ze

 (
%

)

 2.51 kWh/t

 1.00 kWh/t

 0.25 kWh/t

(d)

 

0.1 1 10 100
0

10

20

30

40

50

60

70

80

90

100

 
                    Size (mm)

 

 

C
u

m
u

la
ti

v
e 

p
er

ce
n
ta

g
e 

o
f 

u
n

d
er

si
ze

 (
%

)

 2.51 kWh/t

 1.0   kWh/t

 0.25 kWh/t

(e)

 

Figure 7. Particle size distribution of breakage products for fractions of pyrrhotite: (a) −63 + 53 mm, 

(b) −45 + 37.5 mm, (c) −31.5 + 26.5 mm, (d) −22.4 + 19 mm, (e) −16 + 13.2 mm. 

As can be seen from Figure 7, the shape, trend, and variation rules of the product 

particle size distribution characteristic curves obtained from pyrrhotite under the impact 

of different Ecs are consistent with those of quartz. Looking at the original data in Figure 

7, it can be seen that among the crushing products of pyrrhotite with five feed particle 

sizes, the maximum yield of the −0.106 mm particle size was 17.93% and the minimum 

was 1.35%. The maximum yield of the −0.038 mm particle size was 12.83%, and the mini-

mum was 0.91%. The maximum yield of the −0.106 + 0.038 mm particle size was 5.34%, 

and the minimum was 0.44%. The above cumulative yield values are significantly higher 

than those of quartz, indicating that pyrrhotite is more easily broken than quartz and gen-

erates more fine particle sizes. 
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(b) −45 + 37.5 mm, (c) −31.5 + 26.5 mm, (d) −22.4 + 19 mm, (e) −16 + 13.2 mm.

As can be seen from Figure 7, the shape, trend, and variation rules of the product
particle size distribution characteristic curves obtained from pyrrhotite under the impact of
different Ecs are consistent with those of quartz. Looking at the original data in Figure 7, it
can be seen that among the crushing products of pyrrhotite with five feed particle sizes,
the maximum yield of the −0.106 mm particle size was 17.93% and the minimum was
1.35%. The maximum yield of the −0.038 mm particle size was 12.83%, and the minimum
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was 0.91%. The maximum yield of the −0.106 + 0.038 mm particle size was 5.34%, and
the minimum was 0.44%. The above cumulative yield values are significantly higher than
those of quartz, indicating that pyrrhotite is more easily broken than quartz and generates
more fine particle sizes.

In summary, the drop weight test of pyrrhotite shows that the higher the Ecs, the finer
the particle size of the crushing product. When Ecs is the same, the smaller the feed particle
size, the finer the particle size of the crushing product. Therefore, the degree of mineral
fragmentation is determined by both Ecs and feed particle size, and the coarse particle size
is generated to a significantly greater extent under impact than the fine particle size.

3.2.2. Particle Energy Relationship Equation for Impact Crushing of Pyrrhotite

According to the same method in Section 3.1.2, regression analysis results of the impact
crushing particle size distribution characteristic curve of pyrrhotite were obtained and
are shown in Table 7. The value of t10 and its corresponding Ecs are fitted and analyzed
to obtain the impact crushing characteristic parameters A and b of pyrrhotite. The fitting
curves are shown in Figure 8, and the fitting results are listed in Table 8.

Table 7. Regression analysis results of the impact crushing particle size distribution curve of pyrrhotite.

Particle Size (mm) Nominal Particle Size (mm) Ecs (kWh/t) Fitting Coefficient (R2) t10 (%)

−63 + 53 57.8
0.38 0.9979 39.01
0.25 0.9972 25.17
0.10 0.9983 10.08

−45 + 37.5 41.1
1.01 0.9979 52.86
0.25 0.9992 21.38
0.10 0.9987 11.80

−31.5 + 26.5 28.9
2.50 0.9986 73.34
1.03 0.9976 63.54
0.25 0.9968 24.93

−22.4 + 19 20.6
2.51 0.9982 78.96
1.00 0.9978 63.00
0.25 0.9993 28.09

−16 + 13.2 14.5
2.50 0.9986 72.99
1.00 0.9979 60.21
0.25 0.9934 30.02
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Table 8. Fitting results of t10-Ecs for pyrrhotite under impact crushing.

A b A × b Fitting Coefficient (R2) Impact Crushing Resistance Level

76.5986 1.5858 121.47 0.979 Soft

Combining Tables 4 and 8, pyrrhotite can be judged to have “soft” impact crushing
ability, indicating that it is easily crushed under impact. Compared to quartz, pyrrhotite
has a lower level of impact crushing resistance. By substituting the values of A and b into
Equation (2), the particle energy relationship equation for the impact crushing of pyrrhotite
can be obtained, as shown in Equation (5).

t10 = 76.5986 × [1 − exp(−1.5858Ecs)] (5)

3.2.3. Variation Characteristics and Influencing Factors of the Yield of Coarse and Fine
Particle Sizes of Crushed Products

Using the same processing method as in Section 3.1.3, the particle size composition
distributions of the +0.106 mm coarse particle size and the −0.106 mm fine particle size
in each crushed product under different impact crushing energies and different feed
particle sizes were calculated for pyrrhotite, and the results are shown in Figures 9 and 10,
respectively.
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According to the particle size distribution of the impact crushing of pyrrhotite, its
impact crushing products are distributed in all particle sizes screened. The yield of each
particle size of +0.106 mm is significantly higher than that of each particle size of −0.106 mm,
indicating that the impact action mainly produces particle sizes of +0.106 mm. For particle
sizes of +0.106 mm, the higher the Ecs and the smaller the feed particle size, the more
the distribution curve shifts to the upper left corner and the greater the degree of the
fragmentation of pyrrhotite. For particle sizes of −0.106 mm, the higher the Ecs, the greater
the cumulative yield under the sieve, though the effect of feed particle size on it has no
fixed regularity. As with quartz, 1.0 kWh/t can also be determined as the critical Ecs for the
impact crushing of pyrrhotite.
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It can also be seen from Figures 9 and 10 that pyrrhotite is more susceptible to impact
crushing than quartz. With the same feeding particle size and the same Ecs, the cumulative
yield under the sieve of pyrrhotite is greater. This indicates that the particle size distribution
of the crushing product is closely related to the impact energy and the properties of the
mineral itself.

3.2.4. Effect of Ecs on the Particle Size of Crushed Products

According to Equation (5) from Section 3.2.2, it is possible to estimate the crushing
degree of pyrrhotite under any Ecs condition. According to the principle that a crushing
test under the same Ecs condition should have no less than three feed particle sizes, the
results in Table 7 are plotted as a scatter plot of feed particle size and t10 values, and the
results are shown in Figure 11.
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As can be seen from Figure 11, under the same Ecs condition, feed particle size and t10
have a linear correlation.

By fitting the results in Figure 11, the functional relationship between the t10 of
pyrrhotite and feed particle size is shown in Equation (6) with a specific crushing energy of
2.5 kWh/t.

t10= 58.90+0.97 × Di (6)

When Ecs is 1.0 kWh/t or 0.26 kWh/t, a functional relationship similar to Equation (6)
can also be obtained. Comparing Figure 11 with Figure 6, it can be seen that the slope of the
straight fitting line for quartz and pyrrhotite varies greatly. The overall slope of quartz is
positive, while the slope of pyrrhotite is negative when the Ecs is 0.26 kWh/t. This indicates
that the influence of Ecs on pyrrhotite is greater than that of quartz. For this purpose, the
t10 ratios of pyrrhotite particle size at different Ecs are calculated, and the results are shown
in Figure 12.

Minerals 2023, 13, 632 15 of 20 
 

 

10 15 20 25 30 35 40 45
1.0

1.5

2.0

2.5

3.0

3.5

4.0

 

 

 
Sp

ec
ifi

c 
va

lu
e 

of
  t
10

Size (mm)  
Figure 12. t10 ratio diagram for Ecs of 1.0 kWh/t and 0.26 kWh/t for pyrrhotite. 

According to Figure 12, the linear relationship between the t10 ratio of the crushing 
product of each feed particle level and feed particle size can be obtained under two Ecs 
conditions. The functional relationship is shown in Equation (7).      W = 1.45+0.04 × Di (7)

where W is the ratio of crushing product t10 under different Ecs and Di is the feed particle 
size of the pyrrhotite in mm. 

Using Equation (7), when the t10 value of a given particle size of pyrrhotite is known, 
the t10 value of this particle size under other Ecs can be obtained to determine its degree of 
fragmentation. 

3.3. Impact Resistance Characteristics of Pyrite and Particle Size Characteristics of Its Impact 
Crushing Products 
3.3.1. Analysis Results of the Particle Size Composition of Impact Crushing Products Ob-
tained by the SMC Drop Weight Test 

The principle of the SMC drop weight test for pyrite is the same as for the JK drop 
weight test, but it requires smaller sample particle sizes and relatively less testing work-
load. In this test, five groups of −22.4 + 19 mm pyrite were selected and subjected to a 
single impact crushing test on a drop weight tester. The test results are shown in Table 9. 

Table 9. SMC impact crushing results for pyrite. 

Test Group 1 2 3 4 5 
Mass of Ore Sample (g) 678.51 685.02 683.51 684.53 684.52 

Mass of Drop Hammer (kg) 14.0990 14.0990 49.9925 49.9925 49.9925 
Height of Drop Weight (cm) 222.0 447.0 261.0 630.0 882.0 

Residual Height (cm) 7.75 4.40 3.60 1.20 1.15 
Final Height (cm) 214.25 442.60 257.40 628.80 880.85 

Ecs (kWh/t) 0.2421 0.4951 1.0232 2.4960 3.4939 
Sieve Size (mm) 2.0 

Mass on Sieve (g) 452.04 365.58 294.12 185.78 173.55 
Mass under Sieve (g) 226.15 319.40 389.37 498.70 510.95 

Total Mass (g) 678.19 684.98 683.49 684.48 684.50 
Sieve Loss (%) 0.046 0.003 0.001 0.003 0.000 

t10 (%) 33.33 46.63 56.97 72.86 74.65 

Figure 12. t10 ratio diagram for Ecs of 1.0 kWh/t and 0.26 kWh/t for pyrrhotite.

According to Figure 12, the linear relationship between the t10 ratio of the crushing
product of each feed particle level and feed particle size can be obtained under two Ecs
conditions. The functional relationship is shown in Equation (7).

W = 1.45 + 0.04 × Di (7)

where W is the ratio of crushing product t10 under different Ecs and Di is the feed particle
size of the pyrrhotite in mm.

Using Equation (7), when the t10 value of a given particle size of pyrrhotite is known,
the t10 value of this particle size under other Ecs can be obtained to determine its degree
of fragmentation.

3.3. Impact Resistance Characteristics of Pyrite and Particle Size Characteristics of Its Impact
Crushing Products
3.3.1. Analysis Results of the Particle Size Composition of Impact Crushing Products
Obtained by the SMC Drop Weight Test

The principle of the SMC drop weight test for pyrite is the same as for the JK drop
weight test, but it requires smaller sample particle sizes and relatively less testing workload.
In this test, five groups of −22.4 + 19 mm pyrite were selected and subjected to a single
impact crushing test on a drop weight tester. The test results are shown in Table 9.

Table 9 shows that the quality of the five groups of test samples is generally stable,
and the total mass of each group of particles is basically close. Under the same particle size
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of impact crushing feed, different Ecs can be obtained by changing the mass and height of
the drop weight. As the Ecs increases, the larger the t10 value becomes and the finer the
crushing product.

Table 9. SMC impact crushing results for pyrite.

Test Group 1 2 3 4 5

Mass of Ore Sample (g) 678.51 685.02 683.51 684.53 684.52
Mass of Drop Hammer (kg) 14.0990 14.0990 49.9925 49.9925 49.9925
Height of Drop Weight (cm) 222.0 447.0 261.0 630.0 882.0

Residual Height (cm) 7.75 4.40 3.60 1.20 1.15
Final Height (cm) 214.25 442.60 257.40 628.80 880.85

Ecs (kWh/t) 0.2421 0.4951 1.0232 2.4960 3.4939
Sieve Size (mm) 2.0

Mass on Sieve (g) 452.04 365.58 294.12 185.78 173.55
Mass under Sieve (g) 226.15 319.40 389.37 498.70 510.95

Total Mass (g) 678.19 684.98 683.49 684.48 684.50
Sieve Loss (%) 0.046 0.003 0.001 0.003 0.000

t10 (%) 33.33 46.63 56.97 72.86 74.65

3.3.2. Particle Energy Relationship Equation for Impact Crushing of Pyrite

Based on the SMC drop weight test results for pyrite, combined with the functional
relationship of t10-Ecs, the impact crushing characteristic parameters A and b of pyrite are
obtained using the origin function fitting mathematical method. The results are shown in
Figure 13 and Table 10, respectively.
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Table 10. Fitting results of t10-Ecs for pyrite under impact crushing.

A b A × b Fitting Coefficient (R2) Impact Crushing Resistance Level

72.19 2.07 149.43 0.93 Very Soft

As can be seen from Figure 13, the higher the Ecs, the greater the t10 value, indicating
that the degree of pyrite fragmentation is closely related to the size of Ecs. With the increase
in Ecs, the growth rate of the t10 value changes from fast to slow. When Ecs is low, the t10
value increases faster. As Ecs gradually increases, the growth rate of the t10 value of the
crushing product slows down. This indicates that there is a crushing limit for pyrite under
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impact energy, and the value of t10 tends to be constant. According to Table 4 of JKMRC ore
impact crushing capacity, it is known that the impact crushing capacity of pyrite belongs to
the “very soft” grade, indicating that impact action has a good crushing effect on pyrite.

3.3.3. Variation Characteristics and Influencing Factors of the Yield of Coarse and Fine
Particle Sizes of Crushed Products

As can be seen from Figure 13, the higher the Ecs, the greater the degree of pyrite
fragmentation and the greater the t10 value. Comparing Figures 3, 8 and 13, it is found that
the concavity and convexity of the particle energy equation curves of the three minerals
differ greatly. This indicates that for the three minerals, the impact of Ecs on the t10 value
of each mineral is different, with pyrite demonstrating the most significant impact. At a
lower stage of Ecs, increasing the same Ecs results in a significant change in the t10 value
of pyrite. However, the crushing effect of pyrite is no longer significantly increased by
continually increasing Ecs. This also means that there should be a crushing limit if only
impact crushing is used.

3.4. Study on the Consistency Relationship of the Crushing Characteristics of Three Minerals Based
on Different Indicators

As shown in Sections 3.1–3.3, the particle size composition characteristics, particle
energy relationship equations, and related crushing characteristics of the three minerals
were obtained based on the results of the drop weight tests of quartz, pyrrhotite, and
pyrite. Due to the differences in the properties of these three minerals, this section attempts
to analyze their falling weight test results and crushing characteristics with the hope of
obtaining the relationship between their impact crushing characteristics and the physical
properties of these three minerals.

Firstly, the results of the drop weight tests and the basic properties of the three mineral
samples are summarized in Table 11. The limit value of t10 in the last column in Table 11
can be obtained from the particle energy relationship equation of the three minerals, and
its value actually corresponds to the value A, which is t10 corresponding to the asymptotic
line of the particle energy relationship equation curve.

Table 11. Comparison results of impact crushing tests for three kinds of minerals using the drop
weight method.

Sample A b A × b Impact Crushing
Resistance Level

Mohs
Hardness

Relative
Density

The Limit
Value of t10

Quartz 67.34 0.83 56.12 Medium Soft 7.0 2.64 67.34
Pyrrhotite 76.60 1.59 121.47 Soft 4.0 4.6 76.6

Pyrite 72.19 2.07 149.43 Very Soft 6.3 5.2 72.19

As can be seen from Table 11, there are differences in the Mohs hardness and relative
density of the three minerals. Their impact crushing parameters (A, b), impact crushing
resistance levels, and the limit value for t10 of the characteristic crushing particles are
different, but there is a certain correlation between them. Specifically, for quartz, the Mohs
hardness of quartz is known to be 7.0, with the highest hardness value among the three
minerals. According to the results of the impact crushing test using the drop weight test,
its impact crushing resistance parameter value is the smallest, and its impact crushing
resistance level belongs to “medium soft”. The associated limit value for t10 is also the
smallest. These characterization results are in good agreement with each other, reflecting
that quartz is the most difficult mineral to impact break among the three minerals. As for
pyrrhotite, it has the lowest Mohs hardness and the highest limit value for t10. From these
two indicators, it should be the mineral that is most prone to impact crushing. However,
its impact crushing resistance parameter is shown as 121.47, which is very close to the
boundary value for “soft” and “very soft”, which is 28 less than the impact resistance
parameter value of pyrite. According to the drop weight method, it does not belong to the
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minerals that are most easily crushed by impact. Therefore, the characterization results for
various indicators of pyrrhotite are inconsistent. As for pyrite, its Mohs hardness is only
slightly lower than that of quartz, but its impact crushing resistance level is two grades
lower than that of quartz. Therefore, the impact crushing ability of the three minerals is
characterized by Mohs hardness, impact resistance parameters, impact crushing resistance
level, and the limit value of t10, and the results are not entirely consistent. Of course, this
may be related to differences in the purity of the three minerals and inconsistency in the
drop weight test methods used for the three minerals.

In order to further increase the comparability of the test results, considering that the
three minerals had undergone a drop weight test with a feed particle size of −22.4 + 19
mm, their crushing test results under the feed particle size condition were compared, and
the results are shown in Figure 14.
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As can be seen from Figure 14, when Ecs is 1.0 or 2.5 kWh/t, the order of the t10 values of
the three minerals is pyrrhotite > pyrite > quartz. When Ecs is about 0.25 kWh/t, the order of
the t10 values of the three minerals is pyrite > pyrrhotite > quartz. When Ecs decreases, the
order of pyrite and pyrrhotite changes. This may be related to the low purity of pyrrhotite.
When sample purity is low, there are multiple mineral binding interfaces that can reduce the
impact crushing resistance ability of an ore sample. Moreover, theoretically, the greater the
Ecs, the smaller the impact mineral purity should have on impact crushing resistance ability.
Based on the above analysis, it can be considered that the ranking results for t10 at Ecs of 1.0
and 2.5 kWh/t can better reflect the differences in mineral properties. Therefore, the impact
crushing resistance ability of the three minerals should be pyrrhotite > pyrite > quartz. This is
consistent with ranking results based on Mohs hardness results.

4. Conclusions

The following conclusions were drawn from this research:

(1) The impact crushing characteristic parameters of quartz, pyrrhotite, and pyrite, as
well as the particle energy relationship equation characterizing the crushing process,
were obtained through the drop weight test. The particle energy relationship equation
for quartz is t10 = 67.335 × [1 − exp(−0.8334 × Ecs)]. The particle energy relationship
equation for pyrrhotite is t10 = 76.60 × [1 − exp(−1.59 × Ecs)]. The particle energy
relationship equation for pyrite is t10 = 72.19 × [1 − exp(−2.07 × Ecs)]. Based on this
research result, the impact crushing degree of three mineral samples under arbitrary
Ecs conditions can be calculated.
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(2) The particle size distribution of the impact crushing products of quartz, pyrrhotite,
and pyrite samples is very wide, covering all particle sizes from “0” to close to the
feed particle size. However, the yield of the +0.106 mm particle size was significantly
higher than the yield of the −0.106 mm particle size. This indicates that impact action
has a significant contribution to the formation of +0.106 mm particle size products in
the crushed products.

(3) Ecs has a significant impact on the particle size distribution and crushing effect of the
crushing product and has an interactive impact on the feed particle size and mineral
species. Overall, with increases in Ecs, the crushing effect of mineral samples increases.
Moreover, there is a critical Ecs in impact crushing. Under the conditions of this study,
the critical Ecs is 1.0 kWh/t. When Ecs > 1.0 kWh/t, t10 increases with the increase in
Ecs and decreases with the increase in feed particle size. When Ecs < 1.0 kWh/t, t10
increases with the increase in Ecs, independent of feed particle size.

(4) Based on the above analysis, it can be seen that for quartz and pyrite samples with high
purity, when using Mohs hardness, impact resistance parameters, impact crushing
resistance level, and the limit value of t10 to characterize impact crushing resistance
ability, the ranking results of the two minerals are completely consistent. Compared
with pyrite, pyrrhotite has a variety of mineral binding interfaces due to its low purity.
When using Mohs hardness, impact resistance parameters, impact crushing resistance
level, and the limit value of t10 to characterize impact crushing resistance ability,
the ranking results of the two are not completely consistent. When Ecs is higher,
the impact of mineral purity decreases, and the results of various characterization
methods tend to be consistent.
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