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Abstract: The Han–Xing (Handan–Xingtai) region is famous for its endowment of skarn iron deposits
in China. These deposits are mainly spatially and genetically associated with diorite rocks, but
these rocks show different Fe ore potential. Major and trace elements composition of apatite from
the Kuangshan and Fushan diorite complexes were investigated to explore the potential of apatite
as a proxy of petrogenesis and Fe fertility of these rocks. All the investigated apatite grains are
identified as fluorapatite, which is typical for magmatic apatite. The Sr, Y, Mn, and Heavy Rare Earth
Elements (HREE) contents of apatite in the Kuangshan diorite complex are positively correlated
with the increase of melt SiO2 content compared to that in the Fushan diorite complex. Apatite
geochemistry indicates that magmas of the Fushan complex mainly experienced the fractional
crystallization of hornblende in the deep crustal reservoirs, whereas the Kuangshan complex has
experienced the fractional crystallization of hornblende in the deep and the shallow plagioclase
fractional crystallization. The F, Cl and S content of the Kuangshan complex estimated by apatite
volatile (F = 2632 ppm, Cl = 4100 ppm, SO3 = 140 ppm) is significantly higher than that of the Fushan
complex (F = 2488 ppm, Cl = 3400 ppm, SO3 = 90 ppm). The Eu, Ce anomalies, Mn, and SO3 contents
of apatite show that both of the two complexes have higher oxygen fugacity (∆ FMQ), but the oxygen
fugacity of the Kuangshan complex calculated by Mn and SO3 content (∆ FMQ + 2.41) is higher
than that of the Fushan complex (∆ FMQ + 1.77), which may also be one of the reasons for the great
difference in ore-forming scale between the two complexes. Our results suggest that the high volatile
contents and oxidation states of magma estimated by apatite, as well as the lower Sr/Y in apatite
reflect favorable conditions for skarn iron mineralization. Therefore, our study shows that magmatic
apatite geochemistry may be a useful tool to distinguish the Fe fertility of plutonic rocks related to
skarn deposits.

Keywords: apatite; Han–Xing iron deposits; magma evolution; Fe fertility; diorite complexes

1. Introduction

Apatite is a common accessory mineral in igneous and metamorphic rocks and is
generally resistant to hydrothermal alteration and weathering [1,2]. It can incorporate a
significant amount of volatile components (Cl, F, and SO3) and trace elements, such as rare
earth elements (REE), Y, Mn, Si, Sr, Th, and U [3–6]. Apatite is useful in deciphering key
parameters of a melt during magma evolution [7–9], and volatile contents [8–16], which
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can be evaluated in terms of redox state [2,17–26]. Apatite can act as a powerful tool for ore
exploration, such as porphyry Cu-Mo-Au deposits [2,14,18,22,27–29], skarn Pb-Zn-W-Sn
deposits [2,18], and granite-related U deposits [17]. However, apatite as an indicator of the
ore potential of intrusive complexes related to skarn Fe deposits has not yet been evaluated.

The Han–Xing region is one of the most important skarn iron ore producers in eastern
China [30,31]. In this region, skarn iron deposits are spatially related to several diorite
complexes [32–34]. However, different diorite complexes have distinct Fe ore potentials.
For example, eight Fe deposits with intermediate or small sizes have been found in the
Fushan complex, while more than twenty-six Fe deposits, including three large- and four
intermediate-sized ones, are spatially within the Kuangshan complex [31]. The factors
that result in the difference in Fe fertility of the two complexes are still poorly understood.
Previous studies have shown that geochemical characteristics of hornblende, plagioclase,
clinopyroxene, and zircon in diorite complexes in the Han–Xing region can be used as
an indicator of Fe fertility of diorite rocks related to skarn Fe deposits [31,32,34–38]. Few
studies have focused on the geochemical characteristics of apatite in these diorite complexes,
and whether it can be an indicator of Fe fertility of these rocks has not been explored.

Iron is one of the main elements in the Earth’s crust. At present, iron deposits have
been found in many kinds of lithologies around the world [39–45]. The formation of skarn
iron ore is controlled by systematic variables such as the depth magma evolution, shallow
assimilation of carbonate-rich and/or gypsolyte, the alteration, the oxygen fugacity of
crystallizing magmas, and variations of volatiles, temperature, and pressure.

In this study, the Fushan complex and the Kuangshan complex in the Han–Xing region
were taken as two integral metallogenic systems. The in situ major and trace element
compositions of apatite in both plutonic complexes were studied, and the characteris-
tics of apatite geochemistry, oxygen fugacity, and volatiles were compared comprehen-
sively, to analyze the favorable metallogenic conditions, which can be used as a guide for
mineral exploration.

2. Geological Setting

The Han–Xing region, located in the southern part of the Taihang Mountains, hosts a
large number of Mesozoic high-Mg diorite-related skarn-type iron deposits [33,34,46–51].
It covers an area of ~350 km2. The Mesozoic magmatism in this region might be related
to the destruction of the North China Craton [34,52–57] (Figure 1a) and the subduction of
the Paleo-Pacific Plate [52,54]. This region hosts skarn iron deposits that are characterized
by high grades of magnetite, with identified iron resources of ca. one billion tonnes. The
fault zone in this region is composed of a series of NS- and NE-trending faults, together
with EW-trending hidden faults (Figure 1b). The strata in this area are mainly evaporites
and limestones of the Middle Ordovician Series. The formation is inclined to the NEE, with
a dip Angle of 5–30◦. Magamtic rocks mainly include gabbro diorite, hornblende diorite,
diorite, diorite porphyrite, monzonite, and syenite [30,34,53,55] (Figure 1b). These rocks
were emplaced during 125 Ma–135 Ma [35,48,53].

In this region, skarn Fe deposits are spatially and genetically related to the Qicun,
Kuangshan, Wu’an, Guzhen, and Fushan diorite complexes, while the Hongshan complex
is barren. Some comparative studies of the whole-rock and major-mineral geochemistry
of ore-bearing and barren complexes in the Han–Xing region [32,35,36] pointed out that
the ore-bearing and barren complexes display similar geochemical characteristics. They
originated from an enriched mantle source, but experienced distinct magmatic processes.
The zircon Hf-O and whole-rock Sr-Nd isotopes, as well as their trace element data, in-
dicate that the parental magma of the ore-bearing complex was a mixture of melts that
were derived from the enriched lithospheric mantle and ancient lower continental crust,
whereas the barren complex was most likely generated by partial melting of the enriched
lithospheric mantle [32,35,36]. The lower crustal materials may have played key roles in
iron mineralization [35,36]. The ore-bearing complexes in the Han–Xing region have low
magma temperatures [35,36]. High oxidation states and water contents have been consid-
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ered as the key factors that led to the iron mineralization [32,35–37]. Dolomitic limestone
promoted iron mineralization from ore-forming fluids with high f O2 [34]. Previous mineral
explorations and studies show that different ore-bearing diorite complexes may have dis-
tinct Fe fertility [31]. For example, three large-, four intermediate-, and nineteen small-sized
skarn iron deposits are spatially related to the Kuangshan diorite complex, while only four
intermediate- and small-sized ones have been found in the Fushan diorite complex.
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2.1. Geology of the Fushan Complex and Related Fe Deposits

The Fushan diorite complex is composed of porphyritic hornblende diorite, horn-
blende diorite, diorite, monzonite, and minor syenite, with an exposed area of about
80 km2 [55] (Figure 2). There are four intermediate-sized iron deposits and four small-
sized iron deposits in the Fushan complex. Skarnization was developed in the contact
zone between limestone and the complexes, and skarn mainly includes garnet, vesuvian-
ite, diopside, epidote, and actinolite. Most of the magnetite orebodies occur within the
contact zones. Zircon U-Pb dating indicates that the Fushan complex were emplaced at
123–131 Ma [31,48,55,58–62].
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2.2. Geology of the Kuangshan Complex and Related Fe Deposits

The Kuangshan complex is composed of monzonite, porphyry monzonite, monzodior-
ite, and syenodiorite, with an exposed region of about 35 km2 (Figure 3). Three large-, four
intermediate-, and nineteen small-sized skarn iron deposits are related to the Kuangshan
complex. Zircon U-Pb dating indicates that the Kuangshan complex were emplaced during
127–133 Ma [32,40,48,58,62], and the phlogopite 40Ar–39Ar isotopic age indicates that the
formation ages of the Xishimen iron deposit is 133Ma [63].
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3. Sampling and Analytical Methods
3.1. Sample Descriptions

The samples collected from the Fushan and Kuangshan complexes are described in
Table 1. Four representative samples were collected from the Fushan complex, including
porphyritic hornblende diorite (FS1), hornblende diorite (FS2), diorite (FS3), and mon-
zonite (FS4) (Figure 4a–f). Diorite constitutes the main body of the Fushan complex and
hornblende diorite occurs as enclaves enclosed in that rock (Figure 4a). Syenite appears
as veins within diorite (Figure 4a), and hornblende diorite occur in diorite (Figure 4b).
The porphyritic hornblende diorite shows a dark gray color and is mainly composed of
plagioclase (60 vol.%), amphibole (35 vol.%), clinopyroxene (5 vol.%), and minor quartz
(Figure 4c). The accessory minerals include apatite, magnetite, zircon, and titanite. Horn-
blende diorite is grey-black in color and is mainly composed of plagioclase (60 vol.%),
amphibole (40 vol.%), and a small amount of quartz (Figure 4d,g). The accessory minerals
are apatite, magnetite, and zircon. Diorite is gray and is mainly composed of plagioclase
(75 vol.%), amphibole (20 vol.%), and a small amount of quartz (Figure 4e,h). The accessory
minerals are apatite, magnetite, and zircon. The monzonite shows a light gray color and is
mainly composed of plagioclase (50 vol.%), amphibole (15 vol.%), and alkaline feldspar
(35 vol.%), and a small amount of quartz (Figure 4f,i). The accessory minerals are apatite,
magnetite, zircon, and titanite. Here, the analyzed apatites are enclosed in fresh amphibole,
indicating its magmatic origin (Figure 4j–o).

Four representative samples were collected from the Kuangshan complex, includ-
ing diorite (KS1), quartz diorite (KS2), syenodiorite (KS3), and quartz monzonite (KS4)
(Figure 5a–d). Diorite is grey and is mainly composed of plagioclase (65 vol.%), amphibole
(30 vol.%), and a small amount of K-feldspar (5 vol.%) (Figure 5a,e,i). The accessory miner-
als are apatite, magnetite, zircon, and titanite. The quartz diorite shows a gray color and is
mainly composed of plagioclase (70 vol.%), amphibole (20 vol.%), and a small amount of
quartz (10 vol.%) (Figure 5b,f,j). The accessory minerals are apatite, magnetite, zircon, and
titanite. Syenodiorite is gray and is mainly composed of plagioclase (60 vol.%), amphibole
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(10 vol.%), and K-feldspar (30 vol.%) (Figure 5c,g,k). The accessory minerals are apatite,
magnetite, zircon, and titanite. The quartz monzonite shows a gray color and is mainly
composed of plagioclase (40 vol.%), amphibole (10 vol.%), and K-feldspar (40 vol.%), and
an amount of quartz (10 vol.%) (Figure 5d,h,l). The accessory minerals include apatite,
magnetite, zircon, and titanite. Apatite in these rocks mainly occurs within amphibole
(Figure 5i–l).
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Figure 4. Sample features of the Fushan complex, (a) Hornblende diorite inclusions in diorite, diorite
cut by syenite dikes; (b) Hornblende diorite occurs as enclaves enclosed in diorite; (c) Porphyritic
hornblende diorite (FS1); (d) Hornblende diorite (FS2); (e) Diorite (FS3); (f) Monzonite (FS4); (g) Horn-
blende diorite (FS2), under plane-polarized light; (h) Diorite (FS3), under plane-polarized light;
(i) Monzonite (FS4), under plane-polarized light; (j–l) Apatite coexisting with amphibole in some
samples; (m–o) Apatite coexisting with amphibole in backscattering image. Mineral abbreviations:
Amp = amphibole, Pl = plagioclase, Qtz = quartz, Cpx = clinopyroxene, Kf = K-feldspar, Sph = sphene
(titanite), Ap = apatite, Mag = magnetite.
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Figure 5. Sample features of the Kuangshan complex. (a) Diorite (KS1); (b) Quartz diorite (KS2);
(c) Syenodiorite (KS3); (d) Quartz monzonite (KS4); (e) Diorite (KS1), under plane-polarized light;
(f) Quartz diorite (KS2), under cross-polarized light; (g) Syenodiorite (KS3), under cross-polarized
light; (h) Quartz monzonite (KS4), under cross-polarized light; (i–l) Apatite coexisting with amphibole
in some samples.



Minerals 2023, 13, 469 8 of 20

Table 1. Comparison of the sample features in the Fushan and Kuangshan complexes.

Sample
No. Complex Lithology Texture Main Mineral Accessory Mineral U-Pb Dating

FS1 Fushan Porphyritic hornblende
diorite Porphyritic texture Pl(60%) + Amp(35%)

+ Cpx(5%)
Ap + Mag + Zrn +

Sph 129 ± 1.8 Ma

FS2 Fushan Hornblende diorite
Hypidiomorphic-

granual
texture

Pl(60%) + Amp(40%) Ap + Mag + Zrn 129 ± 2.1 Ma

FS3 Fushan Diorite
Hypidiomorphic-

granual
texture

Pl(75%) + Amp(25%) Ap + Mag + Zrn 127 ± 4.2 Ma

FS4 Fushan Monzonite
Hypidiomorphic-

granual
texture

Pl(50%) + Amp(15%)
+ Kf(35%)

Ap + Mag + Zrn
+ Sph 126 ± 1.9 Ma

KS1 Kuangshan Diorite Medium-fine grained
texture

Pl(65%) + Amp(30%)
+ Kf(5%)

Ap + Mag + Zrn
+ Sph 129 ± 2.6 Ma

KS2 Kuangshan Quartz diorite Medium-fine grained
texture

Pl(70%) + Amp(20%)
+ Q(10%)

Ap + Mag + Zrn
+ Sph 132 ± 2.1 Ma

KS3 Kuangshan Syenodiorite Medium-fine grained
texture

Pl(60%) + Amp(10%)
+ Kf(30%)

Ap + Mag + Zrn
+ Sph –

KS4 Kuangshan Quartz monzonite Medium-coarse
grained texture

Pl(40%) + Amp(10%)
+ Kf(40%) + Q(10%)

Ap + Mag + Zrn
+ Sph 128 ± 1.9 Ma

3.2. Analytical Methods

Apatite from thin sections of samples from the Fushan and Kuangshan complexes were
analyzed to determine their major and trace element compositions. Major elements mea-
surements in apatite were performed using a JEOL JXA-8230 electron probe micro-analyzer
(EPMA) at the Hebei GEO University, Shijiazhuang, China. The operating conditions were
15 kV accelerating voltage and a beam current of 20 nA. The beam diameter ranged from 2
to 5 µm. Relatively short counting times of 20 s on peak and 5 s on background, suitable
for determining concentrations of major elements, were used. Matrix corrections were
performed by the ZAF procedures [65].

The trace elements composition of apatite was analyzed using a Laser Ablation Induc-
tively Coupled Plasma Mass Spectrometry (LA-ICP-MS). The analysis was performed at
the Ore Deposit and Exploration Centre (ODEC), School of Resources and Environmental
Engineering, Hefei University of Technology, Hefei, China, using a laser ablation system
(Photon Machines Analyte HE with 193–nm ArF Excimer), coupled to a quadrupole-based
inductively coupled plasma-mass spectrometer (ICP-MS, Agilent 7900). Ablation was done
in an atmosphere of UHP He (0.9 L/min) mixed with Ar (0.87 L/min). Trace element
analysis was performed using a uniform spot size diameter of 30 µm at 7 Hz with the
energy of 2 J/cm2 for the 40 s after measuring the gas blank for 20s. Standard reference
materials NIST610, NIST612, and BCR-2G were used as external standards to plot the
calibration curve [66]. Trace element compositions of silicate minerals and oxide miner-
als were calibrated against multiple external standardizations without applying internal
standardization [67], following the procedures described in [66]. The preferred values
of element concentrations for the USGS reference glasses are from the GeoReM database
(http://georem.mpch-mainz.gwdg.de, accessed on 15 December 2022). The off-line data
processing was performed using a program called ICPMSDataCal [67].

4. Results
4.1. Major Elements of Apatite

The major elements of apatite from the Fushan and Kuangshan complexes are listed in
Supplementary Table S1. There are no obvious differences for CaO (52.31–56.57 wt%) and
P2O5 (39.11–42.25 wt%) abundances among apatite grains from the Fushan and Kuangshan
diorite complexes. The Cl contents of the Fushan and Kuangshan complexes range from 0.20
to 2.31 wt% (avg. 0.72 wt%) and 0.04 to 1.64 wt% (avg. 0.57 wt%), respectively. The SO3 of
the Fushan and Kuangshan complexes is in the range of 0.02–0.70 wt% (avg. 0.20 wt%) and
0–0.57 wt% (avg. 0.24 wt%), respectively. In sum, the SO3 content of the Kuangshan complex

http://georem.mpch-mainz.gwdg.de
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is higher than that of the Fushan complex, while the Cl content is higher in the Fushan
complex than the Kuangshan complex. The HAp (hydroxyapatite)-FAp (fluorapatite)-CAp
(chlorapatite) diagram shows that the apatite in the Fushan and Kuangshan complexes
is mainly fluorapatite, which shows a banded distribution (Figure 6a), indicating that
the volatile content in the melt changes rapidly, which may be influenced by the external
surrounding rock, such as carbonate rock or the gypsum rock layer. The relative content of
F and the ratio of f(HCl)/f(H2O) of apatite in each lithology showed an increasing trend,
indicating that the melt in which the apatite was formed showed an evolving trend towards
a high content of F or a high volatile content, and a weak higher relative content of Cl and
lower content of OH. Additionally, it shows that the melt of the Fushan and Kuangshan
complexes has the tendency to evolve to higher volatile contents. The SiO2-MnO diagram of
apatite shows that the apatite in the Fushan and Kuangshan diorite complexes is magmatic
in origin (Figure 6b). Diagrams are drawn using CorelKit geoscience mapping software [68].
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4.2. Trace Elements of Apatite

The trace elements of apatite composition from the investigated samples are listed in
Supplementary Table S2. The Sr content of the Fushan complex is higher than that of the
Kuangshan complex, while the Y content of the Fushan complex is lower than that of the
Kuangshan complex (Figure 7a,b). The Sr content of the Fushan and Kuangshan complex
ranges from 309.40 ppm to 1165.11 ppm (avg. 802.08 ppm) and 139.88 ppm to 1449.94 ppm
(avg. 736.55 ppm), respectively. The Y content of the Fushan and Kuangshan complexes
ranges from 101.27 ppm to 425.76 ppm (avg. 195.30 ppm) and 160.85 ppm to 851.56 ppm
(avg. 372.59 ppm), respectively. It has Sr/Y ratios of 1.3 to 7.62 (avg. 4.34) and 0.35 to 7.63
(avg. 2.39), respectively. The content of Mn in the Fushan complex is higher than that in the
Kuangshan complex (Figure 7c). The Mn varies in the Fushan and Kuangshan complexes
from 156.57 to 1449.24 ppm (avg. 782.60 ppm) and 73.28 to 1073.24 ppm (avg. 703.69 ppm),
respectively. The LREE content of apatite in the Kuangshan complex is similar to that of the
Fushan complex, but the HREE content of the apatite is obviously higher than that of the
Fushan complex in these samples (Figure 7d). The HREE content of the Fushan complex
ranges from 81.95 to 382.25 ppm (avg. 152.98 ppm). The HREE content of the Kuangshan
complex ranges from 137.20 to 628.01 ppm (avg. 282.07 ppm). The contents of Sr, Y, Mn,
and HREE in apatite in the Kuangshan complex show positive correlation with the increase
of SiO2 in the whole rock (Figure 7). Apatite from the Fushan and Kuangshan complexes
are characterized by right-inclined REE distribution patterns. Apatite from the Kuangshan
complex has stronger negative Eu anomalies (δEu = 0.08–0.95, avg = 0.64 ppm) than those
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from the Fushan complex (δEu = 0.56–1.04, avg = 0.77 ppm) (Figure 8). This indicates
that plagioclase crystallization in the Fushan diorite complex occurred during or after
apatite crystallization, while in the Kuangshan diorite complex, plagioclase fractionation
occurred before.
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5. Discussion
5.1. Magmatic Evolution Recorded by Apatite

It is generally believed that magma in the Han–Xing region is influenced by mantle
and crustal sources. Deep mantle-derived magma rises to a certain depth of the lower crust
through a deep fault system and crust material is added to the magmatic system [58,62,73],
then undergoes ascent, evolution, and other processes, which leave traces in rocks or
minerals. The REE characteristics of the whole rock can also record these geological
processes. Previous studies have shown that the magma in this region is mainly crustal
contamination or source contamination, and the partition pattern of REE in the Fushan and
Kuangshan complexes does not show an obvious Eu anomaly [40,58,62]. Therefore, it is
speculated that large-scale crystal fractionation of plagioclase did not occur in the deep
part of the lower crust.

Different from the Eu characteristics of the whole rock, the rare earth elements of
apatite from both complexes show different magnitudes of negative Eu anomalies (Figure 8).
The negative Eu anomaly of the Kuangshan complex (diorite, monzonite) is strong, while
the negative Eu anomaly of the Fushan complex (diorite, hornblende diorite) is slight.
Negative Eu anomalies in apatite are usually associated with plagioclase crystallization.
However, the previous analysis obtained the information that the plagioclase crystallization
of the magmatic source of the Kuangshan and Fushan complexes in the lower crust has
been inhibited. Therefore, plagioclase crystallization may occur in the shallow crust, and
the Kuangshan complex may have a higher proportion of plagioclase crystallization than
the Fushan complex.

Extensive hydrous magmas in the lower crust are dominated by hornblende (±garnet)
fractionation assemblage, while plagioclase crystallization is inhibited, resulting in it not
showing strong negative Eu anomalies [74]. The REE characteristics of whole rock and
apatite in the Fushan and Kuangshan complexes are consistent with the suppression
of plagioclase crystallization in the deep crust, and the basic magma formed near the
lower crust has high water content. Deep plagioclase crystallization inhibited by aqueous
magma rising from the lower crust will promote the accumulation and enrichment of
volatiles [75,76]. Comparing the data in the study area with the fractional crystallization
simulation data of hydrous magma [7] (Figure 9), it is found that the Sr/Y vs. Eu/Eu*
diagram of apatite is more sensitive to the magmatic evolution process exhibited by apatite.
The comparison of Sr/Y vs. Eu/Eu* diagrams shows that the Fushan complex is similar
to the Kuangshan complex, and the maximum values of Sr/Y and Eu/Eu* are located in
the initial melt (amp 66%, cpx 34%; mid- to lower-crust, 1.0 GPa and 4.5 wt% H2O; [77]),
in the vicinity of 60%. Both experienced the evolution of amphibole separation in the
deep part and formed a similar magma melt that rose to the shallow part of the crust and
then crystallized. During the crystallization process of magma in the shallow part of the
crust, the Kuangshan complex (5%–60%) maintained a higher crystallization ratio than the
Fushan complex (5%–20%). That is, the Kuangshan complex has more plagioclase than the
Fushan complex, resulting in more volatile accumulation and enrichment in the Kuangshan
complex. Therefore, the evolution process of the Kuangshan complex source magma is
more conducive to mineralization.
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path and percentage of crystallization is from [7].

5.2. Indication of Oxygen Fugacity of Apatite

The contents of variable valence elements such as Eu, Ce, Mn, and S in apatite are easily
affected by the change of redox conditions in melt and are often used to indicate the change
of oxygen fugacity. The apatite oxygen fugacity meter is often used to compare the oxygen
fugacity of magma in the study of genetic mineralogy, and is further recommended as an
indicator for mineral exploration [2,17–26]. In the ore deposit genesis study, apatite oxygen
fugacity meters are mostly used in copper-molybdenum deposits, but rarely in skarn iron
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deposits. Since Eu is not only affected by oxygen fugacity, plagioclase crystallization will
also affect it [81]. However, the feldspar crystallization ratios in the complexes in this study
area are quite different, which will have a great impact on the apatite Eu oxygen fugacity
meter. The key of the Ce oxygen fugacity meter is Ce4+. Given the extremely weak content
of Ce4+ in the apatite system, its reliability is questionable [81–83]. The apatite SO3 content
can also indicate the redox state of magma sources or related fluids [5,84]. The apatite SO3
content in the Fushan complex ranges from 0.02 to 0.42, with an average of 0.20. The apatite
SO3 content of the Kuangshan complex ranges from 0.02 to 0.57, with an average value
of 0.24 (Figure 10a). The Kuangshan complex has a higher apatite SO3 content. Although
questions regarding the reliability of the apatite Mn oxygen fugacity meter have been
raised, it may still be effective when applied in intermediate-acidic magmatic systems [21].
The oxygen fugacity by apatite calculated in the Fushan complex is ∆FMQ − 2.1 ~ ∆FMQ
+ 7.22, with an average value of ∆FMQ + 2.54. The oxygen fugacity by apatite calculated
in the Kuangshan complex is ∆FMQ + 1.04 ~ ∆FMQ + 7.27, with an average value of
∆FMQ + 4.77 (Figure 10b). The Kuangshan complex has a higher oxygen fugacity than the
apatite of the Fushan complex. Through comparison of the oxygen fugacity box diagram,
it is found that the overall oxygen fugacity of the Kuangshan complex in the melt is high
and there is a low oxygen fugacity outlier. These characteristics of oxygen fugacity may
reflect the change process from low oxygen fugacity to high oxygen fugacity of ore-bearing
hydrothermal fluid. A wide oxygen fugacity range reflects the existence of a multistage
magma chamber during magma ascent, especially in shallow limestones and evaporites,
which leads to the rapid rise of oxygen fugacity and even the occurrence of an outlier. These
characteristics indicate that high oxygen fugacity or an oxygen fugacity outlier is favorable
for mineralization.
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Figure 10. (a) Diagrams of SO3 content in apatite (Fushan complex: FS1—Porphyritic hornblende
diorite, FS2—Hornblende diorite, FS3—Diorite, FS4—Monzonite; Kuangshan complex: KS1—Diorite,
KS2—Quartz diorite, KS3—Syenodiorite, KS4—Quartz monzonite); (b) Diagrams of ∆FMQ in the
Hongshan, Fushan and Kuangshan complexes. The data of the Hongshan complex is quoted
from [78–80].

In view of the comprehensive comparison of various oxygen fugacity characteristics,
we believe that the Kuangshan complex has relatively higher oxygen fugacity characteris-
tics, which may be more conducive to the formation of a larger-scale magnetite deposit.

5.3. Evolution Process of Magmatic Volatiles Reflected by Apatite

The evolution of magma volatiles plays an important role in controlling mineraliza-
tion [8–16]. Chlorine, fluorine, and sulfur in ore-forming fluids are particularly critical
and can form ligands with ore-forming elements such as copper, gold, lead, zinc, iron,
molybdenum, and other cations such as H+, K+, Na+, and Ca2+. These can transport them
to appropriate locations to cause alteration or mineralization [85]. Because apatite is rich
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in volatile elements such as F, Cl, OH, and S, the volatile content in its equilibrium melt
can be calculated. Many scholars have studied the volatile content of magma in porphyry
metallogenic system by apatite, showing that magma melt after extensive fluid exsolution
may form a porphyry deposit if it has high content of F, Cl, and SO3 [9,12,14,15,86]. There
are few related studies on the skarn-type mineralization system. Zhou et al. (2022) studied
skarn deposits in Daye, eastern China, and found that silicate melts with high volatile
components (F, Cl, SO3, etc.) are also conducive to mineralization, copper is moderately
correlated with volatile components in silicate melts, while iron ore is correlated with
higher volatile components (F, Cl, SO3, etc.) [8].

Based on the thermodynamic distribution model of apatite/melt F and Cl [4] and the
calculation formula of apatite melt S content [3,5], the contents of Cl, F, and SO3 in the
Fushan and Kuangshan complexes were calculated in this study (Figure 11). The content
of F, Cl, and SO3 in the Fushan complex magma ranges from 1042 to 5201 ppm (average
2488 ppm), from 500 to 14,400 ppm (average 3400 ppm), and from 20 to 1660 ppm (average
90 ppm), respectively. The magma of the Kuangshan complex contains 1550–3709 ppm F
(average 2632 ppm), 1000–10,100 ppm Cl (average 4100 ppm), and 20–720 ppm SO3 (average
140 ppm). The average values of F, Cl, and SO3 in the two complexes increase sequentially
from the weak ore-forming Fushan complex to the strong ore-forming Kuangshan complex.
Although when distinguishing between strong and weak ore-forming complexes, the
Kuangshan complex has only slightly higher average values of F, Cl, and SO3 than the
Fushan complex, which also shows that high fluorine, high chlorine, and high SO3 in the
complex are beneficially ore forming. In addition, the Fushan complex has a larger range
of data variation, which may be related to the fractional crystallization of the multistage
magma chambers formed during the ascent of its magma.
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5.4. Contrast of the Iron-Bearing Complex and the Barren Complex

This study evaluates the ore-forming potential of the complex by studying the mag-
matic evolution process and melt-fluid oxygen fugacity and volatiles of the complex so
as to serve as a reference index in the early stage of mineral exploration. Because the
two complexes are skarn iron ore host complexes with different ore-forming scales, their
apatite analysis data overlap more, and the difference is relatively small. Although the
small difference of one index is not high confidence, the confidence of multiple index differ-
ences will be enough to reveal the favorable ore-forming factors when they constitute the
combination difference of similar gene profiles. Compared with the Fushan complex, the
Kuangshan complex has a higher magmatic evolution degree, higher oxygen fugacity, and
higher F-Cl-S volatile content, which is the difference of metallogenic gene combination,
which can indicate the metallogenic potential when the complex has the characteristics of
high evolution degree, oxygen fugacity, and high F-Cl-S volatile content. In order to verify
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the distinction between an iron-bearing complex and a barren complex, a barren complex
needs to be introduced for verification and comparison.

Introducing barren skarn-type iron ore complexes outside the region for comparison
will bring about huge differences between the comparison objects, such as the regional
tectonic background, sedimentary surrounding rocks, magma source areas, and intrusion
features. This makes it difficult to distinguish which variables lead to the difference in
mineralization. In order to minimize the impact of too many variable differences on the
verification, the only barren complex (Hongshan complex) in the Han–Xing area was
selected for comparison. Although the Hongshan complex is mainly composed of syenite,
and the surrounding sedimentary rocks are non-carbonate rocks, there are also problems
such as large differences in the composition of host rocks and sedimentary surrounding
rocks; however, from the perspective of preliminary screening of iron-rich complexes in
regional mineral exploration, these effects can be ignored. Hence, in order to better prove
the validity of the differences in apatite mineralization gene combinations, the barren
Hongshan complex in the region was added to the comparison.

The Hongshan complex has similar unobvious whole-rock Eu anomalies to the Fushan
and Kuangshan complexes, and the in situ trace elements of apatite show obvious Eu
negative anomalies to varying degrees [58]. The Kuangshan complex is similar, and
the deep evolution of magma is dominated by hornblende crystallization. The magma
of the Hongshan complex (65%) (Figure 9a) is more basic than that of the Fushan and
Kuangshan complex (60%) (Figure 9c,e) when it rises to the middle and shallow crust. The
crystallization rate of plagioclase in the shallow crust is lower (Figure 9b,d,f; the Hongshan
complex 0%–15%; the Fushan complex 5%–20%; the Kuangshan complex 5%–60%), the
accumulated volatiles are fewer, and the magmatic evolution degree is lower than that of
the Fushan and Kuangshan complexes. The Hongshan complex has lower oxygen fugacity
(Figure 10b) and F-Cl volatiles (Figure 11) than the Fushan complex and Kuangshan
complex. After the final comparison, it was found that the Hongshan complex has the
characteristics of low magmatic evolution, low oxygen fugacity, and low F-Cl; therefore,
its metallogenic potential is poor. Hence, the differences in apatite mineralization gene
combinations are basically consistent in the complexes in the Han–Xing area.

The oxygen fugacity characteristics need to be emphasized here. Oxygen fugacity
is usually closely related to changes in the external environment. The variation range of
oxygen fugacity is related to the multistage magma chamber formed by magma in the
middle and shallow crust and is also affected by the near-surface strata (carbonate rocks or
gypsum rocks). The crystallization depth can be calculated by hornblende. The magma
chamber of the Hongshan complex is 3–9 km deep and divided into two stages [79]. The
sedimentary surrounding rock is sandstone, mudstone, shale, etc., resulting in a small and
low variation range of oxygen fugacity. The crystal depth of the magma chamber of the
Fushan complex is 1–26 km, and the magma chamber is almost continuously distributed
([87]; Liang, unpublished). The sedimentary surrounding rock is a carbonate rock, resulting
in the largest and high variation range of oxygen fugacity. The crystallization depth
of magma chamber of the Kuangshan complex is 1–21 km, and the magma chamber is
divided into three stages, of which, the first to second stages (1–8 km) are dominant (Liang,
unpublished). The sedimentary surrounding rock is a carbonate rock, resulting in a large
and high variation range of oxygen fugacity (mild outliers).

It can be seen that there are many factors affecting the metallogenic potential of
a complex. When evaluating the metallogenic potential, it is necessary to build a met-
allogenic gene combination characteristic model composed of the magmatic evolution
process, oxygen fugacity, volatile components, carbonate rock, ore structure, etc., and
then distinguish the systematic differences of the complex to draw a conclusion on the
metallogenic possibility.
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5.5. Preliminary Study on Favorable Ore-Forming Lithology of Skarn Iron Deposit
Boarding Complex

A large number of studies have shown that magmatite related to skarn copper deposits
have obvious metallogenic specificity [39], which are generally related to diorites. The
magmatite related to skarn iron deposits do not show specific properties, but are distributed
from basic rock, intermediate rock, intermediate-acid rock, and acid rock. For example,
the surrounding rocks of the Cihai iron ore deposit in Xinjiang, China are diabase [41]; the
surrounding rocks of the Tieshan ore deposit in Daye, China are quartz-bearing diorite,
biotite diopside diorite, syenite diorite, and porphyritic quartz-bearing diorite [42]; the
surrounding rocks of the Sangan iron deposit in Iran are syenite-granite and quartz mon-
zonite [45]; and the surrounding rocks of the Makeng iron deposit in Fujian, China are
granite [43]. The characteristics of the skarn iron deposit in Han–Xing region are more
significant. The lithology of the surrounding rocks near the skarn-type iron ore bodies in
the Han–Xing area is diverse. A variety of lithologies, such as diorite, monzodiorite, and
porphyritic hornblende monzonite, have been found around the Fushan iron deposit, and
the intrusion relationship of each lithology is very complicated [44]. In the Kuangshan
complex, the surrounding rock of the Xishimen iron deposit contains diorite, syenite diorite,
hornblende monzonite, monzonite, diorite porphyrite, etc. [40]. Hence, the lithology of the
two complexes has no specificity of mineralization.

The oxygen fugacity and volatile content of each lithology of the two complexes
calculated by apatite do not show obvious correlation with their respective lithologies,
which indicates that the ore-forming lithology of iron ore may not be the main factor. In
order to study the genesis of skarn-type iron ore or to explore iron ore, it is necessary
to comprehensively consider other factors, such as the structure and lithology of the
surrounding rock.

Although there are many kinds of lithology in the complex in the Han–Xing area, and
it is not one lithology, it is still effective to study the prospecting potential of the complicated
complex as a whole.

6. Conclusions

(1) Our apatite geochemical data indicate that the Fushan and Kuangshan complexes
were primarily formed through amphibole fractional crystallization during deep processes,
whereas the magma for the Kuangshan complex experienced extensive plagioclase frac-
tional crystallization during shallow processes, which is more favorable for the formation
of iron deposits.

(2) Based on apatite composition the Kuangshan complex show higher oxygen fu-
gacity and volatiles such as F, Cl and S, compared with the Fushan complex. The oxy-
gen fugacity and volatiles plutonic complexes have certain indicative significance for
mineral exploration.

(3) There are a variety of intrusive rocks related to skarn iron deposit mineralization in
the Han–Xing area. Each independent complex body in this area should be studied as an
independent unit to study the possibility of mineralization.
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