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Abstract: The Longmaxi-1 black shales in the Upper Yangtze region are a vital source rocks in
southern China. This study investigates the palaeoweathering conditions, provenance, and tectonic
setting of the Longmaxi-1 black shale from an elemental geochemical perspective, ultimately revealing
its tectonic setting. The results showed that the Longmaxi-1 black shales in the sedimentary period
have the characteristics of primary deposition. The Longmaxi-1 black shales were deposited as a
primary deposition under a mainly humid climate. However, fluctuations in climatic conditions were
recorded from the bottom to the upper part of the formation. The parent rock of the Longmaxi-1 black
shales in the Upper Yangtze region is a mixture provenance, mainly composed of intermediate-acid
volcanic lithologies (granite and granodiorite), followed by mature quartzite and basalt. Black shale
deposition is related to the tectonic setting of active continental margin and island arc-continent
collision. The Cathayian orogenic belts and the North Qiangling orogenic belt may have played
a role in the genesis of the Longmaxi-1 black shales within the Upper Yangtze region. This study
provides significant clues regarding the reconstruction of the palaeoclimatic and palaeogeographical
conditions of the Upper Yangtze region during the Early Silurian period.

Keywords: Upper Yangtze region; Longmaxi-1 black shale; provenance analysis; elemental geochemistry

1. Introduction

Provenance analysis links the study of sedimentary basins and orogenic belts and
plays an essential role in exploring basin–mountain coupling. It involves determining
the palaeoweathering conditions, palaeoclimatic conditions of sedimentary rocks during
sedimentary periods, and the geodynamic background of the sedimentary rock’s devel-
opment [1–5]. Methods of provenance tracing include clastic component analysis, heavy
mineral analysis, clay mineral analysis, and geochemical element analysis. Due to their
homogeneity and low permeability, argillaceous sedimentary rocks (like black shales) re-
tain the geochemical signature of the parent rock and thus serve as an ideal medium for
provenance analysis. Therefore, the major and trace elements in shale can be used to reflect
the characteristics of the parent rock quantitatively, accurately indicating the source area
information, and revealing the tectonic setting of the shales [6–8].

In the Upper Yangtze region (southern China), two sets of organic-rich black shales,
known as the Wufeng Formation and Longmaxi Formation, were deposited during the Late
Ordovician to Early Silurian period. These shales are widely distributed and have a signifi-
cant thickness, making them a fundamental layer in developing shale gas in China [6–8].
They are considered a rich source of natural gas, which, if successfully extracted, could play
a critical role in satisfying China’s energy demands. In the past, the Wufeng Formation
and the lower Longmaxi Formation were often studied together. However, the frequent
geological events at the Ordovician–Silurian boundary, including the impact of the Guangxi
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movement [9–12], volcanic activities [13–15], and Hirnantian glaciation [16–19], caused
differential sedimentation in the Wufeng Formation and lower Longmaxi Formation. As
a result, these formations belong to different geological units with unique tectonic cycles.
Therefore, it is necessary to study each of these shales separately. This study focused on the
lower Longmaxi Formation (Longmaxi-1 Formation) black shales.

The research on the black shales of Longmaxi-1 in the Upper Yangtze region has
largely focused on aspects such as organic matter enrichment [20–25], stratigraphic se-
quence division [26–30], and siliceous rock genesis [2,25,31–33], with limited attention and
discussion given to its provenance analysis.

This investigation focused on the black shales of Longmaxi-1 within the core of the
well WY1 located in the Upper Yangtze region. Based on the geochemical characteristics of
its major and trace elements, the palaeoweathering conditions of the source area during the
deposition of the Early Silurian Longmaxi-1 in the area and the provenance and tectonic
setting are clarified. This study is of great significance for reconstructing the palaeoclimatic
and palaeogeographical conditions of the Upper Yangtze region in the Early Silurian period.

2. Geological Setting

During the Late Ordovician to Early Silurian period, the South China Plate, composed
of the Yangtze Block and the Cathaysia Block, was positioned near the palaeoequator and
experienced significant tectonic activity on the northwestern margin of Gondwana [34,35]
(Figure 1a). The conversion of the Upper Yangtze region from a shallow-water carbonate
platform in the Middle Ordovician to a foreland basin in the Early Silurian was influ-
enced by the convergence of the two tectonic blocks and the ongoing intracontinental
orogeny [11,12,36,37]. The presence of land masses, uplifts, and underwater plateaus
isolated the Upper Yangtze region from the open sea, resulting in a low-energy and oxygen-
deficient sedimentary environment. This physical isolation disrupted the exchange of water
and nutrients between the sea and land, favouring the preservation of organic matter and
leading to the widespread accumulation of organic-rich black shales in the lower Longmaxi
Formation. The black shales in Longmaxi-1 serve as a unique and valuable historical record
of the geological, environmental, and biotic conditions that existed in the region at the time
of its deposition (Figure 1b).

Minerals 2023, 13, x FOR PEER REVIEW 3 of 19 
 

 

 
Figure 1. Geological setting of the study sections. (a) Late Ordovician global palaeogeographic map 
[19,38,39]; (b) Late Ordovician–Early Silurian Palaeotectonic–Palaeogeographic Map of South China 
Plate [40]. Notes: Ⅰ—North China Plate; Ⅱ—Chuanzhong Uplift; Ⅲ—Qianzhong Uplift; Ⅳ—Motian-
ling uplift; Ⅴ—Hannan uplift; Ⅵ—Yichang uplift; Ⅶ—North Qinling orogenic belt; Ⅷ—
Cathaysia orogenic belt. (c) Schematic stratigraphic log showing the sample locations. 

3. Samples and Methods 
3.1. Sample 

Eighteen representative samples of Longmaxi-1 were collected from the core of well 
WY1 located at Neijiang City in Weiyuan County, Sichuan Province, China. As depicted 
in Figure 1c, the sampling interval averaged approximately 2–4 m. Longmaxi-1 can be 
divided into Longmaxi-11 (samples 1–15) and Longmaxi-12 (samples 16–18) in ascending 
order. The primary lithologies of the specimens include black shales and silty shales, 
among others. The well-preserved stratigraphic sequence facilitates an accurate represen-
tation of the ancient tectonic state. 
3.2. Analytical Methods 

Selected core samples were meticulously prepared for analysis through rough crush-
ing, rinsing with deionised water, drying, and pulverisation to obtain a fine powder. The 
powder was then passed through a 200-mesh sieve and stored in polypropylene bags for 
bulk rock compositional and total organic carbon (TOC) analyses. These analyses were 
conducted at the Research Institute of Exploration and Development of the PetroChina 
Southwest Oil & Gasfield Company in Chengdu. 

The major element analysis of the samples was conducted utilising X-ray fluores-
cence spectrometry (XRF, PANalytical Axios mAX, Almelo, Netherlands). Subsequently, 
the samples were digested with a mixture of HCl, HNO3, HF, and HClO4, and trace ele-
ments were analysed using an inductively coupled plasma mass spectrometer (ICP-MS, 
PerkinElmer NexION 350X, Waltham, MA, USA). The experimental procedures were in 
accordance with GB/T 14506-2010. 

Figure 1. Geological setting of the study sections. (a) Late Ordovician global palaeogeographic
map [19,38,39]; (b) Late Ordovician–Early Silurian Palaeotectonic–Palaeogeographic Map of South
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China Plate [40]. Notes: I—North China Plate; II—Chuanzhong Uplift; III—Qianzhong Uplift;
IV—Motianling uplift; V—Hannan uplift; VI—Yichang uplift; VII—North Qinling orogenic belt;
VIII—Cathaysia orogenic belt. (c) Schematic stratigraphic log showing the sample locations.

3. Samples and Methods
3.1. Sample

Eighteen representative samples of Longmaxi-1 were collected from the core of well
WY1 located at Neijiang City in Weiyuan County, Sichuan Province, China. As depicted
in Figure 1c, the sampling interval averaged approximately 2–4 m. Longmaxi-1 can be
divided into Longmaxi-11 (samples 1–15) and Longmaxi-12 (samples 16–18) in ascending
order. The primary lithologies of the specimens include black shales and silty shales, among
others. The well-preserved stratigraphic sequence facilitates an accurate representation of
the ancient tectonic state.

3.2. Analytical Methods

Selected core samples were meticulously prepared for analysis through rough crushing,
rinsing with deionised water, drying, and pulverisation to obtain a fine powder. The
powder was then passed through a 200-mesh sieve and stored in polypropylene bags for
bulk rock compositional and total organic carbon (TOC) analyses. These analyses were
conducted at the Research Institute of Exploration and Development of the PetroChina
Southwest Oil & Gasfield Company in Chengdu.

The major element analysis of the samples was conducted utilising X-ray fluorescence
spectrometry (XRF, PANalytical Axios mAX, Almelo, Netherlands). Subsequently, the sam-
ples were digested with a mixture of HCl, HNO3, HF, and HClO4, and trace elements were
analysed using an inductively coupled plasma mass spectrometer (ICP-MS, PerkinElmer
NexION 350X, Waltham, MA, USA). The experimental procedures were in accordance with
GB/T 14506-2010.

The total organic carbon (TOC) content of the samples was quantified using a LECO
CS-230 carbon–sulphur analyser (LECO Corporation, St. Joseph, MI, USA). Before analysis,
a sample aliquot of 100 mg was placed in a crucible with 5% HCl at 80 ◦C to eliminate any
presence of inorganic carbon. The analytical protocol adhered to the guidelines outlined in
GB/T 19145-2003.

To ensure the accuracy and precision of the analytical results, a robust quality con-
trol protocol was implemented. This included the utilisation of blank samples, replicate
analyses, and certified reference materials. The results obtained for all samples were rigor-
ously evaluated against the certified values of the reference materials, with a permissible
deviation of ±10%. Additionally, to ensure the reproducibility of the analyses, the relative
standard deviation (RSD) of the replicate measurements was stringently constrained to be
no more than 5%.

3.3. Data Presentation
3.3.1. Chemical Index of Alteration (CIA)

The chemical Index of Alteration (CIA) is widely used to determine the intensity of
palaeoweathering and palaeoclimatic characteristics in the provenance area [41]. If the
CIA value is between 85 and 100, it indicates solid chemical weathering, reflecting a hot
and humid palaeoclimate; if the CIA value is between 65 and 85, it indicates moderate
chemical weathering, reflecting a warm and humid palaeoclimate; if the CIA value is
between 50 and 65, it suggests that the provenance area was undergoing initial chemical
weathering, reflecting a cold and arid palaeoclimate. The calculation formula for the CIA is
as follows:

CIA = [n(Al 2O3)/(n(Al2O3) + n(K2O) + n(Na2O) + n(CaO∗ )] × 100 (1)
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Furthermore, calculating the weathering index requires the elimination of calcium
oxide (CaO) from non-silicate minerals as a preliminary step. This can be achieved by
utilising phosphorus pentoxide (P2O5) to extract CaO from phosphates, after which the
CaO* can be calculated. The calculation formula for the CaO* is as follows:

n(CaOremaining) = n(CaO) − n(P2O5) × 10/3 (2)

In this formula, if n(CaOremaining) < n(Na2O), then (CaO∗) = n(CaOremaining),
whereas if (CaOremaining) > n(Na2O), then (CaO∗) = n(Na2O).

3.3.2. Weathering Index of Parker (WIP)

Furthermore, the Weathering Index of Parker (WIP) can distinguish between initial
deposition and re-deposition of sediment. However, the usefulness of this index is limited
in cases of strong weathering [42,43]. A ratio of CIA/WIP greater than 10 suggests recurrent
cycles of sedimentation, while a ratio of CIA/WIP less than 10 indicates primary deposition.
The calculation formula for the WIP is as follows:

WIP = [2n(Na 2O)/0.35 + n(MgO)/0.9 + 2n(K2O)/0.25 + n(CaO∗)/0.7] × 100 (3)

3.3.3. Chemical Index of Weathering (CIW)

Additionally, the Chemical Index of Weathering (CIW) can effectively eliminate the
interference of K+ increases due to potassium metasomatism in sediments [44]. The CIW
value of Phanerozoic shale is close to 85. If the CIW value > 85, it indicated the chemical
solid weathering intensity, and the palaeoclimate in the source area tends to be warm and
humid. The calculation formula for the CIW is as follows:

CIW = [n(Al 2O3)/(n(Al2O3) + n(N2O) + n(CaO∗ )] × 100 (4)

3.3.4. Index of Compositional Variability (ICV)

The Index of Compositional Variability (ICV) can be employed to evaluate the presence
of recycled sediments in the provenance. Shale with low ICV values (less than or equal to
1) is likely derived from a sedimentary source area rich in clay minerals, suggesting that
re-deposition or severe weathering occurred after the initial sedimentation, leading to a
stronger influence from secondary effects. On the other hand, high ICV values (greater
than or equal to 1) indicate that the sediment was initially deposited during a period of
tectonic activity [45,46]. The calculation formula for the ICV is as follows:

ICV = [n(Fe 2O3) + n(K2O) + n(Na2O) + n(CaO∗) + n(MgO) + n(MnO) + n(TiO2 )]/n(Al2O3) (5)

4. Results
4.1. Major and Trace Element Contents

The major elements, which include SiO2, Al2O3, CaO, Fe2O3, K2O, and TiO2, are six
of the primary rock-forming elements found in the earth’s crust [47]. The content of SiO2,
Al2O3, and CaO can generally be correlated to three mineral components: quartz or brittle
minerals rich in SiO2, clay minerals, and carbonates, respectively [36]. These minerals play
a significant role in determining the overall composition and properties of rocks. Table 1
shows the major and trace element contents of the Longmaxi-1 black shales in well WY1.

The highest major element in Longmaxi-11 black shales was SiO2 (42.59%–77.53%,
avg. = 56.71%), followed by Al2O3 (9.31%–18.34%, avg. = 14.06%), and the content of
CaO was low (0.97%–16.94%, avg. = 7.62%). In addition, the average contents of Fe2O3,
K2O, MgO, Na2O, TiO2, P2O5, and MnO were 4.41%, 3.42%, 2.98%, 0.80%, 0.57%, 0.15%,
and 0.09, respectively. The highest major element in Longmaxi-12 black shales was SiO2
(58.41%–65.78%, avg. = 61.64%), followed by Al2O3 (14.08%–17.79%, avg. = 15.52%), with
a low content of CaO (0.88%–6.50%, avg. = 3.79%). Additionally, the average contents of
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Fe2O3, K2O, MgO, Na2O, TiO2, P2O5, and MnO were 5.76%, 3.75%, 2.37%, 0.80%, 0.56%,
0.11%, and 0.09%, respectively.

Table 1. Content of major (%) and trace elements (ug/g) in Longmaxi-1 black shales.

Sample SiO2 Al2O3 Fe2O3 MgO CaO Na2O K2O P2O5 TiO2 MnO Zr Rb Th Sc

S-18 60.73 17.79 6.89 2.75 0.88 0.89 4.25 0.11 0.67 0.06 136.82 180.08 15.16 16.83
S-17 65.78 14.08 5.24 2.13 3.98 0.69 3.41 0.1 0.49 0.09 95.69 137.6 12.92 13.64
S-16 58.41 14.68 5.16 2.24 6.50 0.81 3.59 0.13 0.52 0.12 184.63 142.32 14.73 13.75
S-15 60.36 18.11 6.52 2.84 1.20 0.81 4.43 0.11 0.59 0.06 112.93 187.47 16.69 18.05
S-14 58.98 18.34 6.59 2.94 1.57 0.82 4.46 0.11 0.6 0.06 123.8 188.53 16.84 18.28
S-13 61.01 18.10 6.54 2.83 0.97 0.80 4.47 0.12 0.57 0.05 118.85 182.46 15.31 17.84
S-12 63.59 15.55 4.83 2.51 3.25 0.72 3.92 0.13 0.56 0.05 84.53 156.36 15.78 15.05
S-11 58.01 15.14 5.23 2.64 6.44 0.80 3.69 0.11 0.54 0.09 108.12 149.45 15.96 14.80
S-10 69.49 13.77 5.01 2.20 2.03 0.70 3.40 0.10 0.51 0.05 128.16 134.65 13.71 13.62
S-9 42.59 14.45 3.75 4.70 13.95 0.69 3.51 0.13 0.62 0.15 64.77 113.43 17.07 10.58
S-8 44.34 14.01 3.63 3.03 14.64 0.78 3.31 0.14 0.64 0.1 94.00 106.65 18.76 9.05
S-7 49.66 14.31 4.17 3.18 11.63 0.68 3.49 0.21 0.59 0.10 73.32 121.55 18.56 11.55
S-6 42.66 11.70 4.37 4.64 15.16 0.86 2.58 0.21 0.52 0.16 68.54 81.84 16.02 8.53
S-5 44.13 10.91 3.04 3.53 16.94 0.63 2.71 0.13 0.51 0.15 62.59 89.24 14.91 8.28
S-4 55.11 15.51 4.04 2.80 6.72 1.42 3.58 0.11 0.66 0.05 46.36 79.33 12.94 7.36
S-3 61.83 11.95 3.45 2.65 7.54 1.05 2.73 0.12 0.60 0.08 71.05 93.27 17.95 7.95
S-2 77.53 9.31 2.44 1.65 4.01 0.72 2.36 0.10 0.49 0.04 62.06 84.09 13.75 8.04
S-1 61.40 9.71 2.52 2.63 8.25 0.54 2.63 0.37 0.52 0.15 87.46 91.91 14.85 9.44

Discriminant plates for Zr, Rb, Th, and Sc are often used to discriminate between prove-
nance and tectonic setting [48,49]. The contents of Zr, Rb, Th, and Sc in Longmaxi-11 black
shales were 46.36–233.88 ug/g (avg. = 95.76 ug/g); 79.33–188.53 ug/g (avg. = 128.90 ug/g);
7.36–18.28 ug/g (avg. = 12.11 ug/g); and 12.92–18.76 ug/g (avg. = 15.69 ug/g), respectively
(Table 1).

4.2. Rare Earth Elements

The total rare earth elements content (ΣREE), light rare earth elements (ΣLREE),
and heavy rare earth elements (ΣHREE) of Longmaxi-11 ranged from 135.68 ug/g to
193.85 ug/g (avg. = 169.08 ug/g); 120.69 ug/g to 176.27 ug/g (avg. = 151.09 ug/g); and
13.5–28.11 ug/g (avg. = 18.00 ug/g), respectively. The ΣREE, ΣLREE, and ΣHREE of
Longmaxi-12 ranged from 150.32 ug/g to 271.92 ug/g (avg. = 197.18 ug/g); 136.30 ug/g to
245.10 ug/g (avg. = 178.09 ug/g); and 14.02–26.82 ug/g (avg. = 19.09 ug/g), respectively
(Table 2).

Table 2. Content of rare earth elements in Longmaxi-1 black shales (ug/g).

Sample La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu ΣLREE ΣHREE ΣREE (La/Yb)N

S-18 40.62 67.33 8.60 29.35 5.52 1.45 4.46 0.85 4.17 0.87 2.47 0.43 2.71 0.46 152.87 16.42 169.29 10.11
S-17 35.12 60.63 7.41 27.47 4.69 0.98 3.97 0.71 3.61 0.72 2.06 0.36 2.23 0.36 136.30 14.02 150.32 10.62
S-16 60.30 106.74 13.67 53.10 9.55 1.74 8.04 1.51 7.13 1.41 3.75 0.64 3.74 0.60 245.10 26.82 271.92 10.87
S-15 45.26 74.76 9.34 33.32 5.88 1.07 4.90 0.91 4.36 0.93 2.28 0.46 2.82 0.43 169.63 17.09 186.72 10.82
S-14 45.04 76.02 9.74 33.63 6.07 1.30 5.00 0.97 4.59 0.95 2.68 0.46 2.93 0.44 171.80 18.02 189.82 10.36
S-13 40.92 69.67 8.55 32.18 5.88 1.12 4.85 0.92 4.42 0.90 2.59 0.45 2.81 0.45 158.32 17.39 175.71 9.82
S-12 38.56 58.18 7.28 26.78 4.29 0.80 3.61 0.69 3.35 0.68 2.00 0.37 2.42 0.38 135.89 13.50 149.39 10.74
S-11 43.44 72.64 9.16 33.90 6.40 1.21 5.44 1.00 4.65 0.94 2.57 0.46 2.81 0.44 166.75 18.31 185.06 10.42
S-10 36.68 62.89 7.74 29.62 5.00 0.98 4.21 0.82 4.00 0.84 2.15 0.42 2.60 0.41 142.91 15.45 158.36 9.51
S-9 31.89 55.79 7.29 28.12 5.27 0.98 4.58 0.86 4.27 0.82 2.27 0.38 2.41 0.37 129.34 15.96 145.30 8.92
S-8 32.41 53.72 6.47 23.30 4.02 0.77 3.56 0.70 3.87 0.83 2.43 0.44 2.74 0.42 120.69 14.99 135.68 7.97
S-7 42.94 65.29 8.49 33.32 6.16 1.07 5.09 0.96 4.52 1.01 2.74 0.49 3.09 0.48 157.27 18.38 175.65 9.37
S-6 32.55 60.94 8.17 34.13 7.48 1.33 6.28 1.17 5.38 1.12 2.88 0.47 2.79 0.42 144.60 20.51 165.11 7.87
S-5 38.28 66.96 8.63 34.40 6.51 1.28 5.72 1.05 4.97 1.03 2.75 0.46 2.82 0.44 156.06 19.24 175.30 9.15
S-4 31.84 58.20 7.19 29.58 6.61 1.18 5.91 1.11 4.96 1.09 2.95 0.49 2.98 0.45 134.60 19.94 154.54 7.20
S-3 42.51 76.93 9.83 38.70 7.04 1.26 5.75 0.93 4.56 0.93 2.08 0.41 2.53 0.39 176.27 17.58 193.85 11.33
S-2 40.10 72.23 9.06 33.96 6.14 0.97 4.55 0.84 3.82 0.80 2.18 0.39 2.49 0.39 162.46 15.46 177.92 10.86
S-1 30.08 53.37 9.01 37.91 7.91 1.46 7.15 1.48 7.38 1.59 4.49 0.75 4.53 0.74 139.74 28.11 167.85 4.48

Notes: (La/Yb)N = (Lasample/Lachondritic)/(Ybsample/Ybchondritic).
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The normalised spider diagram of REE was created using the REE content in the
Longmaxi-1 black shales. The standardised values used for this graph were obtained
from two sources: chondritic meteorites and post-Archaean Australian shale (PAAS).
Among them, the normalised spider diagram of chondrite has a clear trend in the text, and
PAAS is a commonly used standardized index for sedimentary rocks. The resulting graph
(Figure 2) displays the distribution of REEs in the Longmaxi-1 black shales based on these
standardised values. The normalised spider diagram of REEs in Longmaxi-1 black shales
chondrite showed a steep slope for LREEs and a relatively flat slope for HREEs. Moreover,
the normalised spider diagram of the Longmaxi-1 black shales exhibited a variable shape,
with dispersed REE content and significant fluctuations, indicating the inhomogeneity and
structural instability of the source area.
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4.3. TOC Content

The TOC content of the Longmaxi-1 black shales (Table 3), ranged from 0.75% to 8.21%
(avg. = 2.47%). The samples with a TOC content >2% account for 67%, most of which were
2%–3%, and only S-1 was as high as 8%. The TOC content of Longmaxi-11 ranged from
0.75% to 8.21% (avg. = 2.62%), with a trend of gradually decreasing TOC content from
bottom to top. On the other hand, the TOC content of Longmaxi-12 ranged from 0.79% to
2.47% (avg. = 1.69%). These results demonstrate the variability in the TOC content of the
different sub-sections of the Longmaxi-1 black shales.

4.4. Palaeoweathering and Palaeoclimate Indices

The palaeoweathering indices of Longmaxi-1 black shales, including CIA, K-correction
CIA, WIP, CIW, ICV, SiO2/Al2O3 (SA value), W value, and CIA/WIP were quantified in
this study (Table 3). Their respective contents are as follows: 64.47 to 70.91 (avg. = 68.95)
for CIA; 68.98 to 82.32 (avg. = 73.70) for K-correction CIA; 32.89 to 55.43 (avg. = 46.66)
for WIP; 76.85 to 87.30 (avg. = 84.28) for CIW; 0.89 to 2.51 (avg. = 1.41) for ICV; 2.95 to
8.33 (avg. = 4.20) for the SA value; 44.77 to 78.77 (avg. = 71.09) for W; and 1.18 to 1.99
(avg. = 1.50) for CIA/WIP.

Table 3. Palaeoweathering and palaeoclimate indices in Longmaxi-1 black shales.

Sample TOC CIA K-Correction CIA WIP CIW ICV SA Value W Value CIA/WIP

S-18 0.79 70.62 82.31 53.75 86.40 0.92 3.41 76.26 1.31
S-17 1.80 70.26 80.77 42.78 86.12 1.13 4.67 78.51 1.64
S-16 2.47 69.15 78.85 46.00 84.64 1.28 3.98 72.18 1.50
S-15 0.81 70.83 77.69 54.79 87.17 0.91 3.33 78.50 1.29
S-14 0.75 70.91 76.54 55.43 87.18 0.93 3.22 78.24 1.28
S-13 1.00 70.79 76.03 54.98 87.30 0.89 3.37 78.77 1.29
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Table 3. Cont.

Sample TOC CIA K-Correction CIA WIP CIW ICV SA Value W Value CIA/WIP

S-12 1.85 70.17 75.64 48.51 86.78 1.02 4.09 78.23 1.45
S-11 2.01 69.56 72.69 47.84 85.19 1.28 3.83 73.59 1.45
S-10 2.45 69.71 71.67 43.01 85.67 1.01 5.05 78.07 1.62
S-9 2.91 70.42 70.77 50.72 86.42 1.88 2.95 73.37 1.39
S-8 2.51 69.50 70.26 45.45 84.52 1.86 3.16 68.63 1.53
S-7 2.43 70.41 69.87 46.24 86.48 1.66 3.47 76.44 1.52
S-6 3.63 67.54 69.49 44.61 80.53 2.40 3.65 58.84 1.51
S-5 2.87 68.55 68.98 40.01 84.03 2.51 4.04 70.21 1.71
S-4 2.40 64.47 70.00 54.49 76.85 1.24 3.55 44.77 1.18
S-3 2.50 65.09 76.03 42.59 77.57 1.51 5.17 54.23 1.53
S-2 3.03 65.41 69.62 32.89 79.72 1.25 8.33 64.08 1.99
S-1 8.21 67.74 69.36 35.81 84.53 1.76 6.32 76.64 1.89

5. Discussion
5.1. Reliability of Chemical Weathering Indices

The extent of palaeoweathering in the provenance of rock can significantly impact
the chemical composition of clastic sediments. The palaeoweathering process can cause
alkali metal and alkaline earth metal elements such as calcium, potassium, and sodium
to move with surface fluids, whereas some stable elements like aluminium and titanium
are not affected by weathering and are retained within the sediments [49–52]. Therefore,
the presence and relative proportion of specific indices (such as CIA, WIP, PIA, etc.) can
serve as an indicator of the extent of chemical weathering in provenance [3,53–55]. Under
normal circumstances, the provenance of sediments is complex. When analysing the
tectonic setting and provenance characteristics of sedimentary rocks using geochemical
element characteristics, the impact of potassium exchange during sedimentary diagenesis,
sedimentary recycling, and provenance palaeoweathering should be taken into account
first [56,57].

5.1.1. Potassium Metasomatism during Diagenesis

In the Al2O3-CaO*-K2O (A-CN-K) diagram (Figure 3a), most sample points are dis-
tributed along the A-CN direction. Still, there is a certain angle between the actual and
ideal weathering lines, indicating that the samples were affected by instances of potassium
metasomatism during the deposition period. The CIA value connecting the CN endpoint
with the corresponding projection point of the sample on the ideal weathering line is the
corrected CIA value excluding potassium metasomatism [41,49,57]. It can be seen that
potassium metasomatism reduced the CIA value. Still, the original CIA value and K-
correction CIA values all indicated that Longmaxi-1 had experienced a moderate-intensity
chemical weathering, indicating that potassium metasomatism had no significant effect
on the geochemical characteristics of elements and can be used for provenance analysis
(Figure 3a,b).

The CIA value of Longmaxi-1 black shales was in line with the vertical trend of the
CIW value, and the two showed a strong positive correlation (R2 > 0.9), as shown in
Figure 3c. This supports the conclusion that potassium metasomatism had a limited impact
on the CIA value of Longmaxi-1 black shales (Figure 3c).
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during diagenesis. (a) A-CN-K with uncorrected data [41]; (b) A-CN-K with K-corrected data [49];
(c) CIA-(K-correction CIA)/CIW [41,49,57].

5.1.2. Maturity of Sediment Composition and Sedimentary Recycling

The maturity of sediment composition is associated with its depositional environment
and tectonic setting. Indicators such as the silicon–aluminium ratio (SA value), ICV value,
WIP indices, and MFW triangle diagram of clastic sediments can all reveal the maturity
of sediment composition and sedimentary recycling [42,43,45,46,58,59]. It is a widely held
belief that an average value of SA greater than 5 signifies a high degree of compositional
maturity in sediments, while a value less than 5 suggests immaturity [45]. The Longmaxi-1
black shales displayed SA values ranging from 2.95 to 8.33 (avg. = 4.20), ICV values ranging
from 0.87 to 2.51 (avg. = 1.41), and CIA/WIP values ranging from 0.80 to 0.84 (avg. = 0.82),
suggesting that the maturity of the sediment composition of the shales was low and resulted
from primary sedimentation (Figure 4). As illustrated in Figure 5, the sample sites are
predominantly situated in semi-arid regions and regions of low maturity, indicating that
the Longmaxi-1 black shales are products of initial sedimentation and have not undergone
the impact of recycled processes. The MFW triangular diagram can aid in differentiating
the types of cyclic sedimentation and reflect the composition of the initial parent rock of the
sediment [58]. The trend line of the shale composition in Figure 6 intersects with the trend
line of igneous rocks, suggesting that the Longmaxi-1 black shales originate from igneous
rocks and possess features associated with primary deposition.

Minerals 2023, 13, x FOR PEER REVIEW 9 of 19 
 

 

widely held belief that an average value of SA greater than 5 signifies a high degree of 
compositional maturity in sediments, while a value less than 5 suggests immaturity [45]. 
The Longmaxi-1 black shales displayed SA values ranging from 2.95 to 8.33 (avg. = 4.20), 
ICV values ranging from 0.87 to 2.51 (avg. = 1.41), and CIA/WIP values ranging from 0.80 
to 0.84 (avg. = 0.82), suggesting that the maturity of the sediment composition of the shales 
was low and resulted from primary sedimentation (Figure 4). As illustrated in Figure 5, 
the sample sites are predominantly situated in semi-arid regions and regions of low ma-
turity, indicating that the Longmaxi-1 black shales are products of initial sedimentation 
and have not undergone the impact of recycled processes. The MFW triangular diagram 
can aid in differentiating the types of cyclic sedimentation and reflect the composition of 
the initial parent rock of the sediment [58]. The trend line of the shale composition in Fig-
ure 6 intersects with the trend line of igneous rocks, suggesting that the Longmaxi-1 black 
shales originate from igneous rocks and possess features associated with primary deposi-
tion. 

 
Figure 4. The vertical variation of TOC content and weathering indices in Longmaxi-1 black 
shales. 

 
Figure 5. The discrimination diagram of palaeoweathering intensity and maturity in Longmaxi-1 
black shales. (a) CIA-ICV [45]; (b) (Al2O3+K2O+Na2O)-SiO2 [60]; (c) Zr/Sc-Th/Sc [48]; (d) CIA-WIP 
[43]. 

Figure 4. The vertical variation of TOC content and weathering indices in Longmaxi-1 black shales.



Minerals 2023, 13, 576 9 of 17

Minerals 2023, 13, x FOR PEER REVIEW 9 of 19 
 

 

widely held belief that an average value of SA greater than 5 signifies a high degree of 
compositional maturity in sediments, while a value less than 5 suggests immaturity [45]. 
The Longmaxi-1 black shales displayed SA values ranging from 2.95 to 8.33 (avg. = 4.20), 
ICV values ranging from 0.87 to 2.51 (avg. = 1.41), and CIA/WIP values ranging from 0.80 
to 0.84 (avg. = 0.82), suggesting that the maturity of the sediment composition of the shales 
was low and resulted from primary sedimentation (Figure 4). As illustrated in Figure 5, 
the sample sites are predominantly situated in semi-arid regions and regions of low ma-
turity, indicating that the Longmaxi-1 black shales are products of initial sedimentation 
and have not undergone the impact of recycled processes. The MFW triangular diagram 
can aid in differentiating the types of cyclic sedimentation and reflect the composition of 
the initial parent rock of the sediment [58]. The trend line of the shale composition in Fig-
ure 6 intersects with the trend line of igneous rocks, suggesting that the Longmaxi-1 black 
shales originate from igneous rocks and possess features associated with primary deposi-
tion. 

 
Figure 4. The vertical variation of TOC content and weathering indices in Longmaxi-1 black 
shales. 

 
Figure 5. The discrimination diagram of palaeoweathering intensity and maturity in Longmaxi-1 
black shales. (a) CIA-ICV [45]; (b) (Al2O3+K2O+Na2O)-SiO2 [60]; (c) Zr/Sc-Th/Sc [48]; (d) CIA-WIP 
[43]. 
Figure 5. The discrimination diagram of palaeoweathering intensity and maturity in Longmaxi-1
black shales. (a) CIA-ICV [45]; (b) (Al2O3+K2O+Na2O)-SiO2 [60]; (c) Zr/Sc-Th/Sc [48]; (d) CIA-
WIP [43].

Minerals 2023, 13, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 6. WFM discriminant diagram in Longmaxi-1 black shales [58]. M, F, and W represent the 
mafic source, felsic source, and weathered material, respectively. The broken lines are linear com-
positional trends for igneous, diorite, and granite weathering profiles. 

5.2. Palaeoweathering and Palaeoclimate 
A complex interplay of factors, including palaeoclimate conditions and tectonic ac-

tivity, shapes the palaeoweathering process. In particular, when the climate was charac-
terised by extreme cold and arid conditions, it resulted in a weakened chemical weather-
ing intensity. To properly assess the extent of weathering that occurred during the for-
mation of shales, it is necessary to consider a combination of geochemical indicators. This 
multi-disciplinary approach provides a more comprehensive picture of the weathering 
process and its impact on rock formation. 

The vertical profiles of the CIA, CIW, and W values depicted in Figure 4 exhibited 
similar variations. During the Longmaxi-11 shales sedimentation period, the shales expe-
rienced a gradual decrease in palaeoweathering intensity at a depth of 1853.76–1844.89 m, 
which reached its maximum at 1840.70 m. Between 1840.70 and 1823.11 m, the shales dis-
played a pattern of two consecutive declines in palaeoweathering intensity followed by 
an increase, whereas, between 1829.96 and 1810.84 m, the shales demonstrated a stable 
trend in palaeoweathering intensity. During the Longmaxi-12 shale sedimentation period, 
the shales reached the highest level of palaeoweathering intensity at 1860.70 m but then 
decreased. The vertical variations of CIA and K-correction CIA are illustrated in Figure 4, 
revealing that Longmaxi-1 was predominantly deposited in humid climatic conditions. 
Based on the analysis above, the Longmaxi-1 black shales appear to exhibit vertical insta-
bility despite being deposited in a generally humid climate. This phenomenon may be 
attributed to the Late Ordovician Hirnantian glaciation, which caused fluctuations in the 
climatic conditions during the Early Silurian [61–63]. 

In addition, the SA value can also indicate palaeoclimatic conditions. When the SA 
value exceeds 4, it signifies a dry climate with predominating physical weathering, while 
an SA value of less than 4 indicates a humid environment where chemical weathering is 
prevalent [59]. The average SA value of the Longmaxi-1 black shales was 4.20, but verti-
cally, the SA value mainly indicated a humid environment (Figure 4).  

5.3. Provenance 
The geochemical characteristics of sedimentary rocks are related to their source area 

and tectonic setting during formation. The provenance properties are essential in affecting 
the sedimentary rocks’ chemical composition [64–66]. Section 4.2 engaged in a detailed 
analysis of the rare earth element characteristics of the black shales found in Longmaxi-1 
within the scope of this study. The analysis results indicated that the black shales 

Figure 6. WFM discriminant diagram in Longmaxi-1 black shales [58]. M, F, and W represent
the mafic source, felsic source, and weathered material, respectively. The broken lines are linear
compositional trends for igneous, diorite, and granite weathering profiles.

5.2. Palaeoweathering and Palaeoclimate

A complex interplay of factors, including palaeoclimate conditions and tectonic activ-
ity, shapes the palaeoweathering process. In particular, when the climate was characterised
by extreme cold and arid conditions, it resulted in a weakened chemical weathering in-
tensity. To properly assess the extent of weathering that occurred during the formation
of shales, it is necessary to consider a combination of geochemical indicators. This multi-
disciplinary approach provides a more comprehensive picture of the weathering process
and its impact on rock formation.

The vertical profiles of the CIA, CIW, and W values depicted in Figure 4 exhibited simi-
lar variations. During the Longmaxi-11 shales sedimentation period, the shales experienced
a gradual decrease in palaeoweathering intensity at a depth of 1853.76–1844.89 m, which
reached its maximum at 1840.70 m. Between 1840.70 and 1823.11 m, the shales displayed a
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pattern of two consecutive declines in palaeoweathering intensity followed by an increase,
whereas, between 1829.96 and 1810.84 m, the shales demonstrated a stable trend in palae-
oweathering intensity. During the Longmaxi-12 shale sedimentation period, the shales
reached the highest level of palaeoweathering intensity at 1860.70 m but then decreased.
The vertical variations of CIA and K-correction CIA are illustrated in Figure 4, revealing
that Longmaxi-1 was predominantly deposited in humid climatic conditions. Based on the
analysis above, the Longmaxi-1 black shales appear to exhibit vertical instability despite
being deposited in a generally humid climate. This phenomenon may be attributed to the
Late Ordovician Hirnantian glaciation, which caused fluctuations in the climatic conditions
during the Early Silurian [61–63].

In addition, the SA value can also indicate palaeoclimatic conditions. When the SA
value exceeds 4, it signifies a dry climate with predominating physical weathering, while
an SA value of less than 4 indicates a humid environment where chemical weathering is
prevalent [59]. The average SA value of the Longmaxi-1 black shales was 4.20, but vertically,
the SA value mainly indicated a humid environment (Figure 4).

5.3. Provenance

The geochemical characteristics of sedimentary rocks are related to their source area
and tectonic setting during formation. The provenance properties are essential in affecting
the sedimentary rocks’ chemical composition [64–66]. Section 4.2 engaged in a detailed
analysis of the rare earth element characteristics of the black shales found in Longmaxi-1
within the scope of this study. The analysis results indicated that the black shales contained
acidic substances in the parent rock. Furthermore, the Rb-K2O, A-CNK-FM, and REE-
La/Yb provenance intersection diagrams and the F2

1-F1
1 discrimination function diagram

also demonstrated that the black shales in Longmaxi-1 were sourced from a diverse region,
primarily composed of intermediate-acid granite and granodiorite (Figure 7a,b), with some
contribution from basalt (the middle part of Figure 7c) and quartzite (the lower left of
Figure 7d). These findings are similar to those of previous studies showing that the parent
rock of Longmaxi-1 in the Upper Yangtze region was mainly acidic igneous rock [67–71].
Moreover, the mapping results of quartzite and basalt as parent rock may indicate more
than two mixture provenances in the Upper Yangtze region during this period.
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5.4. Geodynamic Background of Black Shales Development

At present, the orogenic model of the Early Palaeozoic South China Plate is still
controversial. The focus is on whether the dynamic mechanism of the Yangtze–Cathaysia
Block is subduction collision orogeny or intracontinental orogeny. In other words, whether
there is an unknown subduction of oceanic crust at the southern margin of the South China
Plate is unclear [76–80]. However, in recent years, numerous studies have shown that
no contemporaneous volcanic rocks, island arc magmatic rocks, and deep-sea or oceanic-
related sedimentary rocks such as ophiolite complex and turbidite rocks were found in
the South China Plate during the Early Palaeozoic. The South China Block should be
considered a continuous and unified continental landmass, with the amalgamation of
the Yangtze–Cathaysia Block primarily driven by intracontinental orogeny [9,10,81]. The
tectonic driving factors are related to subduction collision between the South China and
North China Plates or the remote interaction between the South China Block and the East
Gondwana Plate’s northern margin [12,77,82–84]. We agree that the tectonic attribute of
the South China Block in the Early Palaeozoic is intracontinental orogeny. On this basis,
the provenance analysis of the Longmaxi-1 black shales in the Upper Yangtze region was
carried out.

Shale composition is closely associated with its formation period and tectonic setting, ex-
hibiting specific geochemical characteristics in different tectonic environments [64,65,72,74,85–87].
The tectonic setting of Longmaxi-1 black shales in the Upper Yangtze region was studied
based on its major and trace element composition. Using ternary diagrams and the dis-
criminant function diagram proposed by Verma, we have partially identified island arc
volcanic characteristics in some of the Longmaxi-1 black shales, as shown in Figure 8a–c.
This observation is likely related to the subduction of the North Qinling Ocean [83–86].

Verma and Armstrong have created discriminant function diagrams (DF1-DF2) to
effectively distinguish between tectonic settings (island arc, continental rift, and subduction
collision orogeny) of high-silica [(SiO2)adj = 63%–95%] and low-silica [(SiO2)adj = 35%–63%]
clastic sediments, overcoming the limitations of traditional diagrams in normalising sample
compositional data [88]. Of the analysed samples, 14 had a SiO2 content > 63% and
belonged to high-silica shales, while 4 were low-silica shales. The projection points of the
samples in Figure 8d,e were all located within a subduction collision orogeny sedimentary
environment, indicating that the sedimentary tectonic setting of Longmaxi-1 was dominated
by collisional orogeny. In summary, based on the concentration, proportion, and normalised
REE patterns of major and trace elements, we suggest that an active continental margin
and island arc-continent collision characterise the tectonic environment of the Longmaxi-1
black shales.

5.5. Comparative Analysis of Provenance

The tectonic setting and provenance of the Early Silurian South China Block remain
a matter of ongoing debate and have yet to reach a consensus. Zhang reported that the
ancient Kangding–Yunnan Land blanket provides the primary provenance of the Longmaxi
black shales in Southwest Sichuan during the Early Neoproterozoic [89]. Liu and Xiong
contend that the Hannan uplift and Bashan uplift on the northern margin of the Yangtze
Block provided material provenance for the basin [90,91]. Li suggested that there may
have been a mixed provenance in the Longmaxi Formation in northern Guizhou [92]. By
using the well WY1 and previously published cores from the same time period that are
representative of the region, the provenance can be directly shown based on the REE
normalised spider diagram and (La/Yb)N variation.

The REE normalised spider diagram of Longmaxi-1 black shales in the well WY1,
when compared with those in TBO [90], HD 1 [93], TLO [94], STO [95], and QQ1 [96], were
found to be similar to the patterns shown in Figure 9. These patterns exhibited an apparent
negative Eu anomaly with a right-leaning “V” shape, while STP showed a positive Eu
anomaly (Figure 9). This suggests that the main provenance of Longmaxi-1 is not from the
ancient Kangding–Yunnan Land blanket during the Early Neoproterozoic.
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Figure 9. REE normalised spider diagram of Longmaxi-1 black shales in different provenances.
Notes: TBO—Tianba Outcrop; HD1—Well of Huadi 1; TLO—Tianlin Outcrop; STO—Sutian Out-
crop; QQ1—Well of Qianqian 1; the shaded area represents normalised spider diagram of REEs in
Longmaxi-1 black shales of well WY1.

The (La/Yb)N value reflects the degree of fractionation of LREEs and HREEs, with
lower (La/Yb)N values indicating a greater distance from the provenance and higher
(La/Yb)N values indicating closer proximity [97]. The Longmaxi-1 sedimentary period
showed high (La/Yb)N values northeast of the Yangtze Block (Figure 10), suggesting
proximity to the provenance and the North Qiangling Orogenic Belt may have provided the
provenance. The high value of (La/Yb)N in the QQ1 area is different from that in the HD1
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area, indicating that there is another high-value area in the southeast direction, indicating
that the Cathaysia Orogenic Belt continued to shorten and experience tectonic loading
in the Silurian, and provided a particular provenance [98]. Therefore, we speculate that
the Cathaysian orogenic belt and the North Qiangling orogenic belt may contribute to the
formation of Longmaxi-1 black shales in the Upper Yangtze region.
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Figure 10. The distribution of (La/Yb)N of the Upper Yangtze region (southern China) during the
sedimentary period of Longmaxi-1 in Early Silurian.

6. Conclusions

By studying the geochemical characteristics of the black shales of Longmaxi-1 in the
Upper Yangtze region and taking into consideration the palaeoweathering conditions in
the source area and the tectonic conditions of the Upper Yangtze region (southern China),
the following conclusions have been reached:

The weathering indicators such as CIA, CIV, WIP, CIW, and the ratio of SiO2/Al2O3
showed that the Longmaxi-1 black shales were the first deposit during the period of tectonic
activity, with an immature composition and structure. The palaeoclimate of the source area
was warm and humid as a whole, but it fluctuated in vertical change.

The Rb-K2O, A-CNK-FM, and REE-La/Yb provenance intersection diagrams and
F2

1-F1
1 discrimination function diagram collectively suggested that the parent rock for the

black shales in Longmaxi-1 are were intermediate-acidic granites and granodiorites. In
addition, there were also recycled-mature quartzose and basaltic provenances present. La-
Sc-Th, Th-Zr/10-Sc, and Th-Co-Zr/10 tectonic setting discriminant diagrams and DF1-DF2
discriminant function diagrams showed that the tectonic setting of the provenance was
mainly the active continental margin and island arc-continent collision. Drawing on the
findings of provenance analysis and tectonic setting investigation, we can plausibly posit
that the Cathaysian orogenic belt and the North Qiangling orogenic belt may have played
a role in the genesis of the Longmaxi-1 black shales within the Upper Yangtze region.
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