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Abstract: Centimeter-scale magmatic enclaves are abundant in peralkaline felsic volcanic rocks
in the Sanshui Basin. Their lithology is mainly syenite and syenitic porphyry, and they mainly
comprise alkali feldspar and amphibole, which is similar to the mineral assemblage of the host
trachyte and comendite. The SiO2 content in the syenitic enclaves is ~63 wt%, which is similar to that
of the host trachyte but lower than that of the comendite. Thermobarometric calculations showed
that the syenitic enclaves crystallized at similar temperature and pressure conditions as their host
trachyte. The results of mass-balance modeling and MCS modeling indicate that the syenitic enclaves
likely experienced an approximately 74% fractional crystallization from the basaltic parental magma.
Combined with the similar mineral assemblages and geochemical characteristics of the host trachyte,
we think that the enclaves resulted from the in situ crystallization of trachytic magma in the shallow
crust and that they had a cogenetic origin with their host volcanic rocks, which means that they
were likely to derived from the identical magma chamber which was formed from different batches
of magma mixing/mingling. The recharge and mixing of basaltic magma triggered the eruption
of trachytic magma eruption. The syenitic crust may have been disaggregated by the ascending
trachytic magma and brought to the surface as syenitic enclaves. The syenitic enclaves in volcanic
rocks provide unique information on the magmatism of the shallow crust as evidence of magma
mixing/mingling.

Keywords: magmatic enclaves; peralkaline volcanic rocks; cogenetic; Sanshui Basin

1. Introduction

Magmatic enclaves are widely recognized in both the plutonic and volcanic rocks [1].
Magmatic enclaves commonly found in calc-alkaline granites have been generically re-
ferred to as mafic microgranular enclaves (MMEs) to constrain the origin and evolution
of the magma and crust-mantle interaction [2,3]. Although magmatic enclaves have been
frequently studied, their origin is debated [2,4,5]. Their main sources include: (1) more
mafic magma blobs mixed with felsic magma [1,2,6,7], (2) restitic enclaves formed by crustal
remelting [8–10], (3) cumulated crystals of early minerals in the magma chamber [11–13],
(4) rapidly cooling crystalline phases at the margins of magma conduits, and (5) trapped
xenoliths [14,15]. The magma mixing/mingling model is the best model and indicates
a crust–mantle interaction [4,6,16]. Fewer magma enclaves are present in volcanic rocks
than in plutonic rocks; however, magmatic inclusions are also prevalent in some volcanic
rocks [17–26], especially alkaline volcanic rocks [27–38]. Volcanic eruptions triggered by
magmatism brought plutonic and subvolcanic samples to the surface, and these enclaves
provide rich geological information and can study the deep earth [29,33,37]. The petro-
logical, geochemical, and mineralogical characteristics of these enclaves provide unique
information that can reveal the magmatic process of the shallow magma chamber.
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For this study, the whole rock major, trace elements, and mineral chemistry of the
syenitic enclaves commonly found in trachyte and comendite in the Sanshui Basin were
investigated, whereby we conducted thermobarometric calculations and a thermodynamic
model to explore the origin and petrogenesis of the syenitic enclaves, relationship with host
trachyte and comendite, and constrained the magmatic process in the Sanshui Basin.

2. Geological Background

The Sanshui Basin is located at the margin of the South China Block (Figure 1a) and is
constrained by the NE-trending Sihui–Wuchuan Fault, NW-trending Gangyao–Shawan
Fault, and Xijiang Fault, and is shaped like a rhombus extending north-south with an area
of approximately 3300 km2 [39]. The basin is underlain by the Hercynian-Indosinian folded
zone [40]. Because the area is influenced by the far-field effect of the subduction of the
Paleo–Pacific and the Neo–Tethys plates [41], this region has been in an extensional setting
and has formed the rift basin since the Late Cretaceous [42], and, ultimately, the continental
lithosphere ruptured under the Sanshui Basin in the Cenozoic [43].
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From the Late Cretaceous to the Eocene (64–38 Ma), there were a total of 13 volcanic
cycles and 123 eruptions occurred in the Sanshui Basin, and the thickness of the volcanic
stratigraphy exceeded 2700 m [39]. These volcanic rocks are distributed in the center
of the basin, with a north–south distribution of approximately 45 km and a bimodal
volcanic assemblage dominated by trachyte and comendite in volume (whose total eruption
thickness exceeds 1000 m and surface exposure area exceeds 14 km2), followed by basaltic
rocks. Based on the spatial distribution of trachyte and comendite, the Sanshui basin is
divided into the Shiling cluster and the Xiqiao cluster (Figure 1b). The Cenozoic volcanic
eruptions recorded in the Sanshui Basin occurred from 64 Ma to 38 Ma, but the main
eruption period occurred from 53 Ma to 56 Ma [41]. The trachyte and comendite formed
via protracted fractional crystallization (with insignificant crustal contamination) during
the ascend of the basaltic magma into the crust [39,44].

3. Materials and Methods

We analyzed five syenitic enclaves collected from the Sanshui Basin, and our analy-
sis included a major element and trace element analysis of the whole-rock and mineral
chemical analysis.

The syenitic enclaves were crushed into approximately 200 mesh powders in an agate
mill. The whole-rock major and trace element concentrations were obtained by using
X−ray fluorescence (XRF) and inductively coupled plasma mass spectrometry (ICP−MS) at
the ALS laboratory, Guangzhou. The major elements analyzed had analytical uncertainties
of <5%. The trace elements were separated using cation-exchange techniques before
running the ICP−MS analysis. The analytical uncertainties were estimated at 10% for the
elements with abundances <10 ppm, and ~5% for those with abundance >10 ppm.

The mineral compositions in the syenitic enclaves were measured with a FE-EPMA
(JEOL JXA-8530F Plus, Tokyo, Japan) equipped with five wavelength-dispersive spectrome-
ters and an energy-dispersive spectrometer (EDS, OXFORD INSTRUMENTS X-MAX 20,
Abingdon, UK) at the State Key Laboratory of Nuclear Resources and Environment, East
China University of Technology, China. The accelerating voltage, beam current, and beam
size were operated at 15 kV, 20 nA, and 1 µm, respectively. The peaks and backgrounds for
P, Ti, Nb, Ta, Zr, Hf, U, Th, REEs, and Y were measured with counting times of 20 s and 10,
and those for Si, Al, Mg, Ca, Mn, Fe, Na, and F were measured with counting times of 10 s
and 5 s. All the data were corrected by using standard ZAF correction procedures. The
analytical uncertainties were <1% for the major elements.

4. Results
4.1. Petrography

Syenitic enclaves are mainly found at Zoumaying, Libian (Figure 2b), and Zizhugang
in the Shiling cluster and are generally between 1–5 cm in size. These enclaves are usually
dark gray in color and thus have clear boundaries with a blue–green and purplish–red
host rock. The magmatic enclaves exhibit a typical igneous texture and can be divided into
medium-fine-grained syenite and syenite porphyry according to the texture; additionally,
the main mineral assemblage is alkali feldspar and amphibole with minor clinopyrox-
ene. alkali feldspar is the predominant mineral, up to 5 mm in size, with a transparent
(fresh) –white color (altered), while amphibole is fine–grained and dark–green color.
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Figure 2. (a) Simplified geological map of the Shiling cluster; (b) oxidized comendite outcrop in
Libian, Western Shiling; (c–e) hand specimen photographs of magmatic enclaves. Individual enclaves
exhibit distinctive boundaries with host trachyte and comendite.

The medium-fine-grained syenite has a granular texture and consists of a large amount
of alkali feldspar (>85 vol%) followed by minor amounts of sodium amphibole (4–8 vol%),
clinopyroxene (<3 vol%), quartz (<3 vol%), and accessory minerals including Ti-Fe oxides,
apatite, monazite, haleniusite, and zircon (Figure 3). The alkali feldspars phenocrysts are
euhedral–subhedral with a slight alteration. The clinopyroxenes are subhedral–anhedral
and are up to 7 mm in the 20ss022-1, whereas the sodium amphibole, quartz, and other
accessory minerals are anhedral and filled in the alkali feldspar crystal framework.

The syenite porphyry has a porphyroid texture, and the phenocryst mineral is domi-
nated by alkali feldspar, which is generally 3–7 mm in size and about 12 vol% in content.
The groundmass minerals are dominated by microcrystalline alkali feldspar, Ti-Fe oxides,
and sodium amphibole, with small amounts of apatite and zircon as accessory minerals.

The magmatic enclave host rocks are trachyte and comendite, both of the fresh host
rocks are gray–green with a porphyritic structure, the phenocryst minerals are dominated
by alkali feldspar, and the trachytes have 6–24 vol% phenocryst, whereas the comendites
have 1–7 vol% phenocryst and are generally brick-red due to oxidation.
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Figure 3. Representative photomicrographs of syenitic enclaves, individual enclaves exhibit dis-
tinctive boundaries with host trachyte and comendite. (a) the syenite porphyry and host trachyte,
19ss037-1, PPL; (b) the syenite porphyry and host comendite, the dark schlieren is mainly acic-
ular amphibole, 20ss022-1, PPL; (c) the fibrous alkaline feldspar in syenite porphyry indicating
high undercooling, 19ss036-1, PPL; (d) same field as (c), CPL; (e) the clinopyroxene in the syenite,
the fine-grained alkali feldspar and amphibole indicating a rapid crystallization, 19ss022-1, PPL;
(f) same field as (e), CPL; (g) anhedral amphibole fill in the alkali feldspar crystal framework in
the sytnite, 14ss003-3, PPL, (h) anhedral aegirine fill in the alkali feldspar crystal framework in the
sytnite, 19ss035-1, PPL. Afs, alkali feldspar; Cpx, clinopyroxene; Aeg, aegirine; Arf, arfvedsonite; Ap,
apatite; Ti-Fe Oxi, Ti-Fe oxide. PPL = plane polarized light, CPL = crossed-polars light. The red line
represents the boundary between the syenitic enclaves and the host rock.
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4.2. Whole-Rock Geochemistry

The whole-rock geochemical composition of the syenitic enclaves are shown in
Tables 1 and 2. The syenitic enclaves had a high loss on ignition (LOI, 1.03–1.71 wt%),
and the high LOI may have been caused by the later alteration that resulted in low
Na2O content [45] which was also observed in the host rocks [41]. Therefore, the Na2O
concentration of syenitic enclaves was corrected using the method recommended by
White [45]. A plot of FK/A vs. P.I. (FK/A = (Fe + K)/Al, mol, with all Fe calculated
as Fe2+, P.I. = (Na + K)/Al, mol) was presented in Figure 4a, enclaves from 19ss036-1 and
19ss037-1 lied below the 95% confidence interval and demonstrated the Na2O loss. The
Na2O-corrected syenitic enclaves showed weakly peralkaline affinity with peralkaline
index (P.I.) = 1.00–1.08.
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Figure 4. (a) FK/A vs. P.I diagram, after [45]. (b) QAPF diagram after [46]: 1, quartz alkaline feldspar
syenite; 2, alkaline feldspar syenite, 3, quartz diorite; 4, diorite. (c) R1 vs. R2 classification diagram
after [47]: 1, alkaline gabbro; 2, monzo-gabbro; 3, monzonite; 4, monzo−diorite; 5, quartz−monzonite.
(d) SiO2 vs. Fe/(FeO+MgO) diagram, after [48].

The major elements of the syenitic enclaves were similar to those of the trachyte
exposed in the Sanshui Basin; they had high alkali content (Na2O*+K2O = 11.93–12.27 wt%),
low MgO content (0.14–0.32 wt%), and low CaO (0.62–0.86 wt%), but the SiO2 content was
restricted (<1 wt% variation). All of the syenitic enclaves fell in the field of alkaline feldspar
syenite field based on petrographic observation (Figure 4b) and plotted in the syenite
field according to the classification (Figure 4c). The syenitic enclaves were ferroan with a
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Fe/Fe+Mg value ranging 0.92 to 0.95, and alkaline with a MALI index (Na2O+K2O-CaO)
range 11.40 to 11.61, corresponds to the A-type granite [48].

Table 1. Major elements composition of the syenitic enclaves of the Sanshui Basin.

Sample 19ss036-1 19ss037-2a 19ss037-2b 20ss020-1 20ss022-1 19ss036-1 20ss020-1 20ss022-1 Kilombe,
Kenya

Azores,
Portugal

Lat.(N) 23◦8′43” 23◦8′47” 23◦8′47” 23◦9′45” 23◦9′10” 23◦8′43” 23◦9′45” 23◦9′10”
Lon.(E) 112◦55′22” 112◦55′47” 112◦55′47” 112◦55′41” 112◦57′15” 112◦55′22” 112◦55′41” 112◦57′15”

rock type syenite syenite syenite syenite syenite trachyte comendite trachyte syenite,
n = 20

syenite,
n = 17

group enclave enclave enclave enclave enclave host host host enclave enclave

SiO2 63.84 63.58 63.19 63.77 63.26 64.51 71.74 65.47 62.10 62.77
TiO2 0.49 0.46 0.47 0.44 0.51 0.36 0.42 0.31 0.64 0.62

Al2O3 17.03 15.77 16.11 16.56 16.10 15.66 12.51 15.55 15.72 16.89
FeOt 5.09 6.64 6.60 5.21 6.46 4.58 3.81 4.47 6.12 3.99
MnO 0.06 0.12 0.12 0.08 0.09 0.05 0.01 0.09 0.24 0.22
MgO 0.14 0.28 0.27 0.17 0.32 0.10 0.21 0.09 0.20 0.57
CaO 0.86 0.69 0.73 0.62 0.77 0.17 0.11 0.52 0.59 1.10

Na2O 5.99 5.89 5.94 6.19 6.22 5.44 3.66 6.68 6.99 7.09
Na2O* 7.06 7.13 7.23 6.92 7.15
K2O 4.94 4.87 4.91 5.02 5.13 5.37 5.16 5.41 5.32 5.29
P2O5 0.05 0.02 0.03 0.03 0.04 0.04 0.02 0.04 0.04 0.09
LOI 1.42 1.34 1.53 1.71 1.03 2.74 1.44 0.44 1.14 0.61
Total 99.91 99.66 99.90 99.80 99.93 99.02 99.09 99.07 99.11 99.23
P.I. 1.00 1.08 1.07 0.94 0.98

The whole-rock chemical compositions of host rocks are from [41], Syenitic enclaves of Kilombe are from [34], and
syenitic enclaves of Azores are from [29,30]. LOI: Loss on ignition. P.I. (Peralkaline Index) = Na+K/Al, mol.

Compared with the host rocks or other peralkaline felsic volcanic rocks in the Sanshui
Basin, the variation of in the trace elements in the syenitic enclaves was restricted. The prim-
itive mantle normalized pattern (Figure 5a) showed that all syenitic enclaves had enriched
in high field strength elements (HFSE, such as Zr, Hf, Nb, and Ta) and were depleted in Ba,
Sr, P, Eu, and Ti, which indicated the fractional crystallization of plagioclase, alkali feldspar,
apatite, and Fe–Ti oxides during the magmatic evolution process, which was similar to
what occurred with the host rocks. The chondrite normalized rare earth element pattern
(Figure 5b) showed that the syenitic enclaves in the Sanshui Basin were characterized by
moderate LREE enrichment relative to HREE, with (La/Yb)N ratios of 12.3–19.8, negative
Eu anomalies (Eu/Eu* = 0.16–0.21) and various Ce anomalies (Ce/Ce* = 0.37–1.30), which
was considered to be the result of hydrothermal alteration [41,49].
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Table 2. Trace elements composition of the syenitic enclaves of the Sanshui Basin.

Sample 19ss036-1 19ss037-2a 19ss037-2b 20ss020-1 20ss022-1 19ss036-1 20ss020-1 20ss022-1 Kilombe,
Kenya

Azores,
Portugal

Rock
Type Syenite Syenite Syenite Syenite Syenite Trachyte Comendite Trachyte Syenite,

n = 20
Syenite,
n = 17

Group Enclave Enclave Enclave Enclave Enclave Host Host Host Enclave Enclave

Ba 98.00 65.20 75.60 88.10 72.30 40.90 61.10 19.70 48.70 61.00
Be 4.51 4.19 3.97 4.11 4.62 6.22 7.69 7.91 4.11
Co 0.60 1.00 1.00 0.80 0.90 21.40 0.30 0.60 4.16
Cr 1 1 1 1 1 1.3 3 2
Cs 0.58 2.60 2.35 0.52 1.67 0.81 2.98 2.56 0.91 1.44
Ga 40.70 41.90 40.60 39.10 39.80 46.90 50.70 45.30 35.55 29.57
Hf 21.20 23.10 20.80 20.10 20.40 42.50 52.10 25.00 14.40 25.36
Nb 188 177 166 179 176 272 336 164 195 217
Ni 0.5 0.3 0.3 0.5 0.4 0.8 1.2 1.8
Pb 10.00 9.20 12.40 9.30 10.80 19.50 13.60 10.40
Rb 166 219 193 160 188 229 306 176 137 186
Sr 22.80 16.20 16.00 19.80 21.10 9.03 14.50 7.20 11.85 79.15
Ta 9.50 11.60 9.50 9.10 9.90 17.40 20.90 9.40 11.57 13.67
Th 19.35 22.30 21.40 18.20 23.30 36.90 49.50 19.45 18.31 25.64
U 3.25 2.74 2.33 3.01 2.45 5.16 5.20 3.54 5.03 7.97
V 17 5 6 14 8 1.33 2.0 1.0 35.75
Zr 972 997 883 903 913 1834 2360 1190 558 1119
Y 96 94 85 92 90 165 205 171 44 56
La 245 183 155 215 204 227 439 416 145 157
Ce 313 130 398 301 170 267 167 723 175 292
Pr 54 37 33 50 39 47 82 91 24 30
Nd 191 128 116 173 128 167 297 315 81 103
Sm 32.50 20.80 19.10 29.30 20.10 32.30 57.30 59.00 11.91 16.04
Eu 1.79 1.05 1.17 1.66 1.29 1.18 3.10 5.46 1.34 1.62
Gd 24.70 18.00 16.10 22.90 15.97 27.70 49.30 45.40 10.04 13.27
Tb 3.62 3.00 2.69 3.35 2.63 5.46 7.23 6.97 1.42 2.04
Dy 20.10 18.20 15.95 18.80 15.87 29.20 38.30 35.30 8.19 11.21
Ho 3.53 3.47 3.10 3.28 3.03 5.71 7.01 6.39 1.59 2.11
Er 9.66 10.05 8.98 8.91 8.77 16.50 19.00 16.80 4.82 6.21
Tm 1.35 1.48 1.34 1.28 1.37 2.92 2.72 2.38 0.89 0.94
Yb 8.88 9.99 9.02 8.21 8.94 17.80 17.60 14.65 6.15 6.27
Lu 1.28 1.47 1.31 1.18 1.30 2.42 2.52 2.20 1.02 0.93

LaN/YbN 19.79 13.10 12.33 18.78 16.37 9.15 17.89 20.37 16.89 17.99
Ce/Ce* 0.64 0.37 1.30 0.69 0.44 0.60 0.20 0.87 0.66 0.97
Eu/Eu* 0.19 0.16 0.20 0.19 0.21 0.12 0.17 0.31 0.36 0.33
Nb/U 58 64 71 59 72 53 65 46

Ce/Ce* = 2CeN/(LaN + PrN), Eu/Eu* = 2EuN/(SmN + GdN), normalized from [50].

4.3. Mineral Geochemistry

We performed a mineral chemical analysis on the syenitic enclaves and the results are
listed in the Tables 3–5.

Alkali feldspars were mainly classified as sanidine and anorthoclase (Figure 6a) with
An0–6Ab53–74Or22–44. The absence of an obvious zoned texture and the relatively stable
composition of the alkali feldspars (Or variation < 5) indicated that they were in equilibrium
with the host melt. The An content of alkali feldspars exhibited low (An = 0–6), and the Or
values of the alkali feldspars in the syenitic enclaves hosted in the comendite varied more
than in the trachyte (Table 3).
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Figure 6. Mineral compositions of the syenitic enclaves. (a) Feldspar composition plotted into the
ternary An-Ab-Or system, isotherm lines are from [51]; (b) clinopyroxene composition plotted into the
Wo-En-Fs system after [52]; (c) sodium-calcium amphibole composition plotted in scheme diagram;
(d) sodium amphibole composition plotted in scheme diagram after [53], B(Ca+Σ2+): Sum of Ca2+,
Fe2+, and Mg2+ cations at B site in amphibole, ΣB: Sum of total cations at B site in amphibole.

Clinopyroxene was only observed in the enclaves (20ss022-1, 19ss036-1), and the
clinopyroxenes were characterized by Mg# (Mg/Mg + Fe × 100) = 30–39 and a com-
positional range of Wo43-45En17-21Fs34-39 with low Na contents (<0.45 apfu, atoms per
formula unit), which was similar to the equilibrium clinopyroxenes in the host trachyte [57].
Aegirine observed in the alkaline feldspar framework (Figure 3h) had a composition of
Q18Jd0Aeg82, and Na apfu = 0.95.

According to the nomenclature of Hawthorne [53], amphiboles in the syenitic enclaves
are classified as sodium-calcium and sodium amphiboles (Figure 6c,d) by using the machine
learning method [58]. The amphiboles exhibited higher F concentrations (0.43–0.91 apfu)
than the Cl concentrations (<0.021 apfu), and high Fe2+/(Fe2+ + Mg2+) ratios (0.97 to 0.99),
which was similar to that of the amphiboles in A-type granite [59].
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Table 3. Electron microprobe analyses of alkaline feldspar for the syenetic enclaves in the Sanshui Basin.

Point 036-2-1 036-2-2 036-2-3 036-2-4 036-2-5 022-2-1 022-2-2 022-2-3 022-2-4 020-2-1 020-2-2 020-2-3 020-2-4 020-2-5 020-2-6

SiO2 66.77 67.49 66.95 65.87 66.60 67.76 67.27 68.40 65.36 66.83 66.46 66.83 67.81 67.69 66.95
TiO2 0.05 0.02 0.02 0.05 0.03 0.06 0.04 0.02 0.07 0.04 0.11 0.00 0.05 0.13 0.06

Al2O3 18.47 18.57 18.82 18.87 19.32 18.49 18.74 17.70 18.84 19.60 18.70 17.84 18.16 18.49 17.84
FeOt 0.18 0.42 0.26 0.20 0.23 0.37 0.15 0.27 0.42 0.32 0.14 0.92 0.26 0.23 0.26
MnO 0.01 0.01 0.03 0.00 0.00 - 0.03 0.00 0.00 0.00 0.02 0.00 0.02 0.00 0.01
CaO 1.19 0.18 0.12 0.76 0.44 0.34 0.70 0.25 0.56 0.86 0.68 0.00 0.27 0.71 0.66

Na2O 6.89 6.85 6.93 7.59 7.96 7.46 6.93 8.18 8.45 8.90 6.96 6.44 8.32 8.26 6.32
K2O 5.49 5.67 7.27 5.82 5.60 5.89 5.16 5.45 5.55 4.13 6.80 7.84 5.42 4.81 7.88
Total 99.04 99.21 100.41 99.16 100.17 100.39 99.01 100.27 99.25 100.68 99.87 99.86 100.31 100.31 99.97

Formulae on basis of 8 oxygens
Si 3.003 3.022 2.993 2.973 2.971 3.012 3.013 3.039 2.957 2.956 2.985 3.017 3.016 3.004 3.015
Ti 0.002 0.001 0.001 0.002 0.001 0.002 0.001 0.001 0.002 0.001 0.004 0.000 0.002 0.004 0.002
Al 0.979 0.984 0.992 1.004 1.016 0.969 0.989 0.927 1.004 1.022 0.990 0.949 0.952 0.967 0.947

Fe3+ 0.007 0.016 0.010 0.008 0.009 0.014 0.006 0.010 0.016 0.012 0.005 0.035 0.010 0.009 0.010
Mn 0.001 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.001 0.000 0.001 0.000 0.000
Ca 0.057 0.008 0.006 0.037 0.021 0.016 0.034 0.012 0.027 0.041 0.033 0.000 0.013 0.034 0.032
Na 0.600 0.598 0.600 0.665 0.688 0.643 0.602 0.705 0.741 0.764 0.606 0.563 0.718 0.711 0.552
K 0.315 0.325 0.414 0.335 0.319 0.334 0.295 0.309 0.320 0.233 0.389 0.451 0.307 0.272 0.453

total 4.964 4.955 5.017 5.022 5.024 4.990 4.940 5.003 5.068 5.028 5.014 5.015 5.018 5.000 5.011
An 6 1 1 4 2 2 4 1 3 4 3 0 1 3 3
Ab 62 64 59 64 67 65 65 69 68 74 59 56 69 70 53
Or 32 35 41 32 31 34 32 30 29 22 38 44 30 27 44
T 872 877 866 877 883 891 890 899 898 871 841 834 862 864 828

An = Ca/(Ca+Na+K) × 100, Ab = Na/(Ca+Na+K) × 100, Or = K/(Ca+Na+K) × 100. T = thermometeric
calculations based on [54], T is in ◦C.

Table 4. Electron microprobe analyses of clinopyroxenes and thermobarometric calculations for the
syenetic enclaves in the Sanshui Basin.

Piont 022-1 022-2 022-3 022-4 022-5 022-6 036-1 036-2 036-3 036-4 036-5 036-6 036-1

SiO2 48.91 49.38 49.15 48.14 49.45 49.65 49.58 49.88 49.87 48.97 49.77 49.88 51.03
TiO2 0.59 0.51 0.49 0.56 0.60 0.48 0.34 0.33 0.44 0.52 0.39 0.29 0.03

Al2O3 0.39 0.33 0.32 0.32 0.51 0.42 0.31 0.35 0.32 0.32 0.39 0.36 0.16
FeO 20.97 21.49 21.89 22.55 19.78 22.15 20.67 21.15 21.35 22.57 22.19 20.87 33.64
MnO 0.84 0.91 0.98 0.89 0.82 0.92 0.87 0.94 0.92 0.90 0.98 0.83 2.04
MgO 6.97 6.41 6.84 5.77 7.12 5.46 7.05 6.42 6.33 5.63 5.61 6.76 0.01
CaO 21.00 20.01 19.98 20.95 20.47 19.83 20.15 20.38 19.78 20.30 19.53 20.45 1.01

Na2O 0.39 0.41 0.43 0.38 0.37 0.62 0.46 0.58 0.44 0.43 0.50 0.54 11.39
Total 100.05 99.45 100.08 99.56 99.14 99.52 99.44 100.03 99.44 99.64 99.36 99.97 99.31

Formulae on basis of 6 oxygens
Si 1.945 1.972 1.956 1.942 1.967 1.985 1.973 1.977 1.986 1.965 1.991 1.976 2.121
Ti 0.018 0.015 0.015 0.017 0.018 0.014 0.010 0.010 0.013 0.016 0.012 0.009 0.001
Al 0.018 0.016 0.015 0.015 0.024 0.020 0.015 0.016 0.015 0.015 0.019 0.017 0.008

Fe3+ 0.129 0.063 0.115 0.143 0.052 0.043 0.081 0.079 0.030 0.083 0.022 0.084 0.922
Fe2+ 0.561 0.651 0.607 0.609 0.603 0.695 0.602 0.618 0.680 0.669 0.720 0.602 0.157
Mn 0.028 0.030 0.033 0.031 0.028 0.031 0.029 0.031 0.031 0.031 0.033 0.028 0.072
Mg 0.413 0.380 0.406 0.347 0.422 0.325 0.418 0.380 0.376 0.337 0.335 0.399 0.000
Ca 0.895 0.853 0.852 0.905 0.872 0.849 0.859 0.866 0.844 0.873 0.837 0.868 0.045
Na 0.030 0.032 0.033 0.030 0.029 0.048 0.036 0.044 0.034 0.033 0.038 0.042 0.917

Total 4.036 4.012 4.032 4.039 4.015 4.012 4.023 4.022 4.008 4.023 4.006 4.023 4.243
Wo 45 44 43 45 45 44 44 45 44 44 44 44 4
En 21 20 20 17 22 17 21 20 19 17 17 20 0
Fs 35 37 36 38 34 39 35 36 37 38 39 35 96
T1 - - - - - 880 - - 898 - 880 - -
P1 0.61 0.72 0.67 0.89 0.53 1.14 0.32 0.23 0.29 0.36 0.58 0.20 -
T2 867 869 867 867 888 867 869 867 875 867 870 883 -
P2 1.28 1.50 1.50 1.50 1.50 1.13 1.33 1.03 1.17 1.25 1.25 1.07 -
T3 936 938 935 925 940 925 877 875 875 867 869 876 -
P3 2 2 2 2 2 2 2 2 2 2 2 2 -

Wo = Ca/(Ca + Mg + Fe) × 100, En = Mg/(Ca + Mg + Fe) × 100, Fs = Fe/(Ca + Mg + Fe) × 100.
T1 and P1= thermobarometric calculations based on cpx-melt model [55], T2 and P2 = thermobarometric calcula-
tions based on cpx-only model [56], T3 and P3 = thermobarometric calculations based on cpx-melt model [56], T is
in ◦C and P is in kbar.
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Table 5. Electron microprobe analyses of amphibole for the syenetic enclaves in the Sanshui Basin.

Point 022-1-1 022-1-2 022-1-3 022-1-4 036-1-1 036-1-2 036-1-3 036-1-4 037-1-1 037-1-2 037-1-3 037-1-4 037-1-5

SiO2 49.75 50.38 48.93 49.63 49.96 49.25 48.27 49.72 48.67 48.88 49.50 50.14 49.08
TiO2 0.30 0.94 1.01 0.67 0.78 1.13 0.60 0.70 0.47 0.65 0.74 0.64 0.76

Al2O3 0.19 0.39 0.49 0.56 0.33 0.49 0.37 0.53 0.54 0.62 0.45 0.46 0.59
FeOt 34.50 35.56 33.98 34.15 34.13 33.57 35.83 34.24 35.21 35.99 34.69 34.45 34.11
MnO 1.29 1.06 1.20 1.17 1.37 1.17 1.07 0.90 1.08 0.88 0.92 1.16 1.19
MgO 0.13 0.11 0.21 0.25 0.27 0.29 0.19 0.27 0.31 0.27 0.29 0.30 0.28
CaO 1.72 2.95 2.73 2.69 2.19 2.32 2.35 2.67 2.66 2.65 1.89 2.08 2.68

Na2O 6.33 6.14 5.82 6.57 6.28 7.37 6.16 6.65 6.33 6.00 7.14 6.77 7.39
K2O 1.32 1.30 1.34 1.37 1.33 1.37 1.33 1.34 1.33 1.30 1.35 1.36 1.36

F 2.05 1.33 1.43 1.39 1.67 1.21 0.98 2.15 1.90 1.69 1.59 1.76 1.92
Cl 0.03 0.05 0.03 0.09 0.06 0.05 0.02 0.05 0.04 0.07 0.06 0.05 0.07

Total 96.73 99.66 96.57 97.94 97.64 97.71 96.76 98.30 97.73 98.26 97.93 98.42 98.60
Formulae on basis of 23 oxygens

Si 7.826 7.791 7.723 7.751 7.806 7.707 7.642 7.770 7.664 7.677 7.747 7.800 7.673
Al 0.137 0.150 0.237 0.197 0.147 0.235 0.325 0.176 0.299 0.283 0.199 0.146 0.274
Ti 0.011 0.045 0.023 0.038 0.027 0.048 0.016 0.037 0.015 0.022 0.041 0.036 0.037

T.sum 7.974 7.986 7.983 7.986 7.980 7.991 7.983 7.983 7.978 7.981 7.987 7.982 7.984
Al 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Ti 0.024 0.064 0.097 0.041 0.065 0.085 0.056 0.045 0.041 0.055 0.046 0.039 0.052

Fe3+ 1.204 1.071 1.121 1.087 1.167 1.083 1.233 0.999 1.175 1.128 1.079 1.114 1.109
Mn2+ 0.144 0.124 0.136 0.137 0.153 0.140 0.122 0.107 0.124 0.101 0.111 0.134 0.141
Mg 0.029 0.026 0.050 0.058 0.064 0.069 0.044 0.064 0.073 0.063 0.068 0.070 0.065
Fe2+ 3.340 3.540 3.360 3.434 3.321 3.397 3.422 3.529 3.438 3.514 3.474 3.408 3.448

C.sum 4.741 4.826 4.764 4.758 4.769 4.774 4.877 4.743 4.852 4.861 4.778 4.764 4.816
Mn2+ 0.028 0.015 0.025 0.018 0.027 0.015 0.021 0.012 0.021 0.016 0.012 0.019 0.016
Fe2+ 0.000 0.000 0.005 0.000 0.000 0.000 0.088 0.000 0.024 0.084 0.000 0.000 0.000
Ca 0.444 0.600 0.603 0.579 0.501 0.524 0.551 0.579 0.589 0.582 0.461 0.478 0.578
Na 1.568 1.426 1.433 1.533 1.532 1.644 1.409 1.527 1.427 1.352 1.599 1.578 1.597

B.sum 2.040 2.041 2.065 2.130 2.060 2.183 2.069 2.118 2.060 2.034 2.072 2.074 2.192
Na 0.364 0.414 0.348 0.455 0.371 0.592 0.482 0.488 0.505 0.474 0.566 0.462 0.642
K 0.275 0.263 0.278 0.279 0.275 0.278 0.276 0.273 0.275 0.268 0.275 0.277 0.278

A.sum 0.639 0.678 0.626 0.735 0.646 0.871 0.758 0.761 0.780 0.742 0.841 0.739 0.919
F 0.912 0.587 0.636 0.618 0.739 0.543 0.434 0.972 0.855 0.758 0.714 0.782 0.869
Cl 0.007 0.013 0.007 0.021 0.016 0.012 0.005 0.013 0.010 0.017 0.014 0.013 0.018

Name Arf Ktp Ktp Ktp Ktp Arf Ktp Ktp Ktp Ktp Arf Arf Ktp

T.sum, C.sum, B.sum, A.sum are the sum of cation at T site, C site, B site, and A site, respectively.
Arf = Arfvedsonite, Ktp = Katophorite.

4.4. Thermobarometeric Calculation

To estimate the syenitic enclaves’ crystallization condition and magmatic evolution, we
performed a series of thermobarometric calculations on the syenitic enclaves to determine
the magma crystallization condition.

The crystallization temperature of the syenitic enclaves was estimated by using clinopy-
roxene (cpx)-melt [55,56], cpx-only [56], and alkaline feldspar-melt [54] thermometers.
When calculating the values obtained from the cpx-melt thermometer, we used an initial
H2O content of 4.5 wt% and pressure of 1.5 kbar, and the calculation results showed that the
crystallization temperature ranged from 880 ◦C to 897 ◦C. The cpx-melt and cpx-only ther-
mometers, which were based on random-forest machine learning, did not need additional
conditions in the calculation [56]; the cpx-only thermometer provided a consistent estimate
of 867–888 ◦C, and cpx-melt thermometer results showed crystallization temperatures
ranging 867 ◦C to 877 ◦C for 19ss036-1 and exceeding 925 ◦C for 20ss022-1, which may have
been related to the variations of melt composition. Similar results were calculated when
using the alkaline feldspar-melt thermometer, with temperatures ranging 872 ◦C to 883 ◦C
in 19ss036-1, 891 ◦C to 898 ◦C in 20ss022-1, and 828 ◦C to 871 ◦C in 20ss020-1.

The pressure of the syenitic enclaves were estimated by using cpx-melt [55,56] and cpx-
only [56] barometer; the cpx-melt barometric calculations showed crystallization pressures
ranged 0.17 to 1.14 kbar, the cpx-only barometric calculations showed a higher pressure of
1.07–1.50 kbar, and the cpx-melt barometer provided an estimate of 2 kbar. The thermo-
barometric results showed that, assuming a pressure to depth conversion of 2.8 km/kbar,
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syenitic enclaves crystallized in the shallow crust which were similar to the results of the
volcanic rock calculations [57].

5. Discussion
5.1. Geochemical Characterization of the Syenitic Enclaves

The syenitic enclaves in the peralkaline volcanic rocks were ferroan and alkaline,
corresponded to the A-type granite [48]; these rocks mainly formed in an extensional
tectonic setting [60]. On the Th/Ta vs. Yb diagrams [61], the syenitic enclaves fell in the
intraplate volcanic rock field (Figure 7a), which is consistent with the tectonic context of
the bimodal volcanic rocks [39,43]. The Rb vs. Ta + Yb [62], (Th/Ta)N vs. (Y/Nb)N [63],
and Zr vs. 10,000 Ga/Al [60] diagrams indicated that they formed in an intraplate setting
similar to the host trachyte and comendite. The Nb/Y vs. Nb + Y diagram [64] and the
Nb-Y-3Ga ternary diagram [60] were clustered in the A1-type rhyolite field, which indicated
that they developed in a continental rift tectonic setting. The high FeO and low Al2O3
content in the amphibole also indicated that they formed in anorogenic tectonic setting [65].
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(e) Nb/Y vs. Nb + Y diagram after [64]. (f) Nb-Y-Ce diagram after [60]. A1 field represents mantle-
derived granites, A2 field represents crustal-derived granites.

5.2. Petrogenesis of the Syenitic Enclaves

The syenitic enclaves had a high Nb/U ratio (Table 2) and Nb-Ta enrichment, which
was similar to the characteristics of the basaltic rocks in the Sanshui Basin [39,43]; this
indicated that the syenitic enclaves had a genetic relationship with the basaltic rocks. The
Pb anomaly was not obvious, which indicated insignificant contamination by the crustal
materials [66]. The Ba, Sr, P, Eu, and Ti depletion reflected the fractional crystallization of
plagioclase, alkaline feldspar, apatite, and Fe-Ti oxides during the magmatic evolution. In
addition, the low concentrations of transition metal elements (Ni, Co, Cr, Sc) also indicated
the crystallization of mafic minerals (olivine, clinopyroxene). Therefore, mass-balance and
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thermodynamic modeling were applied to investigate whether the syenitic composition
could be created from the basaltic parental magma via fractional crystallization.

The basalt sample 14ss012-1 [67], which had a higher MgO content (7.35 wt%), was
selected as the parental composition for the mass-balance calculation. The mass-balance
calculation results showed that the sum of the squared residuals was 0.85 (Table 6), which
indicated that syenite can be produced via fractional crystallization. The calculated results
indicated that the evolution from 14ss012-1 to 19ss036-1 could be calculated via 74%
fractional crystallization of a phase assemblage including olivine (11%), clinopyroxene
(14%), plagioclase (39%), apatite (2%), magnetite (5%), and ilmenite (3%). The calculated
trace element concentrations were broadly compatible with the results of 74% fractional
crystallization of the syenitic enclaves, the diversity in the various trace elements may have
been caused by the presence of accessory minerals or alterations (Table 6 and Figure 8).

Table 6. Mass-balance modeling input parameters and results.

Model 14ss012-1 19ss036-1 Cpx Ol Pl Ap Ilm Mag Odiff Cdiff RES

SiO2 47.41 64.12 48.56 38.25 51.39 0.21 0.28 0.27 16.72 16.50 0.22
TiO2 2.79 0.49 1.4 0 0.13 0.09 51.89 26.65 −2.30 −2.42 0.12

Al2O3 17.07 17.11 6.87 0.03 30.32 0.02 0.11 0.94 0.04 0.00 0.03
FeOt 10.00 5.11 7.22 22.86 0.61 0.8 45.25 70.58 −4.89 −5.01 0.11
MnO 0.15 0.06 0.13 0.35 0.01 0.1 0.74 1.45 −0.09 −0.11 0.02

MgO 7.31 0.14 14.78 38.15 0.08 0.36 1.51 0.05 −7.17 −7.18 0.01
CaO 8.76 0.86 20.44 0.24 12.75 52.24 0.14 0.03 −7.90 −7.87 −0.03

Na2O 3.50 7.09 0.58 0.06 4.04 0.09 0.03 0.03 3.59 3.62 −0.03
K2O 2.26 4.96 0.02 0.05 0.65 0.03 0.06 0 2.70 3.43 −0.73
P2O5 0.74 0.05 0 0 0.03 46.07 0 0 −0.69 −0.97 0.28
Total 100.00 100.00 100 100 100 100 100 100
SSR 0.59
Wt% 11.44 14.46 39.30 2.14 2.57 4.53 74.45
Nb 89.7 188 188 302 114
ZrS 150 972 972 539 −433
Sr 874 22.8 22.8 3 −19.8
Rb 45.8 165 165 164 −1
Y 26.1 96 96 96 0
Ni 90 0.5 0.5 0 −0.5
Th 3.8 19.4 19.4 14 −5.4

Minerals 2023, 13, x FOR PEER REVIEW 14 of 21 
 

 

Table 6. Mass-balance modeling input parameters and results. 

Model 14ss012-1 19ss036-1 Cpx Ol Pl Ap Ilm Mag Odiff Cdiff RES 
SiO2 47.41 64.12 48.56 38.25 51.39 0.21 0.28 0.27 16.72 16.50 0.22 
TiO2 2.79 0.49 1.4 0 0.13 0.09 51.89 26.65 −2.30 −2.42 0.12 
Al2O3 17.07 17.11 6.87 0.03 30.32 0.02 0.11 0.94 0.04 0.00 0.03 
FeOt 10.00 5.11 7.22 22.86 0.61 0.8 45.25 70.58 −4.89 −5.01 0.11 
MnO 0.15 0.06 0.13 0.35 0.01 0.1 0.74 1.45 −0.09 −0.11 0.02 
MgO 7.31 0.14 14.78 38.15 0.08 0.36 1.51 0.05 −7.17 −7.18 0.01 
CaO 8.76 0.86 20.44 0.24 12.75 52.24 0.14 0.03 −7.90 −7.87 −0.03 
Na2O 3.50 7.09 0.58 0.06 4.04 0.09 0.03 0.03 3.59 3.62 −0.03 
K2O 2.26 4.96 0.02 0.05 0.65 0.03 0.06 0 2.70 3.43 −0.73 
P2O5 0.74 0.05 0 0 0.03 46.07 0 0 −0.69 −0.97 0.28 
Total 100.00 100.00 100 100 100 100 100 100    

SSR           0.59 
Wt%   11.44 14.46 39.30 2.14 2.57 4.53   74.45 
Nb 89.7 188       188 302 114 
ZrS 150 972       972 539 −433 
Sr 874 22.8       22.8 3 −19.8 
Rb 45.8 165       165 164 −1 
Y 26.1 96       96 96 0 
Ni 90 0.5       0.5 0 −0.5 
Th 3.8 19.4       19.4 14 −5.4 

The parental composition of 14ss012-1 and mineral geochemical composition are 
from [67], Ol = olivine, Cpx = clinopyroxene, Pl = plagioclase, Ap = apatite, Ilm = ilmenite, 
Mag = magnetite. Odiff = observed different, Cdiff = calculated different, SSR = the sum of 
the squared residuals, and Wt% = the weight % of removed phase. Trace element calcula-
tion based on the Rayleigh fractionation model, and the mineral partition coefficients were 
cited from the GERM Database (https://kdd.earthref.org/KdD/ (accessed on 20 April 2023) 
and showed in Table S1. 

 
Figure 8. Trace elements variation diagrams with fractional crystallization model for the syenetic 
enclaves from the Sanshui Basin. (a) Nb vs. Sr, (b) Y vs. Th. Circled intervals represent 10 % frac-
tionation. Partition coefficients were calculated from Table 6. 

The thermodynamic magma chamber simulator (MCS) [68] was applied to model the 
fractional crystallization from the basaltic to syenitic magma. Basalt (17ss060-1, [69]) was 
selected as the starting composition. The basalt was not primitive [70] due the low Ni (less 
than 130 ppm), Cr (less than 247 ppm), and Mg# (42–61) [67] content, which indicated that 
basaltic magma underwent fractional crystallization of olivine and clinopyroxene. The 

Figure 8. Trace elements variation diagrams with fractional crystallization model for the syenetic
enclaves from the Sanshui Basin. (a) Nb vs. Sr, (b) Y vs. Th. Circled intervals represent 10%
fractionation. Partition coefficients were calculated from Table 6.



Minerals 2023, 13, 590 14 of 20

The parental composition of 14ss012-1 and mineral geochemical composition are
from [67], Ol = olivine, Cpx = clinopyroxene, Pl = plagioclase, Ap = apatite, Ilm = ilmenite,
Mag = magnetite. Odiff = observed different, Cdiff = calculated different, SSR = the sum of
the squared residuals, and Wt% = the weight % of removed phase. Trace element calculation
based on the Rayleigh fractionation model, and the mineral partition coefficients were cited
from the GERM Database (https://kdd.earthref.org/KdD/ accessed on 20 April 2023) and
showed in Table S1.

The thermodynamic magma chamber simulator (MCS) [68] was applied to model the
fractional crystallization from the basaltic to syenitic magma. Basalt (17ss060-1, [69]) was
selected as the starting composition. The basalt was not primitive [70] due the low Ni (less
than 130 ppm), Cr (less than 247 ppm), and Mg# (42–61) [67] content, which indicated
that basaltic magma underwent fractional crystallization of olivine and clinopyroxene.
The oxygen fugacity of the starting composition was set under the fayalite–magnetite–
quartz (FMQ) buffer, the oxygen fugacity of cogenetic trachyte calculated by Chen [41],
and the pressure and initial water content were 1 kbar and 0.5–2 wt%, respectively. The
liquidus temperature was 1130 ◦C when the olivine crystallized, followed by plagioclase,
clinopyroxene, magnetite, apatite, and ilmenite. The approximate composition range of the
syenitic enclave was 880 ◦C to 930 ◦C (Figure 9), which corresponded to 64–69 wt% of the
total crystalline phase, including olivine (~5 wt%), clinopyroxene (~20 wt%), plagioclase
(34–38 wt%), apatite (~0.5 wt%), magnetite (~11 wt%), and ilmenite (~0.5 wt%), which was
similar to the major elements mass-balance result, which again indicated the genesis of the
fractional crystallization of the syenitic enclaves.
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5.3. Origin of the Syenitic Enclaves

The geochemical characteristics of the syenitic enclaves host rocks in the Sanshui
Basin suggested that they were produced via prolonging fractional crystallization from
the basaltic magma in the shallow crust [39,44]. Many similarities in the geochemical

https://kdd.earthref.org/KdD/
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characteristics of the syenitic enclaves and their host rocks existed, this combined with
their similar mineral assemblages and mineralogical characteristics demonstrated that the
syenitic enclaves were crystallized from the same magma chamber with the peralkaline
felsic volcanic rocks, and thus were “cogenetic”. Three models of the magmatic enclaves
crystallized from the cogenetic magma are advocated: (1) the cumulated crystals of early
minerals [11,13], (2) the injection of cogenetic magma [32], and (3) the fragment of marginal
crystalline phases [29,30,37]. The distinctive boundaries, alkali feldspar grain size plunges,
fibrous alkaline feldspar, and acicular amphibole were observed at the boundary of the
host trachyte/comendite and syenitic enclaves. We think that the syenitic enclaves likely
originated from the crystallization of the cogenetic trachytic magma, and the main evidence
for this is as follows:

Petrographically, no cumulated and compacted crystal textures of tabular alkali
feldspar were observed in the thin sections (Figure 3). Additionally, no glass component
was observed in the alkali feldspar framework, but rather anhedral sodium hornblende
and aegirine, which indicated that the syenite formed via crystallization or nearly crys-
tallization. Syenitic enclaves are mainly found in trachyte, followed by comendite. Due
to the similar crystallization temperature and pressure conditions of syenite and trachyte
were estimated [57], if the two types of magmas mix, rocks with different crystallinity are
unlikely to form. Thus, the undercooling texture of syenitic enclaves hosted in trachyte
(Figure 3c,d) may indicate an earlier interaction with the cold wall-rock rather a trachytic
magma injection. Therefore, the syenite enclaves hosted in the trachyte were more likely
originated from earlier crystallization prior to the trachytic magma [29,37], the granular
and porphyritic structures were probably represented the various temperatures within
the magma chamber, and the alkali feldspar in the syenite coursing in a relatively stable
temperature and pressure condition compared with the syenite porphyry. If the syenitic
magma mixed with the comenditic magma, the hotter syenitic magma injected into the
colder comenditic magma, a high degree of undercooling would have led to the undercool-
ing textures in the syenitic enclaves, and this would have led to the buildup of volatiles and
second boiling in the comenditic melt [32,71]. As a result, many vesicles and undercooling
textures would have been formed in syenitic enclaves as in Pantelleria [32]. However, the
magmatic enclaves hosted in both trachyte and comendite in the Sanshui Basin had few
vesicles, and the enclaves with an undercooling texture only were observed in the enclaves
hosted in trachyte (19ss036, Figure 3c,d). Therefore, we think that the syenitic enclaves may
resulted from the in situ crystallization of earlier trachytic magma batches.

Geochemically, the major element and trace element characteristics of the syenitic
enclaves were similar to those of the host trachyte; namely, they had a similar SiO2 con-
tent as well as trace element and rare earth element normalized patterns. More than 85%
alkaline feldspar was in syenitic enclaves, and the negative Eu anomaly would have been
insignificant or even positive if these syenitic enclaves had cumulated genesis, the accumu-
lation of alkaline feldspaer would have buffered the negative Eu anomaly [29] owing the
higher Eu partition coefficient (KdEu

afs/liq = 0.37), compared with Sm (KdSm
afs/liq = 0.03)

and Gd (KdGd
afs/liq = 0.03) [72].However, Eu anomalies of the syenitic enclaves were not

significantly correlated with their host rock; the syenitic enclaves exhibited equal and lower
Eu anomalies than those of the trachytes in the Sanshui Basin. Therefore, the syenitic
enclaves were unlikely to be the cumulated crystal genesis.

Earlier researchers have suggested that syenitic enclaves in alkaline volcanic systems
are caused by in situ crystallization [29,30,34,37]. Some researchers describe these cogenetic
enclaves as “autoliths” (auto = self, lith = stone) [13,29], whereby the name represents the
fact that they have the same origin as the host rock.

5.4. Implications for the Alkaline Volcanic System

The bimodal volcanic rocks in the Sanshui Basin provide a unique opportunity to
study the magma plumbing system of alkaline volcanic systems in continental rifts, and
studying syenitic enclaves is essential to refine the magma plumbing system.
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The clinopyroxene in the basalt suggested the presence of a basaltic magma reservoir
that continues from the lower crust to the shallow crust [57]. Both the geochemical and
thermometer results indicated that the felsic volcanic rocks and syenitic enclaves were
products of the basaltic magma that underwent protracted fractional crystallization in the
magma reservoir of the upper crust depths. They had similar mineral assemblages: both
were dominated by alkali feldspar, followed by sodium amphibole and clinopyroxene,
and minor Ti-Fe oxides. In the deep magma reservoir, the basaltic magma continuously
underwent fractional crystallization and evolved to trachytic magma; when a batch of
trachytic magma is produced, this trachytic magma is first in situ crystallized on the
roof and walls of the magma reservoir as a crust [37], and it simultaneously forms a
barrier against the exchange of energy and material between trachytic magma and wall-
rocks (Figure 10). The underplated basaltic magma maintained near crystallization and
provided materials for the upper magma reservoirs, which allowed the trachytic melt
to remain in the shallow crustal reservoir longer and thereby eventually forming the
bimodal volcanic rocks [29,37]. Thus, the cogenetic syenitic enclaves and trachyte were
formed under different crystallization conditions within the magma reservoir, syenitic
enclaves were formed via in situ crystallization on the roof and walls of the magma
reservoir where heat and energy were most easily lost, and trachyte and comendite resulted
from surface eruptions, which is similar to how the enclaves in the volcanic rocks of the
Pantelleria, Azores, and East African rift valleys are formed [30,32,34,35,37] The high Mg#
clinopyroxene in host trachyte and the embayed alkali feldspar phenocryst in trachyte
and comendite suggest magma recharge [57] and mixing, whereby the injection of basaltic
magma triggered local heating and eventually induced a trachytic and comenditic magma
eruption, and the ascending trachytic and comenditic magma disaggregated the in situ
syenitic crystallized crust, which was brought to the surface as syenitic enclaves.
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6. Conclusions

1. The peralkaline felsic volcanic rocks in the Sanshui Basin commonly contain syenite
and syenite porphyry enclaves. The petrological, geochemical, and mineralogical
characteristics of the syenite and syenite porphyry enclaves indicated that they were
cogenetic with the host trachyte and comendite and were formed by the fractional
crystallization of the basaltic magma.

2. The syenitic enclaves are the results of in situ crystallization of the trachytic magma
in the shallow crust according to the thermobarometric calculation and petrological
texture. The recharge of the basaltic magma triggered a trachytic and comenditic
eruption, and the ascending trachytic and comenditic magma disaggregated the in
situ syenitic crystallized crust which was brought to the surface as syenitic enclaves.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/min13050590/s1, Table S1: Partition coefficients used for
trace element modeling [73–80].
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