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Abstract: Pucheng district is a part of the Wuyi Mountain polymetallic metallogenic belt, which is
constituted by Archean-Proterozoic metamorphic basements and Mesozoic volcanic-sedimentary
covers. Uranium deposits are formed as volcanic-hosted and structural controls. In this study,
the hybrid data-driven methods of logistic regression (LR) and weights of evidence (WofE) were
applied for the mineral potential mapping of uranium in the Pucheng district. Evidential layers such
as volcanic stratum, structure, igneous rock, alteration and radioactive anomaly were used in the
mineral prospectivity analyses. The results show that the data-driven methods can not only measure
the relative importance of each type of geological feature in uranium controls but also delineate
prospective grounds for uranium exploration. The receiver operating characteristics (ROC) curve and
under the ROC curve (AUC) were applied to measure the performance of the prospectivity models.
The data-driven models are highly capable of mapping uranium prospectivity because AUC is close
to 1. The results show that more than 90% of the known uranium deposits occur in regions with high
probability. LR performs a little better than WofE in this area. The prospectivity mapping confirmed
that there is significant potential for uranium mineralization for further exploration.

Keywords: logistic regression; weights of evidence; uranium; mineral prospectivity mapping

1. Introduction

Uranium is a strategic mineral resource in China that is often used in nuclear power
generation [1]. Because of its low resource consumption and environmental impact, ura-
nium has become one of the main sources of electricity [2]. Uranium is an element that can
be active in various geological environments; thus, it can be accumulated to form uranium
mineral deposits in various geological systems [3]. The South China Uranium Province is
known for hosting large uranium resources in China and the four main types of uranium
deposits are granite-related, volcanic-related, sandstone-related and carbonaceous-siliceous
pelitic rock-related [4]. Uranium mineralization in South China is structure-controlled and
hydrothermal in nature and mainly took place in the Cretaceous and Tertiary periods [5].

Volcanic-type uranium deposits are often hosted within and near volcanic calderas
filled with various lavas or pyroclastic rocks [5,6]. The source rocks are generally acid and
intermediate acid and are enriched in U, F, Nb, Ta, Zr, Th and Rb and depleted in Mg, Fe,
Ti, P, Ba, Sr, La and Eu [7]. Volcanic-type uranium deposits are characterized by structural
controls that focus fluid flow, including caldera margin faults, linear fault zones, breccia
pipes and fracture zones in brittle welded tuff [2]. Many researchers demonstrated that
alteration changes uranium content significantly [3]. Hydrothermal alterations related
to volcanic rock-type uranium deposits are often characterized by strong hematization,
fluoritization, silicification, pyritization and sericitization [7].
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Mineral prospectivity mapping (MPM), as a key component of mineral exploration,
aims to explore new mineral occurrences by delineating the target grounds of the min-
eralization [8–10]. To model the prospectivity, various methods have been employed for
weighting and integrating spatial evidence layers to delineate target areas. The methods
are mainly divided into data–and knowledge-driven methods [11,12]. The data-driven
methods, involving quantitative analysis of spatial associations between known mineral
occurrences as training sites, contain logistic regression, weights of evidence model, evi-
dential belief modeling, Bayesian network classifiers, artificial neural networks, support
vector machines and random forests [12–15]. The knowledge-driven methods, based on
the judgment of a geological expert, contain Boolean logic, index overlay, fuzzy analytical
hierarchy process, fuzzy logic and restricted Boltzmann machine [8,16,17]. Hybrid methods
with a combination of data- and knowledge-driven components can be used to construct
prospectivity mapping models as hybrid prospectivity maps [18].

The Pucheng district in Fujian Province, characterized by widespread volcanic rocks, is
a significant area of volcanic-type uranium resources in the South China uranium province.
In this study, the hybrid data-driven methods of logistic regression and weights of evidence
models are applied for mapping uranium potential in the Pucheng district, NW Fujian,
China. The objectives of this study are to (1) explore the spatial associations of uranium
occurrences with certain geological features and (2) generate uranium potential maps and
estimate the predictive accuracy.

2. Geology Setting and Uranium Mineralization

The study area is situated in the northwest of Fujian Province, China. Metamorphic
rocks in the Precambrian and volcanic rocks in the Mesozoic strata are exposed widely
in the study areas (Figure 1). The oldest units in this area are Neoarchean metaigneous
basement rocks (ca. 1790 Ma), mostly biotite plagioclase granulite, amphibolite schist
and gneiss rocks of the Tianjingping Formation. The latter is unconformably overlain by
Proterozoic metamorphic basement rocks, exposed low- to high-grade metamorphic rocks
of Mayuan Group (ca. 807 Ma) and Mamianshan Group (ca. 751 Ma), mostly sericite
schist, metamorphic sandstone, metamorphosed siltstone, metamorphic conglomerate
and plagioclase granulite [19,20]. The Mesozoic stratigraphy is volcanic and volcanic-
sedimentary rocks, such as rhyolite, tuff, lava, tuffaceous sandstone and siltstone (Table 1).
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Table 1. Stratigraphic column of the strata in the Pucheng area.

Lithostratigraphic Unit (Code) Lithological Description Thickness (m)

Quaternary (Q) Eluvium, Deluvium, Alluvium. 0~20

Akaishi Group (K2ch) Gray-purple thick-layer conglomerate. 313~2015

Shaxian Formation (K2s) Purple-red thick-layer siltstone interbedded
with tuffaceous sandstone. 144~1160

Shimaoshan Group (K1sh)
The second member: tuff, tuffaceous

sandstone interbedded with basalt. The first
member: red thick-layer conglomerate.

182~1265

Bantou Formation (J3b)

The second member: tuff, tuff lava, rhyolite
interbedded with tuffaceous and siltstone; the
first member: gray feldspar quartz sandstone,

shale, conglomerate, tuffaceous sandstone.

336~1774

Nanyuan Formation (J3n)

The third member: porphyroclastic lava,
rhyolite; the second member: tuff, tuff lava,

rhyolite interbedded with tuff and tuffaceous
sandstone; The first member: siltstone,

tuffaceous sandstone.

>5576

Changlin Formation (J3c) Tuff and tuffaceous sandstone. 644~1774

Lishan Formation (J1l) Grey medium coarse grain siltstones,
interbedded with sandstone. 33~1524

Jiaokeng Formation (T3j) Carbonaceous siltstone, coal seam; feldspar
quartz sandstone. 58~508

Mamianshan Group
Longbeixi Formation (Pt2l) Marble, schist and granulite. >2117

Dongyan Formation (Pt2dn) Green schist, plagioclasite amphibolite
interbedded with marble lens. >2760

Mayuan Group
Nanshan Formation (Pt1n) Granulite interbedded with schist,

plagioclase amphibolite. 1681~3498

Dajinshan Formation (Pt1d)
Crystalline graphite-bearing granulite and

schist interbedded with amphibolite,
occasionally marble lens.

>3300

Tianjingping Formation (Ar2t) Biotite plagioclase granulite interbedded with
amphibolite schist. >732

The study area contains intrusive rocks of mafic to felsic composition, including olivine
gabbro, syenite, diorite, granite and porphyry. The district is mainly dominated by NE-SW
and NW-SE oriented faults, which cut the different lithologic units. The NE-SW faults are
concentrated in the large area of volcanic rocks in the western part of the area and belong
to the structural traces in the late Yanshan to the Himalayan period. The NW-SE faults
exhibit mainly normal dip-slip displacements. In the study area, NE-trending faults mainly
controlled the distribution of uranium polymetallic deposits.

A number of uranium deposits occur in this area, such as the Maoyangtou deposit,
with proved reserves of approximately 2000t U at an average grade of 0.185% and Quezis-
han deposits with approximately 600t U at an average grade of 0.103% [20]. The major
host rocks are volcanic rocks of the Jurassic-Cretaceous Nanyuan Formation, which is a
series of continental intermediate and intermediate acid lavas and pyroclastic rocks. A few
deposits are granite-type uranium, such as the Qinshan deposit. The uranium deposits
in the granite and the uranium deposits in the volcanic rocks can be seen as the same
mineralization in different layers [21]. A sectional view of the Maoyangtou deposit shows
that the mineralized bodies, appearing in veined, lenticular and stratoid shapes, often
forms discontinuous and parallel to the ore-controlling faults (Figure 2). The host rock
is composed of rhyolitic tuff, breccia lava, tuffaceous sandstone, agglomerate, etc. Hy-



Minerals 2023, 13, 608 4 of 13

drothermal alteration of hematization, albitization, silicification and pyritization are closely
related to uranium mineralization and well developed in proximity to the mineralized
zones [20,21]. The main ore-forming age given by the U-Pb data is 89.3–107.7 Ma [22,23].
Summarizing the previous work in this area, we discuss the critical parts of a volcanic-type
uranium mineral system.
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Uranium sources: Acidic granite and uranium-rich volcanic rocks provide the main
source of uranium in the region. This is supported by geochemical studies based on the Pb
isotopic ratios in the ore and volcanic rocks [22]. Uranium is found in concentrations of
between 10 ppm to 24 ppm in granite [23]. Yanshanian coarse-grained biotite granite is an
important uranium source in this area. The Mesozoic volcanic acid constitutes a primary
uranium source for forming an economic deposit. Among the volcanics, rhyolites provide
an ideal source, followed by rhyolitic tuffs, ignimbrites, etc.

Uranium transport: hydrolysis affects the U activation and transportation in this
area. Various uranyl complexes, including carbonate, fluoride and chloride, have been
proposed for the transportation of uranium in the ore-forming fluids [6,7]. Under oxidation
conditions, uranium in +VI state (UO2

2+) can form fluoride, carbonate, hydroxyl, sulfate,
chloride, silicate and other complexes. The NE- and NW-striking faults have caused a zone
of weakness to control the transportation of uranium [22].

Precipitation of uranium: the main process responsible for uranium precipitation
appears to redox reaction with reductants [5]. UO2

2+ was mainly reduced into UO2 so as to
precipitate. Brittle structures developed in an extensional tectonic setting which provided
pathways for fluid flow and spaces for uranium precipitation, commonly in linear fault
zones, breccia pipes, fracture zones and fault intersections. At the deposit scale, the local
secondary faults actually control the precipitation of individual ore zones. For example, the
Maoyangtou deposit is jointly controlled by secondary NW- and NNW-striking fault zones
adjacent to the south of the volcanic conduit. In addition, geologic contact surfaces and
volcanic structures are also believed to be favorable structures controlling the precipitation
of uranium mineralization [21–24].
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3. Mineral Prospectivity Mapping Methods
3.1. Weights of Evidence (WofE)

This method, based on a Bayesian conditional probability, utilizes multi-source signa-
tures with target areas of high mineral prospectivity [8]. The WofE technique comprises
four processes as follows:

Estimation of prior probability (Pprior): let an area be divided into a number of N(T)
cells, of which there are N(D) pixels containing prospect D. The Pprior that a cell selected
randomly contains a prospect can be estimated as Pprior defined by N(D)/N(T).

Determination of weighting coefficients (W+ & W−): Suppose that in the area, there
are N(B) and N(B) cells where spatial evidence B is present and absent, respectively. The
weighting coefficients W+ and W− spatial association of the predictor pattern B with a
target mineral deposit D. W+ and W− can be expressed as:

W+ = ln
P(B/D)

P(B/D)
, W− = ln

P(B/D)

P(B/D)

A positive W+ reflects that more training points occur, and a positive W− reflects that
fewer training points occur. A weight of zero for either the W+ or W− coefficient indicates
spatially uncorrelated training points. The contrast, C = W+ −W− represents a measure of
spatial association between a set of spatial evidence and a set of prospects. If the spatial
association is positive, C > 0, if the spatial association is negative, C < 0, and if the spatial
association is lacking, C = 0.

Calculation of posterior probability (Ppost): weights of evidence in predictor maps are
combined with loge prior odds O(D) defined by P(D)/P(D), which are related to the prior
probability. The posterior probability is then found by combining weighting coefficients
using the odds formulation of Bayes’ rule. For Kth (k = 1, 2, . . . . . . , n) layers, estimates
of posterior odds are converted to posterior probabilities reflecting degrees of mineral
potential, which can be expressed as:

ln O(D/B1
K(1)B2

K(2) · · · Bn
k(n)) =

n
∑

i=0
Wi

k + ln O(D)

Ppost =
e

n
∑

i=0
wk

i +ln o(D)

1+e

n
∑

i=0
wk

i +ln o(D)

Testing for conditional independence (Cl): WofE modeling requires the assumption of
conditional independence among evidential layers with respect to prospects.

3.2. Logistic Regression (LR)

Logistic regression is a classification rather than a regression model. Logistic regression
is a simple and more efficient method for binary and linear classification problems [25].
The logistic regression model is a statistical method for binary classification that can be
generalized to multi-class classification. It can be expressed as a linear equation:

Y = b0 + b1x1 + b2x2 + b3x3 + . . . + bnxn

where Y is the dependent variable representing the presence (1) or absence (0), b0 is the
intercept of the model, b1~bn are the partial regression coefficients, and x1~xn are the
independent variables. Logistic regression makes no assumption about the probability
distribution of the independent predictor variables and, being a nonlinear model does
not require conditional independence of input predictor maps [26]. The possibility can be
calculated as an equation:

p = 1/(1 + e−Y)
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4. Evidential Maps
4.1. Geological Controls

To generate evidential maps, the datasets consisting of geological and airborne radioac-
tive survey data were collected. The geological dataset contains a 1:100,000 geological map,
including strata, intrusive rocks, faults and mineral occurrences (Figure 1). The airborne
radioactive survey data contain anomaly maps of K, Th, γ, and U. We also collected ASTER
data to extract alteration maps related to uranium mineralization.

As demonstrated by the volcanic-type uranium mineral system, the volcanic and
intrusive rocks constitute significant metal sources for forming an economic uranium
deposit. Most of the uranium is derived from volcanic rocks of the later Jurassic Nanyuan
Formation, while some originated from both volcanic and intrusive rocks [20]. The uranium
source map (Figure 3) shows that there are strong positive spatial associations between
the Nanyuan formation and granite with uranium occurrences. Therefore, these rock units
might be the plausible lithological control concerning uranium mineralization.
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In this district, fault and volcanic lithologies are fundamental factors that control
the size and location of ore deposits [21]. The lineament structures containing faults and
lithological contacts are important factors in the genesis of hydrothermal ore deposits. For
mapping of structure density, we divided the study area into small grids and counted the
number, and summed the lengths of faults fallen within each grid. Then, the structure
density map for total lengths per grid was created (Figure 4a). The intersection of lineament
structure is also an important index to analyze the structure controls; areas surrounding
the fault intersections with higher permeability could be appropriate for the penetration of
ore-forming fluids. Hence, the density map of intersections of lineament structures for total
lengths per grid was also created (Figure 4b). Both length and intersection present strong
positive correlations with the uranium occurrences (Figure 4). In addition, The NE- and
NW-striking faults have resulted in the formation of uranium resources. The buffer map of
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NE and NW-striking faults is shown in Figure 5; the buffer radii of 1.0 and 1.2 km were
considered according to the areas containing approximately 75% of known deposits [24].
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4.2. Hydrothermal Alteration

Uranium mineralization is often found by the recognition of hydro-thermally altered
host rocks and is produced by fluid flow processes that alter the mineralogy and chemistry
of the country rock. Using a multi-spectral and hyperspectral sensor is due to detecting
the optical characteristics of the Earth’s surface by several spectral bands [27]. The ASTER



Minerals 2023, 13, 608 8 of 13

(Advanced Spaceborne Thermal Emission and Reflection Radiometer) sensor is an imaging
instrument flown on the Terra satellite, which was launched in December 1999. The
instrument consists of three separate subsystems with a total of 14 bands: (1) optical images
of three bands (0.52 to 0.86 µm) with a spatial resolution of 15 m obtained by the visible
near-infrared (VNIR) subsystem; (2) optical images of six bands (1.60 to 2.43 µm) with a
spatial resolution of 30 m obtained by the shortwave infrared (SWIR) subsystem; (3) optical
images of five bands (8.12 to 11.65 µm) with a spatial resolution of 90 m obtained by the
thermal infrared (TIR) subsystem. Image preprocessing includes data resampling, radiation
calibration, geometric correction, etc.

Hydroxyl-bearing mineral reflectivity peaks in band 3 and decreases in band 4, and
absorption grains appear in band 6. For iron-oxide-bearing minerals, the vast majority of
Fe2+ and Fe3+-bearing minerals reflect more strongly and peak in bands 2 and 4. Therefore,
it is believed that the selected band set of bands 1, 3, 4 and 6 can extract most hydroxyl-
bearing mineral information, while the band set of bands 1, 2, 3 and 4 can extract most
iron-oxide-bearing mineral information. Principal component analysis (PCA) is used for
mapping of alteration. Table 2 shows the results of PCA for recording iron-oxide-bearing
minerals with the mentioned bands. According to the results, PC2′s image shows the
presence of iron-oxide-bearing minerals in the area (Figure 6a). In addition, for recording
hydroxyl-bearing minerals, PCA comprising bands 1, 3, 4 and 6 have been used. Table 3
shows the results of recording hydroxyl-bearing minerals. According to the results, an
image related to PC4 shows the presence of hydroxyl-bearing minerals in the study area
(Figure 6b). The results show that the spatial distribution of the altered area is consistent
with that of the volcanic rocks and known uranium deposits.
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Table 2. Results of PCA of bands sets, comprising 1, 2, 3 and 4.

Band 1 Band 2 Band 3 Band 4

PC1 0.34 0.38 0.68 0.52

PC2 0.41 0.62 −0.65 0.14

PC3 −0.33 −0.30 −0.31 0.84

PC4 0.78 −0.62 −0.08 0.06

Table 3. Results of PCA of bands sets, comprising 1, 3, 4 and 6.

Band 1 Band 3 Band 4 Band 6

PC1 −0.32 −0.71 −0.53 −0.34

PC2 −0.46 0.68 −0.34 −0.46

PC3 0.81 0.13 −0.51 −0.24

PC4 0.16 0.13 0.58 −0.79

4.3. Airborne Radioactive Anomaly

In uranium exploration, airborne radioactive anomalies are important criteria, provid-
ing results about uranium deposition and preservation in mineral systems. The anomaly
maps clearly show that the anomalies are mainly concentrated in the north and the west
part (Figure 7), which coincide with the distribution of uranium-rich volcanic rocks; the
thresholds were chosen according to the background values in this area [24].
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5. GIS-Based Prospectivity Modeling

Ascertaining appropriate prospecting criteria about the mineral deposit-type sought
features is a fundamental issue encountered during MPM. In the uranium mineral system,
the source, pathway of fluids, and conditions for uranium deposition and preservation
are considered to be essential [6,28–30]. In this research, ten binary variables are derived
from multi-class evidential maps. Nanyuan Formation(F1) and granite(F2) are the main
host rocks and provide material sources. NE- and NW-striking faults (F3 and F4) provide
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pathways in the formation of uranium resources. Linear structures (F3 and F4) can provide
fluid pathways and physico-chemical traps to form mineralization. Airborne radioactive U
and gamma anomalies, iron-stained alteration and hydroxyl alteration (F7~F10) are impor-
tant geophysical and remote sensing exploration criteria in uranium mineral exploration,
indicating the deposition and preservation.

The unit cell size for GIS-based prospectivity analysis depends on the size of the
deposits and the input geological data; 95% of closest point pairs do not fall into the same
pixel [31]. We used 1 km× 1 km unit cells in predictive modeling. The WofE and LR models
were implemented in a GIS environment. In this work, conditional independence was not
tested in the WofE model. Although various conditional independence tests containing the
pairwise χ2 test and the “omnibus” test have been suggested [32], it is unrealistic to assume
independence of evidence layers because of the internal spatial and genetic relationships
among different geological features. The posterior probabilities can be interpreted as
relative estimations for mineralization [25,33]. Table 4 shows the weighting coefficients
and contrast of the WofE model, while Table 5 shows the regression coefficients and the
significance level of the independent variables. The outputs of the WofE and LR models
were mapped to generate continuous-scale prospectivity maps (Figure 8).

Table 4. Predictive model for WofE prospectivity modeling.

Targeting Criteria Evidence Layer W+ W− C

Sources
F1: uranium-rich Nanyuan Formation 1.24 −1.92 3.16

F2: uranium-rich granite 0.11 −0.13 0.24

Pathways F3: NE-striking faults 0.42 −1.53 1.95
F4: NW-striking faults 0.72 −0.91 1.63

Traps F5: Linear structures intersection 2.13 −0.08 2.23
F6: Linear structures density 0.66 −0.56 1.22

Deposition and preservation

F7: Airborne radioactive gamma 0.92 −0.66 1.58
F8: Airborne radioactive U 0.62 −0.22 0.84
F9: Iron-stained alteration 1.35 −0.21 1.56
F10: Hydroxyl alteration 0.93 −0.12 1.05

Table 5. Predictive model for LR prospectivity modeling.

Variable b Standard Deviation Wald’s Statistics Significance Level

Nanyuan Formation 2.401 0.428 31.414 0.000
Granite 0.502 0.734 0.467 0.495

Radioactive U 1.287 0.666 3.731 0.053
Radioactive gamma 1.914 0.552 12.049 0.001

Iron alteration 0.861 0.59 2.131 0.144
Hydroxyl alteration −1.251 0.671 3.477 0.062
Structures density 0.865 0.332 6.807 0.009

Structures intersection 0.564 0.377 2.238 0.135
NE-striking fault 2.004 0.45 19.795 0.002
NW-striking fault 1.746 0.363 23.169 0.010

Constant −8.49 0.548 239.803 0.350

To test the performances of the WofE model and LR, ROC curves were addressed
in this study. Applying the ROC curve to the prospectivity modeling test contains four
parameters: (1) true positive (Tp) presenting the known uranium occurrences occupied
prospective zones, (2) false negative (Fn) presenting the known uranium occurrences
occupied non-prospect zones, (3) false positive (Fp) presenting the no known uranium
occurrences occupied prospective zones, and (4) true negative (Tn) presenting the no known
uranium occurrences occupied non-prospect zones. Then, the true positive rate (TPR) and
false positive rate (FPR) can be calculated by TPR = Tp/(Tp + Fn) and FPR = Fp/(Fp + Tn).
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ROC graphs can then be constructed by the paired data of TPR, FPR obtained using a series
of thresholds to classify the prospectivity pattern. These are also known as sensitivity (TPR)
and specificity (1-FPR). The AUC, the area under the ROC curve, is a quantitative index to
measure the performance of classifiers. The value of the AUC ranges from 0 to 1.0, and the
larger the AUC, the better the performance. Figure 9 shows the results of ROC according to
different probability threshold values of mineral prospectivity. The AUC values of WofE
and LR are 0.88 and 0.91, respectively, showing that both of the models are capable of
prospectivity mapping for U mineralization. The prediction accuracy of the LR model is
greater than that of WofE. LR provides unbiased estimates of the posterior probability of
mineral deposits because of its ability to accommodate conditional dependencies in the
input datasets [23]. The most important variables are Nanyuan Formation, followed by
linear structure density and NE-striking faults. It should be noted that although the contrast
of WofE and regression coefficient of LR for the granite is far smaller than others, we have
not abandoned it because the granite provides a uranium source proven by geologists
despite the somewhat inconsistent spatial distribution to known uranium deposits [24].
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6. Conclusions

In this study, the weight of evidence and logistic regression models are implemented
for regional-scale prospectivity modeling of volcanic-type uranium mineralization. Mineral
prospectivity maps showed that they could highly predict accuracy, indicating capability
for mapping uranium mineral prospectivity. The logistic regression model performs better
than the weight of evidence model in predicting the known mineral deposits in this area.
GIS-based modeling techniques provide effective approaches to delineate prospective target
areas on a regional scale based on multi-sources exploration datasets. These predictive
maps can provide useful information for further exploration.
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