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Abstract: Machine learning provides solutions to a diverse range of problems in high-dimensional 

datasets in geosciences. However, machine learning is generally criticized for being an enigmatic 

black box as it focusses on results but ignores the processes. To address this issue, we used super-

vised decision boundary maps (SDBM) to visually illustrate and interpret the machine learning pro-

cess. We constructed a SDBM to classify the ore genetics from 1551 trace element data of apatite in 

various types of deposits. Attribute-based visual explanation of multidimensional projections (A-

MPs) was introduced to SDBM to further demonstrate the correlation between features and machine 

learning process. Our results show that SDBM explores the interpretability of machine learning pro-

cess and the A-MPs approach reveals the role of trace elements in machine learning classification. 

Combining SDBM and A-MPs methods, we propose intuitive and accurate discrimination diagrams 

and the most indicative elements for ore genetic types. Our work provides novel insights for the 

visualization application of geo-machine learning, which is expected to be a powerful tool for high-

dimensional geochemical data analysis and mineral deposit exploration. 
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1. Introduction 

Machine learning has become an increasingly important interdisciplinary tool in sev-

eral fields of science, including geoscience [1,2]. Particularly, supervised classification is 

one of the tasks that are most frequently applied in geoscience [3,4]. These studies usually 

use training set to frame models with suitable algorithms after data collection and to eval-

uate the model performance using the testing set to generate the final classifier with suf-

ficient accuracy in a rapid fashion [5–10]. However, machine learning approaches are of-

ten referred as a black box, without providing a transparent working process between the 

data input and output [11]. Because of the absence of interpretability behind the decision 

functions of most machine learning algorithms, scholars have challenges in understand-

ing, customizing, and trusting these methods [12], which have caused skepticism regard-

ing the reason for the predictions. Obtaining results with high accuracy and strong inter-

pretability is still a problem in the application of machine learning in earth science. Alt-

hough some approaches have tried to explain machine learning models by using feature 

importance, decision map, or SHAP (SHAPley Additive exPlanations) tool to select the 

indicative features of classification, machine learning data production process are still 

vague [13–17]. 
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Supervised decision boundary maps (SDBM) is an advanced method for producing 

classifier decision boundary maps [18]. Attribute-based visual explanation of multidimen-

sional projections (A-MPs) is a new visual approach for exploring the potential relation-

ship between classification and data labels [19]. Both of these methods provide the possi-

bility to explain the machine learning process. In this study, we introduce a novel visual-

ization technique that combines SDBM and A-MPs to investigate the genesis classification 

of apatite. 

Apatite is a ubiquitous accessory mineral in igneous, metamorphic, and clastic sedi-

mentary rocks [20–23]. The composition of apatite varies when the tectonic environment, 

host-rock composition, or texture changes. Thus, apatite is considered an ideal indicator 

mineral for tracing the origin and evolution of geological systems and plays a key role in 

indicating petrogenesis and genesis of ore deposits [24–29]. Based on data analysis or ma-

chine learning, previous studies have constructed a series of binary discrimination dia-

grams to distinguish apatite provenance and ore genetic types [30–33]. An individual ap-

atite trace element analysis can yield abundances of tens of trace elements, while discrim-

ination diagrams typically only use information from two or three variables [34,35]. Be-

cause of the complex chemistry of apatite and the inherent difficulty of two-dimensional 

diagrams, traditional methods, such as binary or ternary discrimination diagrams, are 

limited in distinguishing the genetic types of apatite [5,36–39]. Previous studies have ap-

plied machine learning methods for solving apatite classification problems and achieved 

accurate results [31,40]. However, the explanation of the machine learning process is still 

indistinct. 

This study aims to shed new light on trace element features in the projection and 

machine learning classification and process by building A-MPs on SDBM that encapsu-

lates different ore genetic types. The new approach proposed in this study provides a 

novel and more intuitive interpretation machine learning method through which users 

can more conveniently obtain the predicted results and understand the prediction process. 

2. Apatite Trace Element Dataset 

We collected 1551 mineralized apatite LA-ICP-MS analyses from an open-access ap-

atite trace element dataset that covers the published data from previous studies 

(https://doi.org/10.5281/zenodo.7648664, accessed on 17 February 2023). The dataset co-

vers five common ore deposit types located worldwide, including porphyry, skarn, oro-

genic Au, iron-oxide copper gold (IOCG), and iron-oxide apatite (IOA or Kiruna type) 

deposit. Table 1 summarizes the collated apatite data. Among the dataset, the 14 most 

commonly analyzed trace elements, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Yb, Lu, Sr, Y, Th, and 

U, were selected as features to provide a consistent and optimized dataset for the subse-

quent work. 

Table 1. Apatite trace element dataset used in this study. 

Deposit Type 
Number of Ap-

atite Samples 
Source Deposit Reference 

Porphyry 422 

Boss Mountain, Brenda, Cassiar 

Moly, Daheishan, Dobbin, Endako, 

Gibraltar, Highland Valley, High-

mont, Kemess South, Lornex, Mount 

Polley, Shiko, and Willa 

[30,41–43] 

Skarn 534 

Cantung, Gold Canyon, Little Billie, 

Minyari, Molly, O’Callagham’s, Ra-

cine, Shuikoushan, and Yangla 

[30,41,44–46] 

Orogenic Au 250 

Congress (Lou), Dentonia, Hutti, 

Kirkland Lake, Laodou, Seabee, and 

Xindigou 

[30,47,48] 
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IOCG 78 
Acropolis prospect, Bhukia, Wer-

necke, ad Wirrda Well prospect 
[30,49,50] 

IOA 267 Aoshan, Durango, and Great Bear [30] 

3. Methods 

3.1. Data Pre-Processing 

The original dataset included zero and null values caused by values below the detec-

tion limit (bdl) or values that were not reported. Therefore, null values were excluded in 

the dataset. Normal distribution of the dataset is a prerequisite for most machine learning 

methods [51]. We transformed the dataset by applying a log-ratio transformation 

(������������ = lg (x + 1) to obtain the Gaussian distribution [14]. Zero values can also be 

handled by this transformation. 

The stratified sampling method is a common sampling method that divides the da-

taset into several layers (five genetic types in this study), followed by random sampling 

from each layer, while maintaining the exact proportions of each class. The selected da-

taset is randomly divided into a training dataset (80%) and a testing dataset (20%), using 

the stratified sampling method [52]. 

There were 534 trace element data collected from the skarn deposit, while only 78 

were collected from the IOCG deposit in the apatite trace element dataset. We applied the 

synthetic minority oversampling technique (SMOTE) to minimize the possible effects and 

eliminate imbalanced data size resulting from variations in sample size in the skarn and 

IOCG deposit [53,54]. This did not overestimate the results, as only the training set was 

oversampled, using SMOTE to eliminate the effect of the imbalanced dataset. The work-

flow is shown in Figure 1a. 
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Figure 1. Data process workflow. (a) Data pre-process. (b) SDBM pipeline (after [18]). y is labels of 

the dataset as the genetic types of apatite. f(x) is evaluation metrics of accuracy and f1 score. The 

generated colored diagram is SDBM (The clear SDBM is shown in Figure 2. The remaining param-

eters are described in the text. (c) A-MPs pipeline. The generated colored diagram is visual encoding 

of A-MPs (The clear plot is shown in Figure 3). 

3.2. SDBM Visualization 

Visualizing decision boundaries of modern machine learning classifiers can notably 

help in classifier design, testing, and fine-tuning [55,56]. Most visualizing methods are 

essentially dimensionality reduction (DR) methods: visualizing the boundaries and/or 

zones by projecting a high-dimensional dataset (D) to a two-dimensional scatterplot (P(D)) 

using projection methods (P) [12]. Based on the trained classifiers (f), similar samples (x) 

were grouped into the same cluster in the scatterplot. If the point P(x) is the same color, 

they can be considered as the same group, and vice versa. However, these 2D scatterplots 

have a limitation, in that it is not clear what the blank space represents. 

Recently, a novel attempt called decision boundary maps (DBM) was developed to 

address this limitation [12,57]. The DBM method projects D to scatterplot P(D) and then 

inversely projects all pixels P(x) in the 2D bounding box of P(D) to create synthetic high-

dimensional data points P−1(x). The points P−1(x) are classified by classifier f, and then their 

corresponding pixels P(x) are colored by the assigned class labels f(P−1(X)). DBM extends 

classical multidimensional projections by filling in the gaps between the projected points 

from a labeled dataset used to train a classifier [18]. 

More recently, a deep learning DR method called self-supervised network projection 

(SSNP) was proposed. SSNP is a rapid and uncomplicated method that reduces dimen-

sions by replacing the true label with pseudo-labels assigned by some clustering algo-

rithms [58] using the capabilities of clustering and reverse projecting. Using SSNP, DBM 

provides improved SDBM. Compared with DBM, SDBM produces results that are easier 

to interpret and use, while still having enough versatility. 

As an extension of machine learning classification algorithms, SDBM provides an ad-

vanced visualization technique that depicts the high-dimensional decision space in a 2D 

visualized space. In this study, we used the support vector machine (SVM) [59] to train 

the classifier based on the apatite trace element dataset and then built SDBM to generate 

the decision boundary and/or zone. The workflow is shown in Figure 1b. 

3.3. Attribute-Based Visual Explanation of Multidimensional Projections 

We applied attribute-based visual explanation of multidimensional projections (A-

MPs) to correlate the features (apatite trace elements in our study) and decision bounda-

ries/zones [19]. 

There are N n-dimensional elements �� = (��
�, ⋯ , ��

�) in the dataset D, where N is the 

number of the sample and n is the dimension of the dataset. The projected element is �� =

{�� = �(�� ∈ �)}. For each 2D projected point �� , we first defined its 2D neighborhood 

��
� = {� ∈ ��|‖� − ��‖ ≤ �} as all projected points closer to �� than a given radius �. So, an 

nD neighborhood of point �� is defined as �� = {� ∈ �|�(�) ∈ ��
�}. Then, we computed the 

global variance �� = (���(��), ⋯ , ���(��)) of all dimensions over all points in D (n = 14 

in our study), and the local variance ��� over �� for each point i. Next, for indicating the 

relative importance of dimensions, we computed the ratio between the local variance and 

global variance and normalize this ratio. Finally, we generated the rank ��
�
 of dimension j 

for point. The function is as follows: 

��
�

=
���

�
/���

∑ (���
�
/���)�

���

 

Lower values of rank indicate a higher interpretability of dimension and homogeneity 

[19]. For example, if ��
��  is the lowest, dimension Sr is best for explaining a local 
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neighborhood ��. These points in the 2D scatterplot cluster together because the values of 

Sr show a high similarity in the local neighborhood ��. 

We selected top-ranked C-dimension (C = 8 in this study) for most points and colored 

all the points through the classification color map. Dimensions (elements) that are top-

rank for many points are mapped to distinct colors. Low number of points are not colored. 

These dimensions are summarized into “others”. The workflow is shown in Figure 1c. 

3.4. Evaluation Metrics 

Macro F1 score and accuracy are used to quantitatively evaluate the classifier and 

SDBM in this study. The calculation processes of the evaluation metrics are shown in Ta-

ble 2 and Equations (1)–(4). 

Table 2. Model prediction. 

 
Predicted  

Label Positive Negative 

True Label  

Positive True Positive (TP) False Negative (FN) 

Negative False Positive (FP) True Negative (TN) 

 

�������� =
�� + ��

�� + �� + �� + ��
 (1)

��������� =
��

�� + ��
 (2)

������ =
��

�� + ��
 (3)

�1 ����� =
2 × ��������� × ������

��������� + ������
 (4)

4. Results 

We established the optimal classifier and SDBM for the genesis classification task 

constructed on our dataset. The classifier could effectively distinguish the genesis of apa-

tite with a cross-validation accuracy of 94% and test accuracy of 89% (Table 3). The IOA 

deposit yielded the highest F1 score and all of the analyses were predicted correctly. The 

accuracy of the IOCG deposit was the lowest (F1-score = 69%). SDBM was built via the 

SVM classifier. The overall accuracy of SDBM was ~86%, which was slightly lower than 

the classifier. Five genetic types of apatite were distinguished well visually and most of 

the analyses matched their corresponding zones. An exception was the apatite in IOCG 

and orogenic Au deposit, for which there was slightly overlapping (Figure 2a). A similar 

phenomenon was seen in the testing set (Figure 2b). 

Based on the A-MPs approach, we computed the ranks of all of the dimension points 

and generated a visual interpretation of the SDBM diagram. All samples were colored 

according to the dimension (element) that contributed the most (Figure 3). The top seven 

dimensions that affected the clustering performance were U, Lu, Pr, Nd, Sm, Ce, and La. 

Most analyses clustered well on different dimensions. Eu contributed the most to the good 

clustering of the porphyry deposit samples after projection, and the concentration of Eu 

of the apatite sample in the porphyry deposit showed a high similarity. For the IOA de-

posit samples that performed well in the SDBM diagram, they were not controlled by one 
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element actually, but Lu, Sm, and U simultaneously contributed the most to distinguish-

ing IOA deposit. Samples from IOCG and orogenic Au deposit were controlled by Pr, Nd, 

and Sm simultaneously, which were not well distinguished. 

Table 3. Classification results. 

 Precision Recall F1-Score Support 

IOCG 0.67 0.71 0.69 14 

IOA 1.00 1,00 1.00 40 

Orogenic 0.89 0.89 0.89 44 

Porphyry 0.91 0.89 0.90 70 

Skarn 0.82 0.84 0.83 44 

Accuracy   0.89 212 

Macro avg 0.86 0.87 0.86 212 

Weighted avg 0.89 0.89 0.89 212 

 

Figure 2. Supervised decision boundary map generated by the training set and the trained SVM. (a) 

SDBM with training set. (b) SDBM with testing set. IOCG—iron oxide copper gold deposit; IOA—

iron oxide apatite deposit. 
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Figure 3. Attribute-based visual explanation of multidimensional projections. Elements that are top-

rank for numerous points are mapped to distinct colors. Other—Eu, Dy, Yb, Sr, Y, and Th. 

5. Discussion 

5.1. Visualization in High-Dimensional Space 

Machine learning approaches are often referred to as a black box, in which the pro-

cess between the input and output is invisible and unexplained [11]. SDBM offers the pos-

sibility of understanding how machine learning models work as well as an enhancement 

of traditional machine learning models. The shape of the decision zone and the distance 

of the cluster indicate the difficulty of the classification, e.g., the smooth decision bound-

aries represent easier classification, especially for IOA and skarn deposit [56]. Although 

apatite samples from skarn deposit fall into two decision zones, they have little overlap 

with other classes, and these two parts are clustered well separately. The performance of 

distinguishing apatite from the IOCG and orogenic Au deposit is relatively poor, with a 

large amount of apatite samples overlapping. It is the same as the result of the classifier, 

where the F1-score of the IOCG deposit is the lowest (Table 3). 

The proximities of the samples to the closest decision boundaries represent the con-

fidence of classification, while they are directly proportional to uncertainties. Apatite sam-

ples from the porphyry deposit are plotted near the boundary between the IOCG and 

porphyry deposit. Therefore, the confidence of the predicted porphyry label was rela-

tively low, although it was well clustered (Figure 2a). Figure 2b shows that most apatite 

samples from the porphyry deposit in the testing set fell near the boundary. The low con-

fidence may be mainly attributed to the complexity of porphyry mineralization processes. 

Because of porphyry, mineralization spanned a broad temperature range from 250 to 

1000°C; therefore, apatite crystallize in different stages of porphyry deposit may have 

quite different trace element signatures [60–62]. Apatite from the IOCG deposit is also 

plotted near the boundary between the IOCG and orogenic Au deposit, which also ex-

plains its low accuracy. 

Despite accurate results, SDBM (DR methods) has been proven to also have some 

limitations. Decision zones were drawn on a specific projection plane, not on an individ-

ual dimension, and the coordinates did not represent specific features (trace elements). 

SDBM diagrams were not plotted in traditional two- or three-variable scatterplots. Despite 

this, SDBM still provided a novel way to gain insight into how machine learning works. 

The degree of cluster and the distance between clusters explained the predictive score of 

the machine learning model. Decision zones matched equally to known properties of 
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training samples zones for the classifier [63]. A small-size “island” of one color embedded 

in large zones of different colors suggested misclassifications or training problems [55]. 

5.2. Explanation of Multidimensional Projections 

SDBM visualized the machine learning process in the high-dimensional space, and 

solved the “black box” problem to a certain extent. However, it still needs further studies 

to address the roles of the features considering the training process and the shapes of the 

data clusters. Based on the A-MPs approach, we described the most decisive dimensions 

in multidimensional projection and explained the machine learning classification [19]. 

SDBM showed that apatite samples in the skarn deposit fell into two decision zones (Fig-

ure 2a). Correspondingly, A-MPs also showed these two parts of the skarn deposit. Sam-

ples in the skarn deposit clustered together at the upper decision zone were mainly con-

trolled by La, whereas samples plotted together at the lower right decision zone were 

mainly controlled by Ce. Furthermore, some samples from the skarn deposit were plotted 

at the lower right decision zone, which were controlled by La. However, these samples 

were located near the decision boundary and were lower than the pixel limits (Figure 4). 

Ce and La contributed the most to identifying the apatite from the skarn deposit. 

An overlap between samples in the IOCG and orogenic Au deposit was recognized 

(Figure 4). The SVM classifier showed that the test score of the IOCG deposit was the 

lowest. The A-MPs approach showed the reason for the poor performance. The samples 

in the A-MPs approach were not divided into IOCG and orogenic Au clusters similar to 

SDBM, but the classifications of both IOCG and orogenic Au deposit were mainly con-

trolled by Pr, Nd, and Sm. In the dimensions Pr, Nd, and Sm, samples from IOCG and 

orogenic Au deposit were clustered into six clusters (IOCG: A1, B1, and C1; orogenic Au: 

A2, B2, and C2; Figure 4). The clusters in the IOCG zone were in close proximity to clusters 

in orogenic Au zones, which is the reason for the overlap between the IOCG and orogenic 

Au deposit in the SDBM diagram. In addition, the main clusters (B1 and C1) in the IOCG 

zone were located near the decision boundary, while the main clusters (B2 and C2) in the 

orogenic Au zone were located in the middle of this decision zone. It also explains why 

these samples were overlapped, but the testing score of IOCG was only 69% and the test-

ing score of orogenic Au was 89% (Table 3). Samples in the IOCG deposit were simulta-

neously controlled by six elements (U, Lu, Pr, Nd, Sm, and La; Figure 4), suggesting train-

ing problems. This is possible, because there may have been some issues with the apatite 

trace element data collected from the IOCG deposit due to the limitations of how labora-

tories record and publish the data. 
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Figure 4. A-MPs diagram. A1, B1, and C1 are clusters of apatite samples in the IOCG deposit, and 

A2, B2, and C2 were clusters of apatite samples in the orogenic Au deposit. 

The A-MPs approach effectively explained the role of the features (trace elements) in 

the machine learning process and the projection’s layout. The dimensions (elements) that 

were decisive for the multidimensional projections were labeled with different colors, 

which demonstrated the correlation between the apatite trace element data and the ge-

netic types. Combined with the SDBM method, the A-MPs approach visualized the results 

of the machine learning model and solved the overlap in the IOCG and orogenic deposit. 

5.3. Other Interpretation Approaches 

Feature importance is a model inspection technique. After a single feature in the test 

dataset was shuffled, the test data were reclassified. If the test score dropped, it indicated 

that the model depended on this feature to a great extent. Depending on how much the 

model performance declined, the features were listed in order from highest to lowest to 

find out the most effective feature for the classification [15]. Figure 5a shows that Th, U, 

Eu, Sr, and Lu were the most effective elements for distinguishing the ore genetic type. 

However, it is not clear how these five elements affected the classification and whether 

they had a positive or negative impact on the classification. 

SHAP (SHAPley Additive exPlanations) is a game theoretic method and can explain 

the outputs of the machine learning models [64]. Based on the machine learning model, 

an interpretable model was generated. For each test sample, interpretable model gener-

ated a predicted value and assigned a numerical value (SHAP value) to each feature of 

the samples. Subsequently, the SHAP values were visualized and sorted in the summary 

plot to improve the transparency and interpretation of the machine learning models 

[16,65]. In different ore sources, the indicative elements were different and the concentra-

tion of elements also had an impact on the classification (Figure 5b–f). The ability to cor-

relate element concentration with its contribution to classification was a significant ad-

vantage of SHAP [66]. Nevertheless, although SHAP displays the contribution of each 

sample for the classification in different classes well, it was still unclear how multiple fea-

tures simultaneously controlled the classification results. For example, via Figure 5b, we 

found both low U and high Th were helpful to identify the IOA deposit. However, it is 

unknown which genetic type apatite with both low Th and U should be classified into. In 

addition, SDBM is an advanced multidimensional projection method, while SHAP is a 

game theoretic method. These two methods do not work well together. 

In summary, neither feature importance nor SHAP provided a transparent working 

process. SDBM generated an intuitive discriminate diagram and revealed the classifica-

tion process. According to the proximities of the samples to the closest decision bounda-

ries and the shape of the decision zones, it explains why samples were distinguished to 

the specific class. On the basis of SDBM, A-MPs displayed control of the features over 

classification, including how features controlled the identification, and what roles the fea-

tures played in the classification. Even in the IOCG region controlled by multiple ele-

ments, A-MPs exhibited the different characteristics played by different elements. How-

ever, SDBM also has the limitation that the correlation between the element concentration 

and classification interpretation could not be observed intuitively. Furthermore, the indic-

ative features obtained by different calculation methods were not identical (A-MPs: U, Lu, 

and Pr; SHAP: Th, U, and Sr). The combination of SDBM with A-MPs and SHAP may 

have the potential to provide a more effective interpretation visualization approach. 
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Figure 5. Feature importance scores and SHAP values generated by SVM. (a) Feature importance 

scores. (b–f) SHAP summary plots of apatite from various ore sources. A small circle (dot) repre-

sents an individual analysis and the color represents the concentration of the respective element 

(red = high, blue = low). 

5.4. Future Work 

There were phenomena remaining in the SDBM and A-MPs diagrams. Samples from 

the skarn zones showed a certain trend from the lower right to upper left, and a low num-

ber of skarn samples were also located inside the IOCG field (Figure 2a). The IOA samples 

fell well within their assigned region (Figure 1a), while these points were divided into 

three clusters by U, Sm, and Lu (Figure 3). For the further research, SDBM in combination 

with A-MPs has the potential to explore the underlying correlation between the trace ele-

ments and the ore genetic type. 



Minerals 2023, 13, 491 11 of 13 
 

 

6. Conclusions 

In this study, using combined SDBM and A-MPs approaches, we provide a novel 

machine learning visualization method with a high accuracy and strong interpretability. 

SDBM offers the possibility to understand how machine learning models work and intu-

itively and accurately distinguish apatite genetic types. A-MPs describes the dimensions 

that contribute the most to the post-projection clustering and demonstrates strong corre-

lations between high-dimensional trace-element geochemical data of apatite and ore ge-

netic types. Under the control of La and Ce, the skarn deposit is separated into two parts 

from the others (mainly controlled by La and mainly controlled by Ce). IOCG and oro-

genic Au deposit are simultaneously controlled by Pr, Nd, and Sm; thus, there are some 

overlap features. Our method provides a novel insight for the visualization application of 

geo-machine learning and is expected to be a powerful tool for high-dimensional geo-

chemical data analysis. 
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