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Abstract: Accurately determining rock elastic modulus (EM) and uniaxial compressive strength (UCS)
using laboratory methods requires considerable time and cost. Hence, the development of models for
estimating the mechanical properties of rock is a very attractive alternative. The current research was
conducted to predict the UCS and EM of sandstone rocks using quartz%, feldspar%, fragments%,
compressional wave velocity (PW), the Schmidt hardness number (SN), porosity, density, and water
absorption via simple regression, multivariate regression (MVR), K-nearest neighbor (KNN), support
vector regression (SVR) with a radial basis function, the adaptive neuro-fuzzy inference system
(ANFIS) using the Gaussian membership (GM) function, and the back-propagation neural network
(BPNN) based on various training algorithms. The samples were categorized as litharenite and
feldspathic litharenite. By increasing the feldspar% and quartz% and decreasing the fragments%, the
static properties increased. The results of the statistical analysis showed that the SN and porosity have
the greatest effect on the UCS and EM, respectively. Among the Levenberg–Marquardt (LM), Bayesian
regularization, and Scaled Conjugate Gradient training algorithms using the BPNN method, the LM
achieved the best results in forecasting the UCS and EM. The ideal obtained BPNN, using a trial-and-
error process, contains four neurons in a hidden layer with eight inputs. All five models attained
acceptable accuracy (correlation coefficient greater than 70%) for estimating the static properties. By
comparing the methods, the ANFIS showed higher precision than the other methods. The UCS and
EM of the samples can be determined with very high accuracy (R2 > 99%).

Keywords: sandstone rocks; mineralogy; mechanical properties; machine learning; statistical analysis

1. Introduction

The elastic modulus (EM) is a measure of a material’s stiffness, indicating how much a
material will deform under stress. This property is critical for understanding how materials
will behave under loads and for designing structures that can withstand stress without
breaking. Uniaxial compressive strength (UCS) is a measure of a material’s ability to
withstand compressive forces along a single axis. This property is essential for designing
structures that can support weight or resist compression forces, such as foundations,
columns, and walls. Uniaxial compressive strength is also used to evaluate rock formations
for mining, drilling, and excavation operations. The UCS and EM of rocks have widespread
applications in rock mass classifications, numerical modeling, and slope stability analysis.
Due to problems such as obtaining appropriate samples without joints and cracks and the
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expensive and time-consuming UCS test, researchers tried to estimate these properties
using experimental relationships and models [1–3].

Several relationships were suggested for estimating the UCS and EM using com-
pressional wave velocity (PW), porosity, density, water absorption, and moisture of the
sedimentary rocks [1,4,5]. Some of the experimental relationships for sedimentary rocks,
particularly sandstones, are presented in Table 1 (Equations (1)–(16)). Due to the diversity
in lithological composition, sandstones show different behaviors [5,6]. Lawal et al. [7]
predicted the static properties of sedimentary rocks using intelligent methods. Armaghani
et al. [8] used some index tests to predict rock mechanical properties via a BPNN. Various
scholars have indicated that the SVR and BPNN perform highly in modeling rock char-
acteristics [8–11]. Siddig et al. [12] forecasted sedimentary rock properties via the ANN
and SVR methods. Zoveidavianpoor et al. [13] used the ANFIS and multilayer perceptron
(MLP) methods for forecasting the PW of rocks. Mahmoodzadeh et al. [11] used KNN, SVR,
and other intelligent methods to estimate the UCS of the different rocks. Chang et al. [14]
reviewed the research of other researchers and presented eleven experimental relationships
between the UCS of the sandstones and their physical properties. Heidari et al. [15] investi-
gated the correlation of petrography with the UCS and EM of Jurassic sandstone rocks and
presented some relationships. Wang et al. [16] applied various nonlinear models, including
the SVR, BPNN, and random forest, to predict the UCS of weakly cemented Jurassic rocks.
They found that the SVR had the best performance in predicting UCS values. Shahani
et al. [17] used soft computing methods, including the ANFIS and genetic programming,
to estimate the UCS and elastic modulus of soft sedimentary rocks. They found that the
ANFIS produced more accurate results than genetic programming. Cemiloglu et al. [18]
employed the SVR to predict the UCS of Maragheh limestone. They found that the SVR
model had higher accuracy when compared to the multiple linear regression model. Ab-
delhedi et al. [19] used machine learning techniques, including the BPNN and decision
trees, to predict the UCS of carbonate rocks. They found that the artificial neural network
model had the best performance in predicting UCS values. Asare et al. [20] developed a
hybrid intelligent prediction model, which combined an autoencoder neural network and a
multivariate adaptive regression spline to predict the UCS of rocks. They reported that the
proposed model outperformed other traditional models, such as the SVM and BPNN mod-
els. Wang et al. [21] developed two hybrid algorithms, which combined the BPNN with the
SVR and the decision tree to predict the elastic modulus of intact rocks. They found that the
proposed models were more accurate than the individual models. Zhao et al. [22] utilized
deep learning techniques to predict the strength of rock by adopting measurements while
drilling data. They reported that the deep learning model produced accurate and reliable
predictions of rock strength. Rahman and Sarkar [23] developed empirical correlations
between the UCS and the density of rocks based on lithology. They applied statistical and
machine learning techniques to evaluate the performance of the developed correlations.
They found that the developed empirical correlations accurately predicted the UCS of
rocks. Weng and Li [24] investigated the relationships between the mechanical properties
and porosity of sandstone. The results of the research by Naresh et al. [25] on Himalaya
sandstones in the Nepal area showed that the percentage of porosity and petrographic
properties have a high impact on the mechanical properties. Ghobadi et al. [26] studied the
sandstone characteristics of the Aghajari formation and presented high-precision relation-
ships to estimate the EM and UCS. Qi et al. [27] studied the geotechnical properties of the
sandstones in the Ordos region in China.

The current research aimed to estimate the UCS and EM of sandstones based on
quartz%, feldspar%, fragments%, PW, water absorption%, SN, porosity, and density us-
ing statistical analysis, MVR, SVR, and the BPNN, KNN, and ANFIS methods. Hence,
microscopic studies and ultrasonic, UCS, and physical tests were conducted on specimens.
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Table 1. Suggested equations for forecasting UCS and EM of sedimentary rocks.

Equation References Lithology Equation No.

UCS = 0.00021 × SN33.55 Yilmaz and Goktan [28] Different rocks (1)
UCS = 0.00004 SN4.164 Daoud et al. [29] Limestone and sandstone (2)
UCS = 287.7ρ − 615.90 Mishra and Basu [30] Sandstone rocks (3)

UCS = 0.05 PW − 126.40 Mishra and Basu [30] Sandstone rocks (4)
UCS = 12.59Is(50) − 5.19 Mishra and Basu [30] Sandstone rocks (5)
UCS = 22.18 PW − 30.32 Selçuk and Yabalak [31] Various rocks, including sandstones (6)

UCS = 17.783 PW1.099 (MPa) Armaghani et al. [32] Sandstone rocks (7)
UCS = 0.041 PW − 15.40 Abdi and Khanlari [33] Sandstone rocks (8)
EM = 0.005 PW + 0.621 Abdi and Khanlari [33] Sandstone rocks (9)

UCS = 1.41 + 17.98exp(−19.01n) Eremin [34] Sandstone rocks (10)
EM = 11.237 PW − 6.894 Bejarbaneh et al. [35] Sandstone rocks (11)

EM = 2.06 PW2.78 Moradian and Behnia [36] Various rocks, including sandstone (12)
UCS = 2.304 PW2.43 Kılıç and Teyman [37] Various rocks, including sandstone (13)

UCS = 56.71 PW − 192.93 Cobanoglu and Celik [38] Sandstone and limestone (14)
UCS = 2.56EXP(0.063SN) Hebib et al. [39] Sedimentary rocks (15)

UCS = 0.007 × SN3.443 Bolla and Paronuzzi [40] Sedimentary rocks (16)

2. Materials and Methods
2.1. Case Study

Samples were taken from the Lar and Siah Bisheh dam sites. Lar dam is situated 75 km
northeast of Tehran. The Siah Bisheh dam site is a hydroelectric power plant on the Alborz
mountain range, located 125 km north of Tehran (Figure 1). The studied sandstones form
the foundation of large projects in the west of Plour and Tiz Kooh, the Kandovan tunnel,
and many projects in the north of Tehran.

Minerals 2023, 13, x FOR PEER REVIEW 3 of 22 
 

 

Table 1. Suggested equations for forecasting UCS and EM of sedimentary rocks. 

Equation. 

No. 
Lithology References Equation 

(1) Different rocks Yilmaz and Goktan [28] UCS = 0.00021×SN 33.55 

(2) Limestone and sandstone Daoud et al. [29] UCS = 0.00004SN4.164 

(3) Sandstone rocks Mishra and Basu [30] UCS = 287.7   − 615.90 

(4) Sandstone rocks Mishra and Basu [30] UCS = 0.05 PW−126.40 

(5) Sandstone rocks Mishra and Basu [30] UCS = 12.59Is(50) − 5.19 

(6) Various rocks, including sandstones Selçuk and Yabalak [31] UCS = 22.18 PW−30.32 

(7) Sandstone rocks Armaghani et al. [32] UCS = 17.783 PW1.099(MPa) 

(8) Sandstone rocks Abdi and Khanlari [33] UCS = 0.041 PW − 15.40 

(9) Sandstone rocks Abdi and Khanlari [33] EM = 0.005 PW + 0.621 

(10) Sandstone rocks Eremin [34] UCS = 1.41 + 17.98exp(−19.01n) 

(11) Sandstone rocks Bejarbaneh et al. [35] EM = 11.237 PW−6.894 

(12) Various rocks, including sandstone Moradian and Behnia [36] EM = 2.06 PW2.78 

(13) Various rocks, including sandstone Kılıç and Teyman [37] UCS = 2.304 PW 2.43 

(14) Sandstone and limestone Cobanoglu and Celik [38] UCS = 56.71 PW − 192.93 

(15) Sedimentary rocks Hebib et al. [39] UCS = 2.56EXP(0.063SN) 

(16) Sedimentary rocks Bolla and Paronuzzi [40] UCS = 0.007×SN3.443 

The current research aimed to estimate the UCS and EM of sandstones based on 

quartz%, feldspar%, fragments%, PW, water absorption%, SN, porosity, and density using 

statistical analysis, MVR, SVR, and the BPNN, KNN, and ANFIS methods. Hence, micro-

scopic studies and ultrasonic, UCS, and physical tests were conducted on specimens.  

2. Materials and Methods 

2.1. Case Study 

Samples were taken from the Lar and Siah Bisheh dam sites. Lar dam is situated 75 

km northeast of Tehran. The Siah Bisheh dam site is a hydroelectric power plant on the 

Alborz mountain range, located 125 km north of Tehran (Figure 1). The studied sand-

stones form the foundation of large projects in the west of Plour and Tiz Kooh, the Kando-

van tunnel, and many projects in the north of Tehran. 
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2.2. Materials

Samples were transferred to the Environmental Data-Processors Laboratory, Tehran, Iran,
for conducting experiments. Healthy cores were chosen to avoid the effect of discontinuities
on the test results. Based on the ISRM standard, the diameter of the specimens is the NX size
(54 mm) [41]. Additionally, the height-to-diameter ratio of the specimens is near 2.5 [41].
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2.3. Methods

In this research, the Schmidt hardness number (SN), UCS, ultrasonic density, porosity,
water absorption, and also thin-section tests were performed on 64 samples. According
to the presented peaks in the X-ray diffraction (XRD) diagram, the types and amounts
of the mineral were determined. The ultrasonic experiment was performed to measure
the velocity of the compressional wave [42]. Wave velocity was measured using the
wavelength of the wave and the distance between the wave receiver and transmitter. The
frequency used in these tests is 0.5 MHz. The wave speed of the intact rock depends on
the grain size, density, porosity, degree of saturation, type and orientation of minerals,
and temperature [43,44].

An N-type hammer (Tiss Company, Tehran, Iran) was used to perform the Schmidt
hammer test. In this test, the mode of operation is such that by a spring under tension,
a certain force is applied to the part of the hammer that is placed in the vicinity of the
sample. The amount of reflected energy from the joint between the rock and the hammer is
measured by the return value of the hammer. This test is used to determine the hardness of
the rocks in the field or laboratory. Using the Schmidt hardness number, the compressive
strength of the rock can be estimated [31]. This test was performed in the laboratory on
64 cores. Finally, the average of 10 numbers in a range was determined for each sample.
The Schmidt hammer is vertically used in all the studied samples in this research.

The density, porosity (%), and water absorption by weight (%) of the specimens
were measured [41]. In order to determine the porosity of the studied specimens, the
saturation-buoyancy method was used. The UCS test was performed according to the
ASTM standard [45] and with a 0.80 MPa/S loading rate on the specimens. The amount of
deformation was recorded using the relevant gauges in the UCS test. The curves of stress
and strain were then drawn to determine the UCS and EM. The EM was determined based
on the conception of the secant modulus.

2.4. Data Normalization

Before modeling by using intelligent methods, all data were normalized between
−1 and 1 using Equation (17) to prevent data size effects on the trained BPNN.

Xi= 2
(

X− Xmin

Xmax−Xmin

)
−1 (17)

where X, Xmin, and Xmax are measured values, minimum data, and maximum data, respec-
tively. The estimated UCS and EM precision were appraised using R2 and RMSE.

2.5. The SVR Approach

The SVR approach matched a curve with epsilon (ε) width on the model to obtain
the lowest error [46]. Functions, including f(x) = W.x + B, were used for predicting in this
method, where x and B are the bias values, and W is the weight vector. The appropriate
error function was used by SVR to eliminate errors within a certain range of the real
values. As a result, by minimizing the weight vector, the model test error is minimized.
Hence, deviation from epsilon, which is determined by Equation (18), must be overlooked.
By including Equation (18) in Equation (19), the ξ+i and ξ−i deficiency parameters are
considered. According to the principle of structural error minimization, the error values
are finally optimized via Equation (19) [11,47].

|ξ|ε =
[

0 i f |ξ| ≤ ε

|ξ| − ε otherwise

]
(18)
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Minimize : 1
2‖W‖

2+C∑N
i=1 (ξ

+
i + ξ−i )

εConstrains:

 W.xi + B− yi ≤ ε+ ξ
+
i i = 1, 2, . . . , N

yi − (W.xi + B) ≤ ε+ ξ−i i = 1, 2, . . . , N
ξ+i ≥ 0, ξ−i ≥ 0 i = 1, 2, . . . , N

 (19)

where 1
2 ‖W‖

2 is the regulatory equation section, N is the sample number, C is the com-
plexity balance coefficient, and ε is the acceptable error. Among the polynomial, linear,
quadratic, and radial kernel functions used in the SVR method, the radial has shown the
best efficiency for forecasting rock mechanic problems [1,48].

2.6. The ANFIS Method

In classical logic, each member’s membership function (MF) is 0 if it is not in the set
and 1 if it is in the set [49]. Conversely, each member of the fuzzy set can have an MF
value between 1 and 0, which is expressed in the form of Equation (20) according to the
mathematical rules:

A = {x, ; µA(x)}|x ∈ x| (20)

The MF degree indicates the level value of dependence of the member on the fuzzy
set. Several fuzzy inference systems (FIS) have been presented. Two types of FIS, such as
the Sugeno and Mamdani algorithms, are commonly used. The difference between the
two methods is due to the fuzzy rules used. The FIS is displayed as a basic rule system
made up of a set of linguistic rules that can show any system with high accuracy and
act like a general-purpose forecaster. The rule systems based on fuzzy logic theory use
linguistic parameters, including results and rules. Rules are represented as inference or
non-equality. Fuzzy-based rule systems are if and then base signified via the if rule and
then the result. To demonstrate the capabilities of both neural networks and fuzzy systems,
neuro-fuzzy systems (NFS) can be introduced. One of the NFS that allows fuzzy systems to
learn rules with a BP (back-propagation) algorithm is the ANFIS [17]. The final FIS output
is a simplification of the given average bias of each output rule. Using Sugeno FIS, here is a
grouping of x and y inputs. For example, the output f is expressed by two fuzzy rules [17]:

Rule 1 : If X is A1 and Y is B1 then F1= P1X + Q1Y + R1
Rule 2 : If X is A2 and Y is B2 then F2= P2X + Q2Y + R2

(21)

In the ANFIS method, the variables were divided into two categories: testing and
training, with 25% and 75% of the whole data, respectively. In order to train the ANFIS
model, the combined method (a combination of recursive error propagation with the least
squares) was used.

2.7. KNN Approach

The KNN is a learning algorithm that has been studied in the pattern recognition
method for several decades [11]. Studies suggest that the KNN and support vector machine
(SVM) perform better than other methods, such as a linear approximation of the smallest
squares, naïve Bayes, and neural networks [11]. In the KNN method, it is assumed that
there is training data for categorization, that the KNN algorithm has become similar among
the pre-categorized training data based on a criterion, and that the KNN classes are used
to predict the experimental data category by scoring the data of each selected category. If
more than one neighbor belongs to the same category, their total score is used as the weight
of that class, and the class with the maximum score is allocated to the test data. If it exceeds
a threshold value, more than one class can be allocated to the test data. One problem with
this method is the determination of the K value, and to determine it, sequences of tests with
various K values must be performed to obtain the best value of K. Another disadvantage of
KNN is the computational time complexity required to navigate all educational data [11].
The theory of the KNN method is summarized below.
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• Select the optimal K value;
• Obtain the distances based on input specifications;
• Form the K class according to the closest distance (maximum similarity) and then

calculate the distance of the new record from all educational records;
• Choose the nearest neighbor;
• Use the K category label of the nearest neighbor to predict the new record category.

2.8. Evaluating Criteria

The determination coefficient (R2), mean absolute percentage error (MAPE), the vari-
ance accounted for (VAF), and root mean square error (RMSE) are used for appraising the
performance of the empirical relationships [50–52]. The proposed relationship performs
better: when R2 is one, VAF is 100 and MAPE and RMSE are close to zero.

RMSE =

√√√√ 1
N

N

∑
i=1

(y− y′)2 (22)

VAF% =

[
1−Variance (y − y′)

Variance (y)

]
×100 (23)

MAPE% =
1
N

N

∑
i=1

∣∣∣∣ (y − y′)
y

∣∣∣∣× 100 (24)

where n is the total data, y is the actual value of the UCS or EM, y· is the predicted UCS or
EM using the model, and y is the average of the real values.

3. Results
3.1. Laboratory Results

The texture of the samples was detrital or granular, and they were immature to sub-
mature. The specimens were categorized as litharenite and feldspathic litharenite in the
nature of folk classification [53]. Meta quartz was the most plentiful mineral in the samples,
in sizes of medium to slightly fine sand with poor sorting and rounding. Chert, phosphate
fragments, phosphate-lime, and very fine crystalline pieces form rock fragments, and
muscovite, plagioclase, orthosis, and iron oxide were also presented in the samples. The
types of cement were carbonate and iron oxide, and the matrix was silty. The secondary
minerals include turbid minerals, such as iron oxides. Silt forms the sample matrix, and
carbonate and iron oxides are the cement of the specimens.

According to the Anon [54] classification, the specimens with a mean of PW = 4.20 km/s
were classified in the high wave velocity category (Table 2). According to the Schmidt
hardness number test, the average hardness of the studied samples equals 37. The mean
porosity of the samples is 6.56%. Additionally, the specimens were classified in a fairly low
porosity class [54]. The density of the samples was 2.58 g/cm3 (Table 2). Hence, the studied
samples were categorized into high-density classes [54]. The average UCS of the samples
was 63.87 MPa. Therefore, based on Deere and Miller’s classification [55], the assessed
samples were categorized as a weak class in terms of strength.

The results showed that the percentage of problematic minerals, such as clays, in the
samples was negligible. High-surface clay minerals absorb water and reduce strength [56–58].
Some samples, which contained a large amount of silty matrix, had lower strength. Ad-
ditionally, samples with carbonate cement showed less resistance than the samples with
iron oxide cement. The results also show that the static properties of the sandstones are
directly proportional to the percentage of SiO2 and inversely proportional to the amount
of Al2O3. The effect of petrological characteristics on the static features of rocks has been
investigated by different researchers, and similar outcomes were stated. In general, the
strength of sandstones depends on various factors, including physical, mineralogical, and
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textural properties, and their mineralogical importance is of great importance due to their
involvement in the formation of secondary structures [26,59,60].

Table 2. Measured properties on the samples.

Q
(%)

Fl
(%)

Fr
(%)

D
(g/cm3)

UCS
(MPa)

EM
(GPa)

WA
(%)

PW
(km/s)

n
(%)

SN
(MPa)

Mean 11.15 38.04 48.66 2.58 63.87 16.41 4.05 4.20 6.56 37
Standard Error 0.24 0.36 0.65 0.02 3.41 0.76 0.33 0.06 0.56 0.79

Standard
Deviation 1.95 2.85 5.18 0.13 27.31 6.10 2.66 0.50 4.47 6.35

Variance 3.79 8.12 26.82 0.02 745.60 37.22 7.09 0.25 20.01 40.32
Kurtosis (0.43) (0.09) (0.24) 0.33 (0.74) (0.58) (1.05) (0.38) (1.25) (0.74)

Skewness 0.14 0.31 (0.12) (0.85) 0.59 0.38 0.35 (0.14) 0.06 0.59
Minimum 7.00 31.32 37.38 2.20 25.10 5.13 0.08 3.00 0.10 28
Maximum 15.24 44.80 59.60 2.79 120.00 32.00 9.50 5.10 14.25 50

Samples number 64.00 64.00 64.00 64.00 64.00 64.00 64.00 64.00 64.00 64.00

Harder minerals, such as quartz and feldspar, can make the rock more resistant to abra-
sion and deformation [61,62]. Clay minerals can have a significant effect on the mechanical
properties of rocks [63]. The presence of clay minerals can affect a number of important rock
properties, including strength, deformation, permeability, and shear behavior [64]. One of
the main ways in which clay minerals affect rock mechanical properties is by influencing
the degree of cementation and porosity of the rock [65,66]. Clay minerals can act as a
binding agent, helping to hold sediment grains together and increase the strength of the
rock [67,68]. However, if too much clay is present, it can reduce the porosity of the rock
and make it less permeable [69,70].

The effects of the physical and mineralogical properties of the samples on static
properties (UCS and EM) using simple and multivariate regression methods have been
further investigated in detail.

3.2. Correlation Heatmaps and Simple Regression Analysis

The correlation matrix of the variables is presented in Figure 2. The results show
that the quartz and feldspar percentages have a positive effect on the static properties.
In contrast, the percentage of fragments has a negative impact on the UCS and EM. It is
observed that the Schmidt hardness number and porosity have the greatest effect on the
UCS and EM, respectively. Abdi and Khanlari [33] stated that wave velocity has the greatest
effect on the UCS. Porosity% is a suitable variable to estimate the strength of rocks [9]. In
this study, porosity can also be usable for forecasting the UCS and EM. A high correlation
of density, PW [10], and porosity [37] with the UCS has been reported.

Various criteria were used to evaluate the relationships (Table 3) and are identified
by Equations (25)–(40). When the coefficient of determination and VAF are 100%, and
the error is 0%, the presented relationship has the maximum efficiency. In order to check
the independence of errors of the developed equations, the Durbin–Watson (DW) values
were assessed. The value of this index must be between 1.5 and 2.5 [71]. In this study, this
statistic shows that there is no problem with using the proposed relationships (Table 3).

3.3. UCS and EM Estimation Using Multiple Linear Regression Method

The multiple linear regression analysis approaches have been extensively used to
estimate the geo-mechanical characteristics [35,72]. This method was performed by a
simultaneous method. In simultaneous regression, input variables are entered into the
equation at the same time, and each predictor variable is evaluated like the other inde-
pendent variables entered. The estimation of the static properties of sandstones is in the
form of Equations (41)–(54) (Table 4). In this study, the effect of various classes, including
petrography (quartz%, feldspar%, and fragments %), physical (water absorption (WA),
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porosity (n), and density (D)), and mechanical (PW and SN) properties as inputs on the
UCS and EM were assessed. It is observed that the effect of the inputs on the UCS is more
than the EM. Additionally, the mechanical class has the lowest effect on the EM compared
with other classes.
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Table 3. Simple regression results.

Regression Equation %R2 DW RMSE VAF% Equation No.

UCS = −0.02 + 19.06 SN 89.75 1.50 6.25 88.95 (25)

UCS = 100.88 − 5.642 n 85.43 1.57 6.95 84.69 (26)

UCS = −148.8 + 50.69 PW 84.80 1.5 8.89 84.01 (27)

UCS = 100.20 − 8.976 WA 76.62 1.52 10.56 75.02 (28)

UCS = −330.9 + 152.9 D 55.80 1.5 18.96 54.69 (29)

UCS = 291.8 − 4.685 Fr 78.97 1.89 9.2 78.32 (30)

UCS = −255.6 + 8.397 Fl 76.78 1.90 10.11 75.39 (31)

UCS = −76.50 + 12.592 Q 80.54 2.10 8.12 80.12 (32)

EM = −10.59 + 2.422 Q 59.71 1.51 16.03 58.62 (33)

EM = 58.30 − 0.861 Fr 62.33 1.29 14.39 62.30 (34)

EM = −47.90 + 1.691 Fl 53.38 1.34 26.35 52.6 (35)

EM = 4.75 + 2.202 SN 59.96 1.5 15.90 58.95 (36)

EM = 23.518 − 1.083 n 63.02 1.35 13.02 62.85 (37)

EM = −22.99 + 9.39 PW 58.31 1.60 17.62 57.39 (38)

EM = 23.643 − 1.786 WA 60.75 1.51 14.36 59.86 (39)

EM = −68.5 + 32.91 D 51.77 1.52 28.36 50.29 (40)
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Table 4. Developed regression equations to estimate static properties.

Class of Inputs Equation R2% DW Equation No.

Petrography, physical
and mechanical

UCS = 25.7 + 1.58 Q − 0.44 Fl − 1.18 Fr + 11.90 D + 0.41 WA + 10.19
PW − 0.92n + 8.9 SN 93.18 1.59 (41)

EM = −75.6 + 0.81 Q + 1.07 Fl + 0.41 Fr + 9.16 D−0.29 WA + 0.57
PW − 0.22 n − 7.11 SN 72.21 1.34 (42)

Petrography and physical
UCS = 7.0 + 3.76 Q + 0.24 Fl − 1.04 Fr + 27.9 D − 0.22 WA − 2.28 n 90.44 1.65 (43)
EM = −73.9 + 9.07 D − 0.31 WA − 0.24 n + 0.84 Q + 1.06 Fl + 0.42 Fr 72.19 1.63 (44)

Petrography and
mechanical

UCS = 29.3 + 13.31 PW + 5.61 SN + 1.62 Q − 0.202 Fl − 1.261 Fr 93.77 1.58 (45)
EM = −71.3 + 2.65 PW + 0.397 SN + 0.745 Q + 1.257 Fl + 0.37 Fr 68.65 1.52 (46)

Mechanical and physical
EM = −11.0 + 1.17 PW + 0.408 SN + 9.41 D − 0.318 WA − 0.41 n 67.51 1.50 (47)

UCS = 5.9 + 9.73 PW + 6.37 SN − 1.5 D − 0.216 WA − 1.833 n 92.79 1.63 (48)

Petrography EM = −72.4 + 1.382 Q + 1.469 Fl + 0.359 Fr 65.93 1.65 (49)
UCS = −5.7 + 6.59 Q + 1.85 Fl − 1.522 Fr 84.65 2.2 (50)

Physical UCS = 59.4 + 15.4 D − 1.39 WA − 4.535 n 86.20 1.52 (51)
EM = −5.4 + 10.65 D − 0.414 WA − 0.617 n 66.72 1.54 (52)

Mechanical
UCS = −53.3 + 17.37 PW + 8.35 SN 91.24 1.56 (53)
EM = −7.74 + 4.07PW + 1.334 SN 61.06 1.53 (54)

3.4. Comparison with Previous Studies

Many relationships between the physical and mechanical characteristics of sandstone
rocks with non-destructive properties were proposed by other scholars (Table 1); however,
it is not clear how valid their results are for Iranian formations. Therefore, here, the
efficiency of the existing relationships using VAF and R2 based on the measured data of
the PW, density, Schmidt hardness number, porosity, and mechanical characteristics of the
samples of the dam sites were evaluated, and the most accurate relationship was identified.
To do this, the UCS and EM were calculated using previous empirical relationships. Then,
the relationships between the predicted UCS and EM and measured UCS and EM were
assessed. Assessing the relationships of Abdi and Khanlari [30], Kılıç and Teymen [33],
and Mishra and Basu [27] to estimate the UCS of the studied sandstones shows that
these relationships are used to estimate the UCS with acceptable accuracy (Figure 3).
Additionally, the measured UCS and EM values were compared with the results of Selcuk
and Yabalak [28], Bolla and Paronuzzi [36], Hebib et al. [35], Daoud et al. [26], and Yilmaz
and Goktan’s [25] relationships (Figure 3). Based on the mentioned relations, the best
correlation between these values is related to the linear relationship (Figure 3). The
relationship between Bolla and Paronuzzi [36] is more accurate than other relationships.
This experimental relationship shows a high correlation between the SN and UCS. Abdi
and Khanlari [30], Bejarbaneh et al. [13], and Moradi and Behnia [32] proposed several
empirical relationships for estimating the EM. Figure 3 shows that the relationships
between measured and predicted EM have a high correlation. Based on VAF% and the
coefficient of determination, Abdi and Khanlari’s [30] relationship has the highest accuracy
compared to the other relationships because of the lithological similarity of the samples
in both studies. The sandstones of the present study and Abdi and Khanlari [30] were
classified as feldspathic litharenite and litharenite types.

3.5. The SVR Results

The SVR modeling was performed by coding in MATLAB (Version 2021) software.
The percentage of test and train data for constructing the SVR model and optimum values
of the kernel of radial basis function parameters, such as ε, γ, and C, for predicting the static
properties are presented in Table 5. In this research, the radial basis kernel function has
been used for the training and testing of data by the SVR method. Other researchers have
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reported the high performance of this function in estimating the mechanical properties of
the rocks [16,17,20,48].
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Table 5. Parameters of the developed SVR model to estimate UCS and EM.

UCS EM

Train data 75% of whole data 75% of whole data

Test data 25% of whole data 25% of whole data

Epsilon 0.0022 0.0016

C 35 26

Gamma 0.90 0.40

The error values and laboratory value correlations with estimated mechanical proper-
ties by the SVR technique for various datasets are revealed in Figures 4 and 5.
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3.6. Estimation of UCS and EM Using BPNN

Using the BPNN, a multilayer feed-forward neural network is presented. In this
type of network, the direction of information flow moves from the input layers to the
output layers [8,73,74]. Using the Neural Net Fitting Toolbox to check the performance
of various training algorithms, such as the LM (Levenberg–Marquardt), BR (Bayesian
regularization), and SCG (Scaled Conjugate Gradient) to estimate the dependent variables,
several combinations with a different number of neurons (for different training algorithms),
using a trial and error process, were applied to a hidden layer. The LM algorithm showed
the best results for forecasting the UCS and EM. The ideal obtained BPNN contains four
neurons in a hidden layer with eight inputs, such as quartz%, feldspar%, fragments%, the
Schmidt hardness number, density, water absorption%, porosity%, and PW as well as two
outputs, including the UCS and EM (Table 6 and Figures 6 and 7). All data in the present
study were divided into three groups:

• The train set, with 70% of the total data for training the network;
• The test group, with 15% of the total data to test the network;
• The validation set, with 15% of the total data for preventing overfitting.
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Table 6. BPNN results using LM, BR, and SCG training functions.

Optimum
BPNN

Activation
Functions

Training
Functions

R% (for Test Data) RMSE (for Test Data)

UCS EM UCS EM

8*4*2 {tansig,
Purlin} LM 98.43 94.20 0.17 0.24

8*4*2 {tansig,
Purlin} SCG 97.25 93.19 0.18 0.26

8*5*2 {tansig,
Purlin} BR 97.01 93.00 0.19 0.28
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Figure 7. Error reduction trend in EM prediction (a) and UCS (b) using optimum BPNN.

The results showed that the fourth neuron is the most suitable for forecasting the UCS
and EM. By comparing the BPNN results with multiple linear models, the BPNN is more
precise than MRA for forecasting the UCS and EM. Similar outcomes were suggested by
previous researchers [8,10].
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3.7. Results of ANFIS Approach

In accordance with the other assessed intelligent methods, the input data for modeling
using the ANFIS include the Schmidt hardness number (SN), compressional wave velocity
(PW), water absorption (WA), porosity (n), and density (D), where the UCS and EM are
outputs of 64 samples (Figure 8). In the ANFIS method, by coding in MATLAB (Version
2021) software, the MFs of the input data for each of the parameters are 7 (Table 7). In
the Inputmf (i.e., input membership function) layer, inputs move across MFs. The MFs
of each function can be a suitable parameter. The Gaussian membership (GM) function
was selected in the current research. The MFs degree shows the level of the member’s
membership to the fuzzy set.

Minerals 2023, 13, x FOR PEER REVIEW 13 of 22 
 

 

Table 6. BPNN results using LM, BR, and SCG training functions. 

Optimum 

BPNN 

Activation Func-

tions 

Training 

Functions 

R% (for Test Data) RMSE (for Test Data) 

UCS EM UCS EM 

8*4*2 {tansig, Purlin} LM 98.43 94.20 0.17 0.24 

8*4*2 {tansig, Purlin} SCG 97.25 93.19 0.18 0.26 

8*5*2 {tansig, Purlin} BR 97.01 93.00 0.19 0.28 

3.7. Results of ANFIS Approach 

In accordance with the other assessed intelligent methods, the input data for model-

ing using the ANFIS include the Schmidt hardness number (SN), compressional wave ve-

locity (PW), water absorption (WA), porosity (n), and density (D), where the UCS and EM 

are outputs of 64 samples (Figure 8). In the ANFIS method, by coding in MATLAB (Ver-

sion 2021) software, the MFs of the input data for each of the parameters are 7 (Table 7). 

In the Inputmf (i.e., input membership function) layer, inputs move across MFs. The MFs 

of each function can be a suitable parameter. The Gaussian membership (GM) function 

was selected in the current research. The MFs degree shows the level of the member’s 

membership to the fuzzy set. 

 

Figure 8. ANFIS model summary (black circles are inputs, white circles are outputs). 

The ANFIS model components developed in this study are summarized in Table 7 

and Figures 9 and 10. 

Table 7. Used ANFIS model components. 

Parameters EM UCS 

Train data 75% 75% 

Test data 25% 25% 

FIS Generation approach Genfis2 Genfis2 

Influence radius 0.58 0.62 

Number of epochs 1500 1200 

Error goal 0 0 

Type Sugeno Sugeno 

Figure 8. ANFIS model summary (black circles are inputs, white circles are outputs).

Table 7. Used ANFIS model components.

Parameters EM UCS

Train data 75% 75%
Test data 25% 25%

FIS Generation approach Genfis2 Genfis2
Influence radius 0.58 0.62

Number of epochs 1500 1200
Error goal 0 0

Type Sugeno Sugeno
Rules 7 7

Number of MFs 7 7
Input MF type GM GM

Output MF type Linear Linear

The ANFIS model components developed in this study are summarized in Table 7 and
Figures 9 and 10.
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Figures 9 and 10 show the results of the ANFIS model for the test datasets. As can be
seen, the ANFIS method shows higher accuracy than the SVR method. The error value
using the ANFIS models is presented in Figure 10.

3.8. The KNN Results

In order to apply the KNN method to the data and to also determine the best K value,
the coding of the KNN algorithm was written in the form of a program in MATLAB (Version
2021), which was run 216 times for the K values, from 1 to 30 programs, and the amount of
error was then measured. Similar to SVR and the ANFIS, 75% and 25% of the total data
were used to train and test the models. The results displayed that the lowest estimation
error of the UCS and EM was obtained at K = 2 and K = 5, respectively (Figure 11). The
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error of this network for estimating the UCS and EM with respect to the K values is equal
to 0.07 and 0.17, respectively (Figure 11). Figure 12 shows the KNN results for estimating
the mechanical properties.
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3.9. Nonlinear Multivariate Regression Analysis

In statistics, multivariate nonlinear regression is a type of regression analysis in which
the observational data are modeled by combining nonlinear functions between independent
and dependent parameters [75]. In this study, nonlinear regression between parameters is
considered. In this way, firstly, between the UCS and the EM with each of the independent
parameters, various types of nonlinear regression were fitted (see Equations (55)–(70)),
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and the best fit was selected (Table 8). Then, the appropriate nonlinear regression was
established between all independent parameters with the UCS and EM. The values of the
determination coefficient are given in Table 8.

Table 8. Most accurate nonlinear regression between variables.

Equation R2 Type of Equation Equation No.

UCS = 0.43 Fl2 − 24.30 Fl + 367.77 0.76 Polynomial (55)
UCS = 106.91 e−0.09n 0.91 Exponential (56)

UCS = 0.16 Fr2 − 20.50 Fr + 669.86 0.83 Polynomial (57)
UCS = 106.43 e−0.15WA 0.83 Exponential (58)

UCS = 484.46 D2 − 2295.24 D + 2752.06 0.71 Polynomial (59)
UCS = 1.25 Q2 − 15.43 Q + 75.59 0.82 Polynomial (60)

UCS = 1.84 e 0.82PW 0.89 Exponential (61)
UCS = 0.03 SN2 − 4.60 SN + 250 0.91 Polynomial (62)
EM = 0.06 FL2 − 3.22 Fl + 44.87 0.60 Polynomial (63)
EM = 0.04 Fr2 − 4.61 Fr + 148.67 0.53 Polynomial (64)

EM = 24.47 e−0.07n 0.66 Exponential (65)
EM = 24.82 e−0.12WA 0.65 Exponential (66)

EM = 1.10 e0.63PW 0.62 Exponential (67)
EM = 0.19 Q2 − 1.88 Q + 12.59 0.58 Polynomial (68)

EM = 76.45 D2 − 353.40 D + 417.94 0.59 Polynomial (69)
EM = 0.01 SN2 − 0.20 SN + 9.42 0.59 Polynomial (70)

Finally, using the Gauss–Newton algorithm with 200 maximum iterations and a
tolerance of 0.00001, some nonlinear multivariate regression (NLMVR) equations were
developed to estimate the UCS and EM (Table 9). The NLMVR results indicate that when
more influential variables (independent variables with determination coefficients above
60%) are used in estimating the EM, the accuracy of the developed model (i.e., Model in
Equation (72)) is higher than when all variables (i.e., Model in Equation (71)) are used in
estimating the EM.

Table 9. Developed equations using the NLMVR method.

Developed Equations R2 RMSE Condition Equation No.

EM = 0.31 Fl1.2 − 6.71 Fl + 135.15 + 24.03Exp(−0.07n) +
24.92Exp(−0.12WA) + 1.08Exp(0.63PW) + 0.13 Fr1.57 − 6.31 Fr + 148
+ 0.24 Q1.95 − 2.08 Q + 13 + 106.32 D1.83 − 414.82 D + 418 + 0.01
SN2.00 − 0.20 SN + 14.2

0.78 172 For all inputs (71)

EM = 0.30 Fl1.47 − 5.54 Fl + 67.78 + 24.08Exp(−0.07n) +
24.69Exp(−0.12WA) + 1.13Exp(0.62PW)

0.79 51 For inputs with R2 > 60% (72)

3.10. Comparison of Used Methods

Table 10 and Figure 13 show the accuracy of the methods used for forecasting static
properties. According to the statistical criteria (i.e., R, MAPE, RMSE, and VAF), the ANFIS
method has higher accuracy than other methods. The SVR method also has very high
accuracy in the UCS and EM estimations, with a slight difference after the ANFIS method.
This is because SVR uses the principle of minimizing structural risk and adapting the
ability of the model to existing training data [76]. The number of inputs also affects the
accuracy of the methods. Considering that the number of inputs in the modeling in this
research (8 inputs) is high, the ANFIS method performs with higher accuracy than the
other methods [17]. Based on the correlation coefficient, all methods (R > 70%) accurately
estimate the UCS and EM.
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Table 10. The precision of the intelligent methods used for all data.

Methods
R MAPE% RMSE VAF%

UCS EM UCS EM UCS EM UCS EM

SVR 0.996 0.971 13.64 6.75 0.051 0.11 98.87 93.87
ANFIS 0.996 0.99 1.69 3.22 0.054 0.103 98.96 98.88
KNN 0.98 0.84 6.06 17.58 0.11 0.25 95.89 70.22
PBNN 0.98 0.92 5.48 5.69 0.17 0.25 95.96 84.00
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(b) for UCS.

Figure 14 compares the measured values of the UCS and EM and the predicted values
using the methods employed. As can be seen, the ANFIS method shows the best results for
forecasting static properties. The average predicted UCS and EM from all five methods are
64.14 Mpa and 16.82 Gpa, respectively. The mean percentages of the predicted UCS and
EM changes obtained from all five methods compared to the measured value are 0.42% and
2.48%, respectively, both of which show less than a 5% error, and the presented methods
can predict static properties with high accuracy.
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4. Conclusions

The physical and mechanical properties are the most important parameters of rocks
and are widely required in civil and mining projects to study rock mechanics. On the other
hand, index tests are easy and can be performed in the field or site of projects. In the current
research, after the petrography studies, physical, mechanical, and dynamic experiments
were performed on the sandstone samples obtained from the Lar and Siah Bisheh dam sites.
The SVR, KNN, ANFIS, BPNN, and simple and multivariate regression methods were used
to predict static properties, such as the uniaxial compressive strength (UCS) and modulus
of elasticity (EM).

Petrographic studies displayed that the sandstone specimens are categorized as
litharenite and feldspathic litharenite. The results revealed that, with an increasing silty
matrix, the strength of the samples decreased. Additionally, samples with carbonate cement
showed less resistance than the samples with iron oxide cement. The results also showed
that the UCS and EM are directly related to the SiO2% and inversely dependent on the
Al2O3 amount. The statistical analysis results showed that the Schmidt hardness number
(SN) and porosity have the greatest effect on the UCS and EM. The evaluation of the ex-
perimental relationships of other researchers revealed that some of these relationships are
useable to predict the UCS and EM of the studied sandstones. The evaluation of the criteria
of models (VAF, Durbin–Watson, RMSE, and R2) using the multivariate regression method
showed the high accuracy of this method for estimating the static properties. Among the
training algorithms using the BPNN method, the LM showed the best results for forecasting
the UCS and EM. The ideal obtained BPNN, using a trial-and-error process, contains four
neurons in a hidden layer with eight inputs. By comparing the results of the employed
methods, the ANFIS with R2 = 0.996 for the UCS and R2 = 0.99 for the EM showed the best
performance for estimating the EM and UCS.

Author Contributions: Z.F.: methodology, software, data curation, and funding acquisition. J.Q.: reviewing
and editing the original draft. K.S.: methodology and writing the original draft. S.H.: collecting
samples and performing field and laboratory works. M.K.: writing—original draft preparation and
resources. M.L.N.: conceptualization, supervision, project administration, and funding acquisition.
All authors have read and agreed to the published version of the manuscript.
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Data Availability Statement: The data used in this study has been appropriately described in
the manuscript.
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