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Abstract: Pb and BHA in Pb-BHA-NaOL collector assembled by lead nitrate (Pb), benzohydroxamic
acid (BHA), and sodium oleate (NaOL) with a 240:120:1 molar ratio in scheelite flotation have the
common defects of flotation reagents including high cost, environmental pollution and reducing
hydrometallurgy efficiency. Therefore, in this study, the efficient desorption and reuse of Pb and
BHA adsorbed on the scheelite surfaces was first proposed. The desorption test results showed that
80.71% Pb and 70.93% BHA could be efficiently desorbed from the scheelite concentrate surfaces
through strong stirring for 15 min at pH 13.0 and a speed of 1600 r/min. The reuse of the desorbed
collector could save 67% Pb and 75% BHA. The results of desorption and reuse tests of the real ore
also exhibited high feasibility in industrial application. Fourier transform infrared spectroscopy
analysis revealed that Pb-O, C=O, and C-N groups of Pb and BHA adsorbed on the scheelite surfaces
obviously weakened or disappeared. Atomic force microscopy analysis further confirmed that most
of the Pb and BHA on the scheelite surfaces were removed. Therefore, this work not only solves
the above defects of the collector but also provides a reference for the desorption and reuse of other
flotation reagents.

Keywords: scheelite; flotation; Pb-BHA-NaOL collector; desorption; reuse

1. Introduction

As a strategic calcium mineral, scheelite (CaWO4) is widely used in alloys, steel,
chemical compounds, and tools [1]. Generally, the content of scheelite in the ore body is
very low, so it must be separated from fluorite and other gangue minerals and enriched
to be a scheelite concentrate with a high grade before tungsten hydrometallurgy [2]. The
traditional separation methods of scheelite from gangue minerals include gravity separation
and froth flotation [3]. Froth flotation is the most commonly used method due to its high
separation efficiency and adaptability for fine ores [4]. Sodium oleate (NaOL) is a typical
fatty acid collector widely used in oxide minerals [5]. Benzohydroxamic acid (BHA) is a
hydroxamic acid collector and has a good selectivity for scheelite when making it assemble
with lead nitrate (Pb) [6]. Therefore, NaOL and the mixture (Pb-BHA) of Pb and BHA are
the main collectors in scheelite flotation [7–10]. The NaOL collector has the characteristics
of strong collecting ability and poor selectivity, while the Pb-BHA collector possesses the
opposite characteristics [11–13]. Therefore, the Pb-BHA-NaOL collector assembled by Pb,
BHA, and NaOL with a special sequence and 240:120:1 molar ratio was developed in our
previous study [14]. However, the costs and contents of Pb and BHA in the Pb-BHA-NaOL
collector are far higher than those of NaOL [15]. Moreover, Pb2+ is a heavy metal ion and
BHA contains the benzene ring, harmful to the human body, and the hydrometallurgy
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process of scheelite [16–18]. Thus, it is of significance if Pb and BHA on the scheelite
concentrate surfaces can be desorbed and reused efficiently.

The common desorption methods of collectors on minerals include the physical
method, chemical method, and physicochemical combination method [19]. The physi-
cal method is usually used to treat the collectors adsorbed on minerals through van der
Waals force and electrostatic interaction. The physical method includes vacuum, ultrasonic,
heating, centrifugation, regrinding, stirring, concentration, activated carbon, and nanobub-
bles and so on [20–24]. However, when the groups of collectors have strong chemical
interaction with the active sites on minerals, the desorption efficiencies of collectors using
the physical methods are poor. Therefore, in order to improve the desorption efficiencies of
collectors, chemical reagents have to be added for destroying the adsorption structures of
collectors on minerals. The chemical reagents include strong acids, strong bases, sodium
sulfide, hydrogen peroxide, and other strong oxidants [25–27]. Due to the addition of
chemical reagents, the cost of the chemical method is generally higher than that of the
physical method, and it is easy to cause secondary pollution. Hence, in order to improve
the desorption efficiencies of collectors and save costs, the physical method and chemical
method are usually used together in the industry.

However, the existing desorption methods of collectors rely too much on instruments
and chemical reagents, resulting in the desorption efficiencies of collectors remaining low.
Moreover, the desorbed collectors cannot be reused. Therefore, in this study, the effect of
the Pb-BHA-NaOL collector on scheelite and fluorite floatability was first studied to obtain
the scheelite concentrate at the optimal flotation conditions. On this basis, the desorption
tests of Pb and BHA from the surfaces of scheelite concentrate were implemented. The
content of NaOL in the Pb-BHA-NaOL collector with a 240:120:1 molar ratio was very
small, so the desorption amount of NaOL in the desorption tests was not detected. After
solid-liquid separation, the desorption solution composed of Pb and BHA was reused for
scheelite and fluorite flotation. The desorption performance of this collector was analyzed
through Fourier transform infrared spectroscopy (FTIR) measurements and atomic force
microscopy (AFM) imaging.

2. Materials and Methods
2.1. Materials and Reagents

Scheelite and fluorite crystals from Chenzhou, China were crushed, ground, and then
screened using a Tyler sieve. The −74 + 38 µm fraction was utilized to implement the tests
of flotation, desorption, and reuse. The −5 µm fraction obtained by further grinding was
used in FTIR measurements. The X-ray diffraction (XRD) results in Figure 1 suggest that the
purity of both minerals was very high; the scheelite and fluorite purity acquired through the
chemical analysis was 98% and 99%, respectively. The real ore with a concentration of 50%,
a fineness of 80% passing −74 µm, and a grade of WO3 0.34% was derived from the Dongbo
dressing plant in Chenzhou. Other properties of the real ore are shown in Tables 1 and 2. Pb
(Pb(NO3)2), BHA (C7H7NO2), and NaOL (C17H33CO2Na) were analytically pure and taken
from TCI Co., Ltd., Tokyo, Japan. The slurry pH was adjusted by HCl and NaOH solutions.

Table 1. Results of chemical multi-element analysis of the real ore.

Element Content (%) Element Content (%)

MgO 0.94 WO3 0.34
CaO 30.35 Mo 0.09

Al2O3 5.50 Bi 0.10
SiO2 27.60 S 0.79
CaF2 21.66 Fe 8.22

Sn 0.11 Cu 0.022
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Figure 1. XRD spectra of scheelite (a) and fluorite (b). 
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Figure 1. XRD spectra of scheelite (a) and fluorite (b).

Table 2. Major minerals and their relative contents in the real ore.

Mineral Content (%) Mineral Content (%)

Scheelite 0.37 Sericite 4.50
Wolframite 0.05 Chlorite 3.50
Cassiterite 0.09 Hornblende 2.00

Molybdenite 0.14 Kaolinite 2.00
Bismuthinite 0.08 Feldspar 2.00

Native bismuth 0.02 Diopside 1.50
Magnetite 2.00 Idocrase 0.50

Pyrite 1.25 Calcite 7.00
Fluorite 21.50 Dolomite 1.00
Quartz 20.00 Others 0.50
Garnet 30.00 Total 100.00

2.2. Desorption and Reuse Tests

Pure mineral flotation tests were executed via an XFG flotation machine with a 40 mL
plexiglass cell filled with 2.00 g of the mineral sample and 35 mL of deionized (DI) water.
The detailed flotation, collector desorption, and reuse flowsheets of pure minerals are
shown in Figure 2. Note that the XFG flotation machine was also used in the agitation in
the desorption tests. The related flotation, collector desorption, and reuse flowsheets of the
real ore using an XFD flotation machine are presented in Figure 3. Note that the desorption
efficiency (E) of Pb or BHA was calculated by Equation (1). The contents of Pb and BHA
were respectively determined by inductively coupled plasma optical emission spectrometer
(ICP-OES, Thermo Fisher Scientific, Waltham, MA, USA) and ultraviolet-visible photometer
(UV-2600, Shimadzu, Japan).

E =
Ad
At

× 100%, (1)

where Ad represents the desorption amount of Pb or BHA; At denotes the total adsorption
amount of Pb or BHA on the scheelite concentrate surfaces.

2.3. FTIR Measurements

FTIR measurements were performed via a Nexus 670 infrared spectrometer (Thermo
Nicolet Corporation, Madison, WI, USA). The scheelite concentrate with a particle size of
−5 µm was obtained according to the flowsheet except for the terpineol and flotation links
in Figure 2. The scheelite sample after the desorption of the collector was acquired when
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the scheelite concentrate was treated through a strong stirring for 15 min at pH 13.0 and a
speed of 1600 r/min. Then, these samples were dried, ground with the spectral grade KBr
powder, and measured.
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Figure 3. Flowsheets of desorption and reuse tests of the real ore.

2.4. AFM Imaging

AFM imaging analysis was implemented using the Multimode SPM AFM (Veeco
Instruments Inc., Plainview, NY, USA) with a tapping mode at 25 ◦C. The test probe
(RTESP-300) was a single-crystal silicon probe with a resonance frequency of 286 KHz. The
scheelite (112) surface of the scheelite crystal was confirmed by XRD; the surface was then
polished and cleaned with a semi-automatic polishing machine (Tegramin-25, Struers). The
freshly cleaved scheelite sample was treated using the same method as the sample of FTIR
measurements to acquire scheelite concentrates before and after the desorption of collector.
These samples were then dried through a high-purity nitrogen before testing.
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3. Results and Discussion
3.1. Desorption and Reuse Experiment Results

Figure 4 demonstrates the scheelite and fluorite recoveries as a function of the slurry
pH when using the Pb-BHA-NaOL collector. At pH 9.0, there was the maximum difference
in the recovery between scheelite and fluorite using 2.4 × 10−4 mol/L (M) Pb, 1.2 × 10−4 M
BHA, and 1.0 × 10−6 M NaOL. Moreover, the scheelite recovery declined rapidly when the
slurry pH value was over 9.0, suggesting that the Pb-BHA-NaOL collector might have low
adsorption on the scheelite surfaces. This result also provides a direction for the desorption
of this collector from the scheelite concentrate surfaces.
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Considering that the costs and contents of Pb and BHA in the Pb-BHA-NaOL collector
are far higher than those of NaOL, this manuscript mainly studied the desorption and
reuse of Pb and BHA from the scheelite concentrate surfaces. Figures 5 and 6 show the
effect of the slurry pH and stirring conditions on the desorption efficiencies of Pb and
BHA, respectively.

Minerals 2023, 13, x  7 of 15 
 

 

 

2 4 6 8 10 12 14
20

40

60

80

100

Stirring speed 1600 r/min
Stirring time 15 min

D
es

or
pt

io
n 

ef
fic

ie
nc

y 
(%

)

pH

 Pb
 BHA

 
Figure 5. Effect of the slurry pH on the desorption efficiencies of Pb and BHA from the scheelite 
concentrate surfaces. 

In Figure 5, the desorption efficiencies of Pb and BHA first declined and then rose 
with the increase in pH values. The desorption efficiencies of Pb and BHA were not sig-
nificantly improved after the pH value was greater than 13.0. Thus, in consideration of the 
costs and desorption efficiencies of Pb and BHA, the preferred pH value was 13.0. 

Figure 6a,b present the effect of the stirring time and speed on the desorption effi-
ciencies of Pb and BHA at pH 13.0, respectively. The desorption efficiencies of Pb and 
BHA gradually raised before the stirring time and speed were not greater than 15 min and 
1600 r/min, respectively. Therefore, the best desorption efficiencies of Pb and BHA were 
80.71% and 70.93% at the pH value of 13.0 and stirring conditions of 15 min and 1600 
r/min, respectively. As shown in Figure 2, after solid-liquid separation, the corresponding 
contents of Pb and BHA in the original desorption solution were 1.6 × 10−4 and 5.0 × 10−5 
M, respectively. 

  

Figure 5. Effect of the slurry pH on the desorption efficiencies of Pb and BHA from the scheelite
concentrate surfaces.



Minerals 2023, 13, 538 6 of 11
Minerals 2023, 13, x  8 of 15 
 

 

 

5 10 15 20 25 30 35
20

40

60

80

100
(a)

Stirring speed 1600 r/min
pH 13.0

D
es

or
pt

io
n 

ef
fic

ie
nc

y 
(%

)

Stirring time (min)

 Pb
 BHA

 
1200 1400 1600 1800 2000

20

40

60

80

100
(b)

Stirring time 15 min
pH 13.0

D
es

or
pt

io
n 

ef
fic

ie
nc

y 
(%

)

Stirring speed (r/min)

 Pb
 BHA

 

Figure 6. Effect of the stirring conditions on the desorption efficiencies of Pb and BHA from the 
scheelite concentrate surfaces. (a) Stirring time; (b) Stirring speed. 

Figure 4 demonstrates that obtaining the maximum difference in the recovery be-
tween scheelite and fluorite required 2.4 × 10−4 M Pb and 1.2 × 10−4 M BHA, respectively. 
Considering the contents of Pb and BHA in the original desorption solution (1.6 × 10−4 and 
5.0 × 10−5 M), around 8.0 × 10−5 M Pb and 7 × 10−5 M BHA might be supplemented to obtain 
the similar floatability difference of both minerals when the desorbed Pb and BHA were 
reused. Consequently, scheelite and fluorite recoveries as a function of the supplementary 
dosages of Pb and BHA were investigated, as demonstrated in Figure 7. 

Figure 7 displays that, when reusing the desorbed Pb and BHA original solution ac-
tivated with nitric acid, the scheelite recovery remained around 97% until the supplemen-
tary dosages of Pb and BHA did not exceed 8.0 × 10−5 M and 3.0 × 10−5 M, respectively. The 
fluorite recovery gradually decreased in the whole range of the supplementary dosages 
of the two reagents. Therefore, the optimal supplementary dosages of Pb and BHA were 
8.0 × 10−5 and 3.0 × 10−5 M, respectively. When the concentrations of desorbed Pb and BHA 
were taken into account, the corresponding total concentrations of Pb and BHA were 2.4 
× 10−4 and 8.0 × 10−5 M, respectively. In other words, the dosages Pb and BHA could be 
respectively saved by 67% and 75% in the presence of the reuse of desorbed Pb and BHA. 
Additionally, the total concentrations of Pb and BHA (2.4 × 10−4 and 8.0 × 10−5 M) were also 
close to the initial concentrations of Pb and BHA (2.4 × 10−4 and 1.2 × 10−4 M), suggesting a 
perfect result of the desorption and reuse of Pb and BHA. 

According to Figure 3, after the collector on the actual scheelite concentrate surfaces 
was desorbed and reused, the dosages of Pb and BHA used for roughing flotation could 
be respectively reduced from the initial 550 and 450 g/t to 400 and 290 g/t. Note that the 
recovery and grade of the scheelite concentrate before and after the reuse of the collector 
should be similar and the dosage of NaOL should remain unchanged. This result proves 
that the collector desorption and reuse in the real ore could economize on 150 g/t Pb and 
160 g/t BHA. Namely, it could save 27.27% Pb and 35.56% BHA, suggesting high feasibil-
ity for this technology in industrial applications. 

Commented [M3]: Please check if it's supplemen-
tary materials. 

Commented [M4]: Please check if it's supplemen-
tary materials. 

Commented [M5]: Please check if it's supplemen-
tary materials. 

Commented [M6]: Please check if it's supplemen-
tary materials. 

Figure 6. Effect of the stirring conditions on the desorption efficiencies of Pb and BHA from the
scheelite concentrate surfaces. (a) Stirring time; (b) Stirring speed.

In Figure 5, the desorption efficiencies of Pb and BHA first declined and then rose with
the increase in pH values. The desorption efficiencies of Pb and BHA were not significantly
improved after the pH value was greater than 13.0. Thus, in consideration of the costs and
desorption efficiencies of Pb and BHA, the preferred pH value was 13.0.

Figure 6a,b present the effect of the stirring time and speed on the desorption effi-
ciencies of Pb and BHA at pH 13.0, respectively. The desorption efficiencies of Pb and
BHA gradually raised before the stirring time and speed were not greater than 15 min
and 1600 r/min, respectively. Therefore, the best desorption efficiencies of Pb and BHA
were 80.71% and 70.93% at the pH value of 13.0 and stirring conditions of 15 min and
1600 r/min, respectively. As shown in Figure 2, after solid-liquid separation, the corre-
sponding contents of Pb and BHA in the original desorption solution were 1.6 × 10−4 and
5.0 × 10−5 M, respectively.

Figure 4 demonstrates that obtaining the maximum difference in the recovery between
scheelite and fluorite required 2.4 × 10−4 M Pb and 1.2 × 10−4 M BHA, respectively.
Considering the contents of Pb and BHA in the original desorption solution (1.6 × 10−4

and 5.0 × 10−5 M), around 8.0 × 10−5 M Pb and 7 × 10−5 M BHA might be supplemented
to obtain the similar floatability difference of both minerals when the desorbed Pb and
BHA were reused. Consequently, scheelite and fluorite recoveries as a function of the
supplementary dosages of Pb and BHA were investigated, as demonstrated in Figure 7.
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Figure 7 displays that, when reusing the desorbed Pb and BHA original solution acti-
vated with nitric acid, the scheelite recovery remained around 97% until the supplementary
dosages of Pb and BHA did not exceed 8.0 × 10−5 M and 3.0 × 10−5 M, respectively. The
fluorite recovery gradually decreased in the whole range of the supplementary dosages
of the two reagents. Therefore, the optimal supplementary dosages of Pb and BHA were
8.0 × 10−5 and 3.0 × 10−5 M, respectively. When the concentrations of desorbed Pb and
BHA were taken into account, the corresponding total concentrations of Pb and BHA were
2.4 × 10−4 and 8.0 × 10−5 M, respectively. In other words, the dosages Pb and BHA could
be respectively saved by 67% and 75% in the presence of the reuse of desorbed Pb and
BHA. Additionally, the total concentrations of Pb and BHA (2.4 × 10−4 and 8.0 × 10−5 M)
were also close to the initial concentrations of Pb and BHA (2.4 × 10−4 and 1.2 × 10−4 M),
suggesting a perfect result of the desorption and reuse of Pb and BHA.

According to Figure 3, after the collector on the actual scheelite concentrate surfaces
was desorbed and reused, the dosages of Pb and BHA used for roughing flotation could
be respectively reduced from the initial 550 and 450 g/t to 400 and 290 g/t. Note that the
recovery and grade of the scheelite concentrate before and after the reuse of the collector
should be similar and the dosage of NaOL should remain unchanged. This result proves
that the collector desorption and reuse in the real ore could economize on 150 g/t Pb and
160 g/t BHA. Namely, it could save 27.27% Pb and 35.56% BHA, suggesting high feasibility
for this technology in industrial applications.

3.2. FTIR Analysis

In Figure 8, the peak at 808.2 cm−1 on the bare scheelite surfaces belonged to WO4
2−

of scheelite itself [28,29]. After adding the collector, the peaks at 1597.1, 1384.9, and
1153.4 cm−1 on the scheelite concentrate surfaces belonged to the stretching vibrations
of C=O, Pb-O, and C-N groups in this collector [30,31]. However, after the treatment of
strong alkali (pH 13.0) and 15 min of stirring at a speed of 1600 r/min, the peaks of these
groups (C=O, Pb-O, and C-N) on the scheelite concentrate surfaces obviously weakened
or disappeared. This result implies that Pb and BHA had significant desorption from the
scheelite concentrate surfaces, agreeing well with the flotation results in Figures 5 and 6.
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3.3. AFM Analysis

FTIR analysis exhibited the changes in the scheelite concentrate surfaces before and
after the desorption of Pb and BHA from the perspective of spectroscopy. In order to
further observe the surface changes from a more microscopic perspective, AFM imaging
was carried out. The (112) plane is the most commonly exposed surface of scheelite [32].
Consequently, the AFM 2D images, 3D images and adsorption height curves of the Pb-
BHA-NaOL collector on this plane are presented in Figure 9.
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BHA-NaOL collector on the scheelite (112) surface before and after desorption of Pb and BHA. 
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Pb and BHA adsorption on the scheelite (112) surface. After the desorption of Pb and BHA, 
the Ra of the scheelite (112) surface in Figure 9e was greatly reduced to 0.66 nm, which was 
close to that of the bare scheelite (112) surface. Moreover, the absolute value of the height 
difference of the collector adsorption on the scheelite (112) surface before the desorption 
of Pb and BHA in Figure 9g was 129.28 nm, much more than that after the desorption of 
Pb and BHA in Figure 9h (12.87 nm). These results reveal that Pb and BHA were efficiently 
desorbed from the scheelite (112) surface using the method in Figure 2, in line with the 
FTIR analysis in Figure 8. Furthermore, the model of the desorption and reuse of the Pb-
BHA-NaOL collector is exhibited in Figure 10. 

Figure 9. AFM 2D images, 3D images and adsorption height curves of Pb-BHA-NaOL collector on
the scheelite (112) surface. (a,b) 2D and 3D images of the bare scheelite (112) surface; (c,d) 2D and
3D images of the scheelite (112) surface before desorption of Pb and BHA; (e,f) 2D and 3D images
of the scheelite (112) surface after desorption of Pb and BHA; (g,h) Adsorption height curves of
Pb-BHA-NaOL collector on the scheelite (112) surface before and after desorption of Pb and BHA.

Compared with the roughness (Ra), 2D and 3D images of the bare scheelite (112)
surface in Figure 9a,b, the scheelite (112) surface before the desorption of Pb and BHA in
Figure 9c,d had a greater Ra and obvious bulges (22.60 nm), suggesting a large amount
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of Pb and BHA adsorption on the scheelite (112) surface. After the desorption of Pb and
BHA, the Ra of the scheelite (112) surface in Figure 9e was greatly reduced to 0.66 nm,
which was close to that of the bare scheelite (112) surface. Moreover, the absolute value
of the height difference of the collector adsorption on the scheelite (112) surface before
the desorption of Pb and BHA in Figure 9g was 129.28 nm, much more than that after the
desorption of Pb and BHA in Figure 9h (12.87 nm). These results reveal that Pb and BHA
were efficiently desorbed from the scheelite (112) surface using the method in Figure 2, in
line with the FTIR analysis in Figure 8. Furthermore, the model of the desorption and reuse
of the Pb-BHA-NaOL collector is exhibited in Figure 10.
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Figure 10. Model of the desorption and reuse of Pb-BHA-NaOL collector on scheelite.

4. Conclusions

The Pb-BHA-NaOL collector with a 240:120:1 molar ratio had high selectivity and
strong collecting ability in scheelite flotation, but Pb and BHA in this collector also have
the common defects of flotation reagents including high cost, environmental pollution
and reducing concentrate hydrometallurgy efficiency. Therefore, taking scheelite and this
collector as an example, the idea of efficient desorption and reuse of a collector from the
mineral concentrate surfaces was first proposed and implemented. The Pb and BHA in
this collector could be efficiently desorbed from the scheelite concentrate surfaces through
strong stirring for 15 min at pH 13.0 and a speed of 1600 r/min. The reuse of desorbed Pb
and BHA could save 67% Pb and 75% BHA in scheelite flotation, respectively. Moreover,
the desorption and reuse method of this collector was also verified using the real ore, which
could economize on 150 g/t Pb and 160 g/t BHA. FTIR analysis revealed that Pb-O, C=O,
and C-N groups of Pb and BHA adsorbed on the scheelite surfaces obviously weakened or
disappeared. AFM analysis further confirmed that most of the Pb and BHA on the scheelite
surfaces were removed.

Therefore, in this work, the efficient desorption and reuse of Pb and BHA can not only
reduce the cost of flotation reagents but also help to improve the environment and tungsten
hydrometallurgy efficiency. In addition, the idea proposed in this manuscript also provides
a reference for the desorption and reuse of other flotation reagents.
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