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Abstract: Xanthate is the most widely used and effective collector in the flotation of sulfide minerals.
However, the residual xanthate in flotation wastewater may cause serious environmental pollution
and even human health hazards. At present, a variety of treatment technologies have been developed
to degrade xanthate pollutants in wastewater, with the aim of meeting safe discharge standards.
This work reviews the research status of xanthate wastewater treatment technologies in recent years.
Treatment technologies are evaluated, including coagulation flocculation, adsorption, microbiological,
Fenton, ozone oxidation, and photocatalytic methods. The reaction mechanisms and advantages, as
well as disadvantages, of the various treatment technologies are summarized. Future research on the
treatment of xanthate wastewater should focus on combined methods, which will be conducive to
achieving a high efficiency and low cost, with no secondary pollution, and with the aim of generating
further original and innovative technologies.
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1. Introduction

Recently, environmental issues related to the mineral processing industry have re-
ceived increased attention from researchers. The efficient treatment of mineral processing
wastewater is the focus of research in this field. It is well accepted that froth flotation, on
the basis of the different surface properties of minerals, has become the most common and
effective beneficiation method for separating metallic sulfide minerals from the gangue [1].
It is statistically estimated that approximately 2 billion tons of minerals are processed
by flotation methods every year [2], which mainly involves copper, lead, zinc, nickel,
etc. Xanthate is the most widely used agent in the flotation of non-ferrous metal sulfide
minerals, and its consumption is expected to reach about 371,826,000 tons by 2025 [3]. How-
ever, only half of the xanthate in the flotation process is consumed, while the remainder
is discharged to the tailings pond [4,5]. The residual xanthate wastewater can leak out
and cause odor problems and toxicity to the biota, resulting in the deterioration of the
surrounding water quality [6]. When recycling the beneficiation wastewater, this remaining
agent will affect the flotation index and cause adverse effects on the flotation selectivity of
the minerals [7]. Thus, effective treatment of the residual xanthate in flotation wastewater
is of great significance to the sustainable development of the mineral processing industry
and for environmental protection.

Various methods have been reported for the treatment of xanthate wastewater [8],
primarily including acid decomposition and conventional chemical oxidation. The con-
ventional chemical oxidizing agents mainly consist of hydrogen peroxide (H2O2) and
hypochlorite (NaClO, Ca(ClO)2, etc.). However, there are still many issues with these
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traditional processes. For instance, a continuous supply of chemicals and energy are re-
quired when acid decomposition methods are employed. Therefore, most of them are
both unaffordable and unsustainable [9]. The conventional chemical oxidation methods
have an extremely low treatment efficiency, and the treated xanthate wastewater cannot
meet emission standards for release into the environment, which can produce secondary
pollution [10]. Therefore, it is vitally important to develop effective methods with higher
oxidation capacity, with the aim of better removal of xanthate.

In order to overcome the shortcomings of these traditional treatment methods, re-
searchers have developed techniques such as physical adsorption [7,11], coagulation floc-
culation [12], and microbiological methods [4,13]. They exhibit superior performance for
the treatment of xanthate wastewater, due to the advantages of simple operation and
relatively mature technology. During the last few decades, efforts for the treatment of
mineral processing wastewater via advanced oxidation processes (AOPs) have been ongo-
ing. Photocatalytic [14,15], ozone oxidation [16], and Fenton [17,18] are frequently cited
as the prime examples of such processes. They become effective alternative methods for
degrading residual xanthates in flotation wastewater, because of a high xanthate removal
rate, short treatment duration, as well as no secondary pollution. With the ever-increasing
raising of environmental protection requirements, the development of efficient treatments
for xanthate wastewater has become a hot topic, and our goal is to summarize the recent
advances in the treatment of xanthate wastewater, and to guide the future utilization of
wastewater resources and environmental protection.

In view of this, the aim of this review is to critically analyze the broad-spectrum
treatment methods that have been engaged in the published literature on the degradation
of xanthate wastewater. The reaction mechanisms and related influencing factors of the
various treatment techniques for the removal of xanthate are explored, while the character-
istics and hazards of xanthate are briefly discussed. Finally, updated applications for the
removal of residual xanthate from flotation wastewater are emphasized. A review such as
this will help researchers understand the progress in research, identify the strengths and
weaknesses of each treatment technology, and document knowledge gaps that could help
shape the direction of future studies in this area.

2. The Characteristics and Hazards of Xanthate

Xanthate is chemically formulated as ROCSSMe (Me is Na and K). It is easily de-
composed and has good water solubility [19]. It can be partially degraded naturally
under light conditions, and is unstable under strong acid, strong alkali, as well as neu-
tral conditions [20,21]. In the water system, a series of chemical reactions, as shown in
Equations (1)–(4), occur, leading to the decomposition of xanthate [20].

ROCSSMe→ ROCSS− + Me+ (1)

ROCSS− + H2O→ ROCSSH + OH− (2)

ROCS2
− + H+ → ROH + CS2 (3)

ROCSSH→ ROCSS− + H+ (4)

In acidic solutions, xanthate is readily decomposed into alcohols and carbon disul-
fide (CS2):

ROCSS− + H− → ROCSSH (5)

ROCSSH + H− → ROCSSH2
+ (6)

ROCSSH→ ROH + CS2 (7)

In alkaline solutions, xanthate is readily oxidized to dixanthate and further converted
to alcohols and carbon disulfide (CS2) in contact with air:

2ROCSS− + 1/2O2 + H2O→ (ROCSS)2 + 2OH− (8)
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ROCSS− + CO2 + H2O→ ROH + CS2 + HCO3
− (9)

Xanthate and its derivatives are highly toxic and difficult to degrade. Once the xanthate
wastewater enters a water body, even in very small amounts, it can cause water quality
deterioration and a bad smell, as well as affect the growth and reproduction of algae, fish,
and microorganisms in the water [22,23]. It has been reported that 30 µg/L of xanthate had
a significant disruptive effect on the embryonic development of salmonids [24]; 19.25 mg/L
of xanthate had a dramatic inhibitory effect on chlorella pyrenoidosa [25]. In addition,
xanthate can have a negative impact on the nervous system and liver of humans and
animals [26,27]. In addition, xanthate easily forms complex pollutants once it interacts
with heavy metals, accelerating the migration, transformation, and residence time of heavy
metal elements in the environment [25,28]. This activity can cause inhibition of enzymatic
activities, genetic mutations, and chromosomal mutations in organisms [29], making the
toxicity of xanthate wastewater more serious.

3. Xanthate Wastewater Treatment Technology
3.1. Coagulation–Flocculation Method

Coagulation–flocculation is an effective method that is widely used to remove pollu-
tants from wastewater. The mechanism is designed to allow polymerization sedimentation
of organic pollutants, by adding coagulants and flocculants to the wastewater [30]. The com-
monly used coagulants are iron salts, ferrous salts, aluminum salts, and their polymers [31].
Polyacrylamides and their derivatives are frequently used as flocculants.

The xanthate anion can combine with many metal ions and readily forms salt species
with a smaller solubility. Metal ions such as Fe2+, Cu2+, Pb2+, and Cd2+ [32] are usually
added to the xanthate wastewater to form metal xanthate precipitates, and the removal of
xanthate and soluble contaminants can be achieved by filtration. FeSO4, polymerized ferric
sulfate (PFS), and polyacrylamide (PAM) were added to the wastewater containing high
concentrations of xanthate by Sun et al. [33]. The removal of xanthate could reach more than
99% under neutral conditions. Meng et al. [31] indicated that the coagulation–flocculation
process using polymerized ferric sulfate as a coagulant and polyacrylamide as a flocculant
showed an insignificant removal effect in reducing COD (Chemical Oxygen Demand) in
tailings wastewater. Yang et al. [30] reported that a coagulation–flocculation process was
employed to treat flotation wastewater with a high concentration of suspended solids (SS)
and organic pollutants, high alkalinity, and strong coloration, through the use of ferric
chloride (FC) and polymerized aluminum chloride (PAC) as coagulants and polyacrylamide
(PAM) as a flocculant. The results indicated that the FC/PAC compound coagulant coupled
with PAM flocculant showed a high potential and economic feasibility for treating flotation
wastewater with high turbidity and high alkalinity.

The coagulation–flocculation method has the advantages of simple operation and
easy control. However, this treatment process requires a large amount of coagulants,
making the cost high. In addition, the formation of a multitude sedimentation wastes can
cause secondary pollution. In addition, this process is highly dependent on pH, which
requires a large input of acid and alkali to adjust the solution pH. These drawbacks limit its
application in the treatment of practical flotation wastewater.

3.2. Adsorption Methods

Adsorption is a simple, efficient, and economical method for removing residual xan-
thate from flotation tailings. The main technique is using adsorbents to separate the
xanthates from the wastewater. The commonly used adsorbents include activated carbon,
fly ash, zeolite, clay minerals, etc.

Activated carbon is effective as an adsorbent for the treatment of low concentration
xanthate wastewater. Salarirad et al. [34] investigated the adsorption performance of
ethyl xanthate (EX) in flotation wastewater using activated carbon. The results revealed
that the removal rate of EX was more than 99% when the initial concentration of EX
was 268 mg/L. Additionally, clay minerals and their modified forms have been widely
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applied as adsorbents for the treatment of xanthate, due to their stable physicochemical
properties, large specific surface area, rich pore structure, and surface properties. Huang
et al. [35] used cationic gemini surfactant-modified montmorillonite for the removal of ethyl,
isobutyl, and isoamyl xanthates, and the three xanthates were completely removed within
60 min. This result indicated that modified montmorillonite was a promising adsorbent
for the removal of xanthate from solution, but its regeneration performance needs to be
confirmed. In addition, it was shown by Oliveira et al. that zeolites pretreated with sodium
ions and then modified with copper ions exhibited excellent adsorption properties for
isopropyl xanthate [36].

It was found that bentonite showed good adsorption properties for the removal of
xanthate. Amrollahi et al. [3] reported the adsorption characteristics of bentonite modified
with copper-manganese ferrite nanoparticles (Be-CuFe2O4, Be-MnFe2O4) on synthetic and
actual mine wastewater with xanthate, in which the removal rate of residual xanthate
reached more than 94% under optimal adsorption conditions. Rezaei et al. [11] applied
acid-activated (H-Be) and aluminum-pillared (Al-Be) bentonite and obtained two modified
adsorbent materials, which were successfully used for the removal of residual potassium
amyl xanthate from solution. The adsorption performance of Al-Be was superior to H-Be,
and the removal rate of residual xanthate reached over 99%. Li et al. [37] investigated
the adsorption of xanthate from aqueous solution using multilayer graphene oxide and
obtained a desirable removal rate of xanthate. The superior adsorption performance was
attributed to the abundant oxygen-containing functional groups and large specific surface
area of the multilayer graphene oxide.

Although adsorbents are inexpensive and widely available, their adsorption capacity
is limited. They are usually applied to treat low concentration xanthate wastewater. Adsor-
bent clogging is a prominent issue when treating high concentration xanthate wastewater.
In addition, the issue of regeneration and reuse of adsorbents needs to be further explored.

3.3. Biological Method

Microbiological techniques have been widely used to remove organic pollutants from
various types of wastewater. Biological treatment of xanthate wastewater is accomplished
through the decomposition of xanthate into CO2, CS2, and dixanthate with the action of
microorganisms [38]. The degradation mechanisms are as follows [39]:

8ROCSS− + 4H2O + O2 → 8ROH + 2CO3
2− + 2CS2 + 4CS3

2− (10)

2ROH→ 2RHO→ CO2 + 2H2O (11)

CS3
2− → CS2 + S2− (12)

2ROCSS→ (ROCSS)2 (13)

Chen et al. [38,40] found that domesticated microorganisms were beneficial for the
biodegradation of xanthate. The results showed that the removal of xanthate reached 81.8%
after 8 days of biodegradation, and the treatment process was consistent with the first order
reaction kinetics. Furthermore, the biodegradation mechanism of xanthate revealed that
CS2, ROCSSH, and monothiolcarbonate were the main degradation products, accompa-
nied by the generation of a small amount of dixanthate oil droplets. Natarajan et al. [4]
demonstrated that paenibacillus polymyxa and pseudomonas putida had the ability to
degrade isopropyl xanthate, but the xanthate exerted toxic effects on bacterial growth
when the concentration of xanthate exceeded 50 mg/L. To overcome the above limitations,
bacterial strains resistant to high concentrations of xanthate were cultivated by continuous
subculture. The significant effect of this strain on the degradation efficiency of the xanthate
was mainly attributed to the acidic products produced by the bacterial metabolism.

Lin et al. [41] reported that an artificial microbial community SDMC (simultaneously
degrade butyl xanthate and biomineralize cadmium) composed of hypomicrobium and
sporosarcina after screening and domesticating in a short period of time achieved 100%
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butyl xanthate (BX) removal and 99% Cd biosorption, respectively. The main mechanisms
of SDMC degradation and biomineralization of complex contaminants were attributed
to decomposition, degradation, biomineralization, C-O bond breaking, and microbially
induced carbonate precipitation (MICP) (as shown in Figure 1). In addition, CS2, butyl
perxanthate (BPX), and (Ca0.67, Cd0.33) CO3 were the main products produced during the
degradation of the composite pollution. Chockalingam et al. [42] reported the biodegrada-
tion of potassium isopropylxanthate in aqueous solution by bacillus polymyxa. Xanthate
degradation product was observed at 1046 cm−1 via FTIR spectrum analysis, indicating the
biodegradation mechanism. Cheng et al. [1] also designed an anaerobic–aerobic biological
filter for the degradation of xanthate in synthetic flotation wastewater. As a result, an
average COD removal rate of 88.7% for potassium ethyl xanthate was obtained under
optimal reaction conditions, and a biological filter with volcanic rock as filler showed a
favorable biodegradation performance for xanthate.
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In view of their simplicity of operation, economy, and environmentally friendliness,
researchers argue that biological methods are suitable for the treatment of xanthate wastew-
ater [41]. However, this method also has defects, such as a low efficiency and long duration.
In addition, the CS2 and alcohols produced by the decomposition of the xanthate are toxic
to bacterial growth and activity, which not only leads to an increase in the permeability of
lipid membranes and the inability to carry out normal metabolism, but also triggers the
secondary contamination of CS2.

3.4. Oxidation Methods

Advanced oxidation processes (AOPs) are considered an effective and promising
method for degrading refractory organic pollutants in wastewater. Many AOPs, such as
ozone oxidation, Fenton oxidation, and photocatalytic oxidation have been widely used
in the degradation of xanthates in mineral processing wastewater, due to their powerful
oxidation capacities [43]. The reactive oxygen species (ROS) produced by the oxidation
method, such as hydroxyl radicals (•OH), sulfate radicals (SO4•−), superoxide radicals
(O2
−•), and hydroperoxyl radicals (HO2•) can oxidize organic pollutants into harmless

small molecule compounds, in the form of CO2 and H2O [44,45]. Therefore, AOPs have
great potential for the degradation of xanthate pollutants. The advantages and limitations
of various AOPs are summarized in Table 1.
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Table 1. The advantages and limitations of various AOPs.

AOPs Advantages Disadvantages

Fenton
• Rapid degradation rate
•Mild reaction conditions
• Convenient operation

• High dosage of reagents
• Limited pH range

• Catalysts are not easily recovered
•Excess Fe2+ increases the color and COD

of the treated water
• Secondary pollution

Ozonation • Short reaction time
• High removal rate of xanthate

• Limited mass transfer efficiency and
utilization productivity
• High treatment costs

•Low mineralization rate of the
intermediates

• Intermediate products increase the COD
content of the effluent

Photocatalytics

TiO2
photocatalysts

• Low cost
• Innocuous and harmless
• Strong redox capability
• Excellent chemical stability

•Wide band gap
• Electron-hole pairs are unstable
• Narrow light absorption range
• Low adsorption capacity

•High concentration nano-TiO2
suspensions are easy to agglomerate

Bi-based oxide
photocatalysts

• Innocuous and harmless
• Excellent chemical stability
• Unique layered structure

• Electron-hole pairs are unstable
• Visible light absorption is limited to a

specific wavelength range

ZnO-based
photocatalysts

• Excellent photophysical properties
• Low cost

• High light sensitivity and thermal stability

•Wide band gap
• Photoinduced carriers are unstable

• Low sunlight usage rate

3.4.1. Fenton Methods

In recent years, Fenton oxidation technology has been widely investigated in the
wastewater treatment field. The Fenton method includes homogeneous Fenton and non-
homogeneous Fenton, according to the catalyst used. In the conventional Fenton oxidation
process, Fe2+ catalyzes the reaction of H2O2 under acidic conditions, to form hydroxyl
radicals (•OH) [46,47]. The •OH has a high redox potential of 2.8 eV, which can effectively
degrade most organic pollutants (e.g., xanthate) in wastewater [46,48]. The amount of •OH
produced mainly depends on the concentration of Fe2+ and H2O2 in the solution system.
An appropriate concentration of Fe2+ and H2O2 is beneficial for the generation of •OH, but
excessive Fe2+ and H2O2 will consume the produced •OH, which degrades the activity
of the Fenton reagent [49]. Thus, it is essential to determine the optimal ratio of Fe2+ and
H2O2 for xanthate wastewater treatment.

Fenton oxidation was used to remove residual xanthate from sulfide ore beneficiation
wastewater by Ai et al. [50]. Under optimal conditions, the removal of xanthate from both
synthetic and actual beneficiation wastewater was extremely high and met the required dis-
charge standards, where the maximum allowable concentration of xanthate is 0.005 mg/L
according to the Comprehensive Sewage Discharge Standard (GB8978−1996) [51]. In the
case of excess Fe2+, H2O2 and Fe2+ were consumed rapidly and Fe3+ ions were formed,
resulting in a change of the color of the treated water. Meanwhile, the efficiency of wastewa-
ter treatment decreased with a high initial pH. Based on this, another study by Ai et al. [19]
reported the combination of ultrasound with a Fenton reagent. This combined process
exhibited higher removal rates of xanthate wastewater. However, numerous inherent
disadvantages exist of the conventional homogeneous Fenton reactions, such as strong
acidic conditions and the production of iron sludge, which limit the wide application of
the homogeneous Fenton method in wastewater treatment [52]. To further expand the
applicability of the homogeneous Fenton method in the treatment of xanthate wastewater,
shorten the reaction time, and improve the reaction efficiency, a non-homogeneous phase
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Fenton-like method has been developed by researchers. The non-homogeneous Fenton-like
reaction is a general term for a class of reactions in which Fe3+, Fe-containing minerals, and
other transition metals such as Co, Cd, Cu, Ag, Mn, Al, etc. accelerate or replace Fe2+ and
catalyze H2O2 to produce active groups [53,54].

García-Leiva et al. [6] compared the effect of the Fenton process and a photo-Fenton
process on the oxidative degradation of ethyl xanthate (EX) in aqueous solution. The results
indicated that the photo-Fenton method could promote the complete mineralization of
organic compounds and sulfur in xanthate, and its performance for EX removal was better
than the conventional Fenton method. The potential application of acidified/calcined red
mud (ACRM) as a catalyst of Fenton in the degradation of butyl xanthate was reported
in another work [55]. The authors further explored the possible mechanisms of hydroxyl
radical generation and butyl xanthate degradation in an ACRM-catalyzed Fenton-like
process (as shown in Figure 2). The xanthate was first oxidized by •OH radicals to produce
peroxynitrite, and then continued to be oxidized to H2O and CO2, and finally the xanthate
was effectively removed. Similarly, Chen et al. [17] discussed the removal of n-butylxanthate
from an aqueous solution through a non-homogeneous Fenton-like method that utilized fly
ash as a catalyst. UV-Vis spectroscopic analysis (Shimadzu, Japan) showed that CS2 was the
oxidation intermediate in the oxidation of n-butylxanthate. Under optimal test conditions,
the xanthate and COD removal reached more than 96.90% and 96.66%, respectively. This
result indicated the high oxidative activity of the process for the degradation of xanthate in
aqueous solution.
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3.4.2. Ozone Oxidation

The oxidation potential of ozone is 2.07 eV. Therefore, ozone oxidation may also be
very effective for the treatment of xanthate wastewater. The oxidation reaction of ozone is
divided into two pathways: one is the direct oxidation of molecular ozone, the other is the
indirect oxidation through its own decomposition to produce hydroxyl radicals (•OH) and
other free radicals [56,57]. In this process, pH is the main factor that affects the effectiveness
of the xanthate wastewater treatment. Under acidic conditions, the organic components
in xanthate wastewater are directly oxidized by O3; while in alkaline systems, xanthate is
indirectly attacked by the highly oxidizing •OH produced by the rapid reaction of O3 with
OH−. However, ozone oxidation has the disadvantages of a limited mass transfer of ozone,
short lifetime of the generated ozone and reactive oxygen species (ROS), and relatively
high energy consumption of the ozone generated. Thus, its application in practical flotation
wastewater treatment is limited [58]. In addition, it is difficult to completely oxidize
and mineralize the toxic intermediates during the oxidation process through single O3
oxidation [59]. To overcome these drawbacks, using ozone in combination with other
processes to improve the O3 oxidation efficiency has attracted a lot of attention from
researchers. Current research on the treatment of xanthate using ozone has focused on
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comparing the degradation performance of ozone and the synergistic effect of ozone with
other advanced oxidation processes, the purpose of which is to develop a more effective
treatment method for xanthate wastewater.

It has been shown that the COD removal and ozone utilization are quite limited
when using a single ozone oxidation process in the degradation of butyl xanthate [60]. The
combination of ozone oxidation and UV radiation (O3/UV) is an effective combined process
for the removal of refractory pollutants from wastewater [61]. Fu et al. [62] compared the
performance of O3 and UV-O3 processes for the removal of four alkyl (sodium ethyl
xanthate (SEX), sodium isopropylxanthate (SIPX), sodium n-butyl xanthate (SBX) and
sodium namyl xanthate (SAX)) xanthates in a semi-batch bubble column reactor. Although
UV spectral analysis showed that the ozone oxidation process had a high removal rate of
alkyl xanthate in a short period of time, its mineralization effect was still unsatisfactory. On
the contrary, the improvements in xanthate mineralization rate and ozone utilization in the
UV/O3 process were mainly attributed to the easy decomposition of O3 under UV radiation,
to form reactive radicals. In addition, a decomposition pathway of n-butylxanthate in the
vacuum UV-ozone (VUV/O3) process has been proposed (as shown in Figure 3) [16]. UV
promoted the decomposition of refractory xanthates by generating more •OH radicals.
The C-O bond in the xanthate molecule was attacked by •OH in aqueous solution and the
C=S bond in the –CSS− functional group was broken by nucleophilic reactions, to form
by-products such as n-butanol and CS2 [26]. These by-products were further attacked
by •OH, to form CO2, H2O, and SO4

2−, with a smaller molecular mass. Fu et al. [63]
compared the degradation performance of an ethyl xanthate (EX) collector using O3,
UV254nm, UV185+254nm, O3/UV254nm, and O3/UV185+254nm processes. The O3/UV185+254nm
process showed the highest degree of removal and mineralization of xanthate. However,
a solid-phase extraction/GC-MS (Shimadzu, GCMS–QP2010 SE, Japan) analysis showed
that the EX collector produced 13 organic by-products, and most of them could be further
decomposed by O3/UV185+254 nm, but there were still a few by-products that were difficult
to completely mineralize. Yan et al. [64] analyzed in detail the decomposition pathway
and final oxidation products of potassium n-butyl xanthate (PBX) removal through an
ozone oxidation process. In the presence of ozone, the PBX was significantly degraded
to SO4

2− and n-butanol, accompanied by small amounts of carbon dioxide and gaseous
sulfur. Direct and indirect ozone oxidation reactions occurred in the PBX solution. In
the indirect ozone oxidation reaction of PBX, the continuous reactions between peroxide
radicals (•HO2 and •O2

−) and PBX caused the decomposition of PBX into small organic
and inorganic substances.
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3.4.3. Photocatalytic Oxidations
TiO2 Photocatalysts

Titanium dioxide (TiO2) is the one of the most important semiconductor materials
in the field of photocatalysis, because of its chemical stability, high catalytic activity, and
non-toxicity. TiO2 mainly includes three crystalline types: anatase phase, rutile phase, and
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brookite phase [65]. The photocatalytic performance of anatase phase TiO2 was more active
than the other two crystalline TiO2 types [66]. TiO2 is an n-type semiconductor compound,
and its photocatalytic mechanism is shown in Figure 4 [67]. When TiO2 is irradiated in UV
light with an energy (hv) greater than or equal to the band gap energy, the photogenerated
electron (e−) on its step band (vb) is transferred to the conduction band (cb). At the same
time, photogenerated holes (h+) are generated in the valence band, and the electron-hole
pairs migrate to the semiconductor surface, under the action of the electric field [68]. The
holes can directly oxidize the organic compounds that are adsorbed on the surface of the
TiO2. It can also react with H2O molecules to produce hydroxyl radicals (•OH) with an
extremely high oxidizing power. Photogenerated electrons can reduce O2 molecules, to
form superoxide radical anions (•O2

−) or hydrogen peroxide radicals (HO2•), as shown
in Equations (14)–(20) [69,70]. Organic pollutants are oxidized by these reactive oxygen
species (ROS) to generate small molecule compounds, such as CO2 and H2O, thereby
achieving a clean treatment of organic pollutants.

TiO2 + hv→ hvB
+ + ecB

− (14)

hvB
+ + ecB

− → Energy (15)

hvB
+ + H2O→ •OH + H+ (16)

ecB
− + O2 → •O2

− (17)

•O2
− + H+ → HO2• (18)

2HO2• + ecB
− + H+ → H2O2 + O2 (19)

H2O2 + ecB
− → HO• + HO− (20)
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However, pure TiO2 photocatalysts usually exhibit a low photocatalytic efficiency
because of their drawbacks, such as a wide band gap, partial absorption of sunlight in
the UV region, and rapid recombination of the photogenerated electron-hole pair, which
limit the practicality of pure TiO2-based materials [71,72]. In addition, the low adsorption
capacity and easy agglomeration of TiO2 particles also limit their further application in the
field of photocatalysis [73]. To enhance the photocatalytic activity, modification methods
such as doping modification, photosensitization, and semiconductor coupling to form
heterostructures have been extensively studied by researchers [74–76]. The degradation
efficiency of different modified catalysts for xanthate was compared, as shown in Table 2.
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Table 2. The degradation efficiency of different modified catalysts for xanthate.

Photocatalyst Light Source Pollutant Synthesis Methods Degradation (%) Refs.

Ce/NeTiO2@AC Visible light
irradiation

Sodium isobutyl
xanthate Sol-gel method 95.80 [77]

Ag-TiO2-FAMB Visible light
irradiation

Sodium butyl
xanthate Sol-gel method 98.50 [14]

TiO2/clinoptilolite UV irradiation Sodium isopropyl
xanthate Hydrothermal method >90 [78]

PANI/TiO2/metakaolin Visible light
irradiation Butyl xanthate Sol–gel and in-situ

polymerization 94.8 [79]

MoS2/TiO2/clinoptilolite Visible light
irradiation

Sodium isopropyl
xanthate

Moderate hydrothermal
route >90 [80]

b-TiO2 @MoS2
Visible light
irradiation Butyl xanthate Sol-gel method 94.80 [81]

TiO2/ graphene
nanocomposites

Visible light
irradiation

Potassium butyl
xanthate Hydrothermal method 97.03 [15]

TiO2/g-C3N4
Visible light
irradiation

Potassium butyl
xanthate Hydrothermal method 97.10 [82]

C, N, S-tridoped TiO2
nanotubes

Visible light
irradiation

Potassium ethyl
xanthate Hydrothermal method - [83]

A-BiFe/Bent Visible light
irradiation Ethyl xanthate Mechanically activated 98.60 [84]

A-BiFe/Bent Visible light
irradiation Ethyl xanthate Mechanically activated 97.85 [85]

A-BiFe/Bent Visible light
irradiation Ethyl xanthate Mechanically activated 98.43 [86]

micro graphite/BiOI Visible light
irradiation Xanthate Hydrothermal 94.36 [51]

S-scheme BiOBr/g-C3N4
Visible light
irradiation Ethyl xanthate Hydrothermal 96.10 [87]

(BiO)2CO3 nanowires UV-visible light
irradiation

Sodium isopropyl
xanthate Hydrothermal 96.00 [88]

Fe3+-doped (BiO)2CO3
UV-visible light

irradiation
Sodium isopropyl

xanthate Hydrothermal 95.71 [89]

BiOBr@TiO2/PU-SF Visible light
irradiation Ethyl xanthate

A facile blending-phase
separation-impregnation-

precipitation
97.85 [90]

BiOCl/TiO2/clinoptilolite Visible light
irradiation

Sodium isopropyl
xanthate

A facile hydrothermal
route combining with a
water bath precipitation

procedure

>90 [91]

PW9@ZnO/Ag UV-visible light
irradiation Butyl xanthate Hydrothermal 99.83 [28]

Doping modification mainly involves the introduction of new elements into the TiO2
crystal lattice, which leads to the generation of lattice defects in TiO2 and then causes
a change in the energy band structure. This can effectively inhibit the complexation of
photogenerated electron-hole pairs and narrow the band gap energy. It also causes the
generation of oxygen vacancies in TiO2, resulting in the extension of the light absorption
range, from the UV region to the visible region, and enhances the TiO2 photocatalytic
activity [92,93]. Doping modification mainly consists of metal ion doping, non-metal
ion doping, and noble metal doping. Metal ion doping mainly utilizes Cu2+, Mn2+, and
Fe3+ [94–96]. Non-metal ion doping primarily includes C, N, and S [97]. The doping of
noble metals mostly involves Au and Ag [98].

Bian et al. [77] demonstrated that nitrogen-cerium co-doped TiO2 showed an effective
degradation of xanthate under visible light irradiation. This work synthesized new Ce/N-
TiO2@AC photocatalysts using the sol-gel method, which achieved 96.3% SIBX removal
under visible light irradiation. This degradation process can be briefly described as follows:
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the SIBX molecules were first adsorbed on the surface of the Ce/N-TiO2@AC photocatalyst.
Subsequently, the band gap of TiO2 was significantly reduced. This suggested that the va-
lence band (vB) of TiO2 could be strongly activated to form holes (h+), while photoinduced
electrons (e−) could be further activated into the conduction band (cB). In addition, the elec-
trons captured in the Ce4+/Ce3+ sites could be transferred to the catalyst surface, leading to
the generation of numerous strong oxidation free radicals (e.g., •O2

− and •OH). Finally, the
SIBX molecules attacked by these radicals could be completely decomposed into inorganic
sulfates (SO4

2−). Li et al. [14] evaluated the effects of Ag-TiO2-FAMB photocatalysts on the
photocatalytic degradation performance of butyl sodium xanthate. This work summarized
the potential mechanisms of xanthate degradation, as shown in Figure 5. The results of
free radical quenching tests showed that superoxide radicals (•O2

−), hydroxyl radicals
(•OH), and photogenerated holes (h+) play a joint role in the photocatalytic degradation of
sodium butyl xanthate. Among them, superoxide radicals (•O2

−) play a major role in the
degradation of xanthate. Furthermore, the pathway of xanthate degradation showed that
peroxanthate (C4H9OCSSO−) was the intermediate product of the xanthate degradation
process, and xanthate was finally degraded to CO2, SO4

2−, and H2O.
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Recent studies have shown that Ag/semiconductor/clay mineral terpolymer com-
posites present excellent adsorption and photocatalytic synergistic effects for pollutant
degradation [99]. Zeolite has a promising application as a TiO2 carrier, due to its abun-
dant porous structure and stable chemical properties [100]. Shen et al. [78] indicated that
TiO2/clinoptilolite showed an excellent performance for photodegradation of SIPX com-
pared with that of pure TiO2. The fast degradation of SIPX under UV irradiation was
attributed to the synergistic effect of the clinoptilolite adsorbent and TiO2 photocatalyst
in the composite nanoparticles. The SIPX was eventually degraded to small molecule
inorganic pollutants such as CO2 and SO4

2−. Zhou et al. [101] investigated the photocat-
alytic degradation mechanism on xanthate pollutants with Ag/TiO2/clinoptilolite (ATC)
nanocomposite as a composite catalyst. The results showed that the photogenerated elec-
trons reacted with the absorbed O2 to produce •O2

−, and the generation of holes on the
TiO2 valence band could react with OH− and H2O to produce •OH. Then, the •O2

− and
•OH could oxidize xanthate directly to CO2 and H2O. Tan and co-workers reported that the
new PANI/TiO2/metakaolin showed desirable performance in the degradation of butyl
xanthate with visible light irradiation compared to pure TiO2 [79]. The excellent adsorption
of butylxanthate of the composites facilitated the removal of xanthate within 4 h under
visible light irradiation, and the degradation rate reached 94.8%.
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Recently, two-dimensional nanomaterials have been used as co-catalysts, such as
graphene oxide (GO), graphitic phase carbon nitride (g-C3N4), and molybdenum disulfide
(MoS2) to promote the photocatalytic activity of single TiO2. These 2D nanomaterials
have narrow band gaps and can be coupled with TiO2 to form heterogeneous structures.
Zhou et al. [80] prepared a new MoS2/TiO2/clinoptilolite (MTC) nanocomposite with
ternary non-homogeneous, which showed an excellent photocatalytic activity under visible
light irradiation. The excellent adsorption capacity of clinoptilolite and the MoS2/TiO2
heterostructures in the nanocomposites provided favorable conditions for the efficient
degradation of xanthate. Tang et al. [81] prepared b-TiO2@MoS2 heterostructures using
electrochemical exfoliation combined with a sol-gel technique. This heterostructure showed
stronger visible light absorption and broader active sites than the pure b-TiO2 material, and
also facilitated the separation and transfer of photogenerated charges. Under visible light
irradiation, the maximum efficiency of xanthate degradation could reach 94.80% at a catalyst
loading of 0.03 g. New TiO2/graphene (TiO2/GO) composite photocatalytic materials were
synthesized and used as photocatalysts to treat xanthate wastewater [15]. The degradation
xanthate mechanism is shown in Figure 6. The electrons were transferred from the valence
band to the conduction band to generate electron-hole pairs, promoting the formation of
strong oxidation free radicals (e.g., •O2

− and •OH), and degraded the xanthate. Therefore,
TiO2/GO has great potential to treat xanthate wastewater, due to its huge specific surface
area, smaller pore size, and lower electron–hole pair complexation rate.
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Bi-Based Oxide Photocatalysts

Bismuth (Bi)-based oxide photocatalysts mainly include Bi2O3, bismuth oxide halide
BiOX (X = Cl, Br, I), Bi2MO (M = Cr, Mo, W), which have captured the attention of researches
for application in flotation wastewater treatment, due to a high quantum yield, strong
visible light response, and controllable structure [102,103]. The electronic structure of these
bismuth-based materials is unique and exhibits a great photocatalytic degradation capacity
under UV-vis irradiation [104]. However, the relatively small specific surface area and
faster recombination of photogenerated carriers of single bismuth-based oxides lead to
a less desirable photocatalytic activity for organic compounds [105]. Therefore, various
strategies have been systematically investigated by researchers, such as heterojunctions,
metal and non-metal doping, surface modification, and internal coupling between different
bismuth metal oxides, to improve the photolytic ability of photocatalysts [106,107].

BiFeO3 and Bi2Fe4O9 as narrow band gap semiconductors have good magnetic prop-
erties, strong acid and alkali resistance, and excellent chemical stability, and are promising
visible light drive materials [108,109]. Recently, Yang et al. prepared a bentonite-based
bismuth ferrite composite containing BiFeO3 and Bi2Fe4O9 using a mechanical activation
technique [84,85]. The activated bentonite-based bismuth ferrate (A-BiFe/Bent) was used
as a non-homogeneous Fenton catalyst for the degradation of ethyl xanthate (EX) from
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flotation wastewater. Excellent activity under visible light was observed, and the degra-
dation pathway as well as a possible reaction mechanism for the catalytic degradation of
EX were proposed, as shown in Figure 7 [84,85]. Similarly, as reported by Zhu et al. [83],
A-BiFe/Bent as a catalyst combined with a persulfate (PS) activation system under visi-
ble light irradiation could effectively degrade ethylxanthate (EX), providing a potential
pathway for the treatment of flotation wastewater.

Minerals 2023, 13, x  14 of 21 
 

 

 
Figure 7. Mechanism of A-BiFe/Bent-catalyzed degradation of EX under visible light (reproduced 
from Opt. Mater. 2022, 132 with permission from Elsevier) [85]. 

In recent years, carbon-based materials such as graphite and 2D g-C3N4 have been 
widely used in the field of wastewater treatment, because of their large surface area and 
good adsorption properties [110]. Mic-g/BiOI nanocomposites showed superior photo-
catalytic activity in the removal of xanthate residues from sulfide ore flotation 
wastewater, with a 4.3-times higher removal rate than that of pure BiOI [86]. The reason 
for this was mainly attributed to the synergistic effect of the desirable contact interface 
between BiOI and graphite and the good electrical conductivity. Similarly, Yuan and 
co-workers [87] found that a BiOBr/g-C3N4−10% photocatalyst exhibited superior pho-
todegradation activity of ethylxanthate in mineral flotation wastewater under visible 
light and had an excellent reusability compared with single BiOBr and g-C3N4. The in-
crease in visible light-driven photodegradation activity was mainly attributed to the 
construction of S-scheme BiOBr/g-C3N4 heterojunctions and the effective separation of 
photogenerated carriers.  

The application of alkaline bismuth subcarbonate ((BiO)2CO3) as a novel photocata-
lyst has recently attracted considerable attention [88,111]. Cui et al. [88] obtained 
(BiO)2CO3 nanowire photocatalysts through a simple hydrothermal method and applied 
them to degrade sodium isopropylxanthate. It was shown that (BiO)2CO3 nanowires ex-
hibited excellent photocatalytic degradation of xanthates, due to a narrow band gap un-
der UV-vis irradiation. It was also found that (BiO)2CO3@Bi2S3 core-shell nanowires were 
produced during the photocatalytic decomposition of xanthate solution and showed an 
enhanced photocatalytic activity after repeated cycles of testing. However, the effect of 
the S content on the performance of core-shell (BiO)2CO3@Bi2S3 was still unclear. The lu-
minescence (PL) properties of (BiO)2CO3@Bi2S3 core-shell nanowires with different S 
contents were further studied [111]. The results indicated that (BiO)2CO3 could be easily 
converted to Bi2S3 in the presence of S and rapidly formed (BiO)2CO3@Bi2S3 heterojunc-
tions, which was beneficial for the efficient separation of electron-hole pairs. In addition, 
sodium isopropylxanthate was eventually oxidized to SO42- and CO2 by the (BiO)2CO3 
nanowires doped with Fe3+ under UV light irradiation. The Fe3+-doped (BiO)2CO3 nan-
owires exhibited excellent performance in the removal of sodium isopropylxanthate 
compared to pure (BiO)2CO3 nanowires, due to a narrow band gap and wider specific 
surface area [89]. 

3.4.3.3. ZnO-Based Photocatalysts 
ZnO is an n-type semiconductor compound with high photosensitivity and thermal 

stability, which has the advantages of eco-friendliness, low band gap energy, and low 
cost. However, ZnO has a wide band gap of about 3.37 eV, resulting in easy recombina-
tion of the photogenerated carriers, and it only absorbs UV light <387 nm, which greatly 
limits its application in wastewater treatment [112,113]. To overcome these drawbacks, 
various modifications, such as elemental doping, and surface modification of noble met-
als and heterojunctions [114], have been applied to the ZnO structure, to extend its func-

Figure 7. Mechanism of A-BiFe/Bent-catalyzed degradation of EX under visible light (reproduced
from Opt. Mater. 2022, 132 with permission from Elsevier) [85].

In recent years, carbon-based materials such as graphite and 2D g-C3N4 have been
widely used in the field of wastewater treatment, because of their large surface area and
good adsorption properties [110]. Mic-g/BiOI nanocomposites showed superior photocat-
alytic activity in the removal of xanthate residues from sulfide ore flotation wastewater,
with a 4.3-times higher removal rate than that of pure BiOI [86]. The reason for this was
mainly attributed to the synergistic effect of the desirable contact interface between BiOI
and graphite and the good electrical conductivity. Similarly, Yuan and co-workers [87]
found that a BiOBr/g-C3N4−10% photocatalyst exhibited superior photodegradation ac-
tivity of ethylxanthate in mineral flotation wastewater under visible light and had an
excellent reusability compared with single BiOBr and g-C3N4. The increase in visible light-
driven photodegradation activity was mainly attributed to the construction of S-scheme
BiOBr/g-C3N4 heterojunctions and the effective separation of photogenerated carriers.

The application of alkaline bismuth subcarbonate ((BiO)2CO3) as a novel photocatalyst
has recently attracted considerable attention [88,111]. Cui et al. [88] obtained (BiO)2CO3
nanowire photocatalysts through a simple hydrothermal method and applied them to
degrade sodium isopropylxanthate. It was shown that (BiO)2CO3 nanowires exhibited
excellent photocatalytic degradation of xanthates, due to a narrow band gap under UV-vis
irradiation. It was also found that (BiO)2CO3@Bi2S3 core-shell nanowires were produced
during the photocatalytic decomposition of xanthate solution and showed an enhanced
photocatalytic activity after repeated cycles of testing. However, the effect of the S content
on the performance of core-shell (BiO)2CO3@Bi2S3 was still unclear. The luminescence (PL)
properties of (BiO)2CO3@Bi2S3 core-shell nanowires with different S contents were further
studied [111]. The results indicated that (BiO)2CO3 could be easily converted to Bi2S3 in the
presence of S and rapidly formed (BiO)2CO3@Bi2S3 heterojunctions, which was beneficial
for the efficient separation of electron-hole pairs. In addition, sodium isopropylxanthate
was eventually oxidized to SO4

2− and CO2 by the (BiO)2CO3 nanowires doped with Fe3+

under UV light irradiation. The Fe3+-doped (BiO)2CO3 nanowires exhibited excellent
performance in the removal of sodium isopropylxanthate compared to pure (BiO)2CO3
nanowires, due to a narrow band gap and wider specific surface area [89].
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ZnO-Based Photocatalysts

ZnO is an n-type semiconductor compound with high photosensitivity and thermal
stability, which has the advantages of eco-friendliness, low band gap energy, and low cost.
However, ZnO has a wide band gap of about 3.37 eV, resulting in easy recombination of
the photogenerated carriers, and it only absorbs UV light <387 nm, which greatly limits
its application in wastewater treatment [112,113]. To overcome these drawbacks, various
modifications, such as elemental doping, and surface modification of noble metals and
heterojunctions [114], have been applied to the ZnO structure, to extend its functionality
under solar irradiation. In particular, element-doped nanocomposite photocatalysts have
proven to be promising in the field of mine wastewater treatment.

ZnO doped with Mn and Fe was reported as an active photocatalyst for the production
of oxygen from water under visible light irradiation. Xiao et al. [115,116] performed
photocatalytic degradation of potassium ethylxanthate (KEX) under visible light irradiation
with Zn1-xMnxO and Zn1-xFexO photocatalysts. The results indicated that Zn0.95Mn0.05O
and Zn0.96Fe0.04O presented excellent photocatalytic degradation efficiency for xanthate,
due to the low complexation of photogenerated electron-hole pairs. Additionally, Xin and
co-workers [28] synthesized new PW9@ZnO/Ag(PZA) composites that were doped with
Ag nanoparticles using a hydrothermal method. The application of PZA to degrade BX
in simulated wastewater under UV light and xenon lamp showed good photocatalytic
degradation. Meanwhile, the mechanism of PZA photocatalysis was analyzed, including
quantum photon absorption, electron-hole pair generation, and separation and redox
reaction processes, as shown in Figure 8.
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4. Conclusions and Future Research Requirements for the Treatment of
Xanthate Wastewater

The traditional coagulation–flocculation and adsorption methods usually have dif-
ficulty in making xanthate wastewater meet discharge standards, due to their relatively
low removal rate. Biological methods fail to realize the clean degradation of xanthate fully,
and the formation of CS2 is toxic and still harmful to the environment. Thus, in the actual
wastewater purification processes, a treatment method that can completely decompose
the xanthate into small molecule compounds, such as CO2, H2O, and SO4

2− would be the
best candidate.

With the wide application of advanced oxidation processes (AOPs) in wastewater
treatment, the Fenton and ozone oxidation have been extensively discussed in the field
of xanthate wastewater treatment. This process utilizes the highly reactive •OH that is
generated by AOPs to oxidize and decompose the residual xanthate in wastewater. Due
to the strong oxidizing ability of •OH, this can make the organic substances of xanthate
decompose rapidly and eventually mineralize into CO2, H2O, and SO4

2−. Although the
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research on catalytic oxidation technology has made great progress, there are still many
problems that need to be solved. For example, the oxidative decomposition pathway and
intermediate product analysis of xanthate in wastewater are still controversial. Furthermore,
the complex and variable composition and nature of actual xanthate wastewaters render
catalytic oxidation technology difficult to scale up for industrial applications.

Photocatalytic oxidation shows outstanding performance in the treatment of xanthate
wastewater. The technique involves the generation of electron-hole pairs through electron
transitions within the semiconductor under visible or ultraviolet light. This promotes
the generation of highly reactive oxygen radicals, which further break down the xanthate
molecule. However, various semiconductor photocatalysts have the disadvantages of a fast
recombination of photogenerated electron-hole pairs and narrow light absorption range
during the degradation of xanthate, so a great deal of research is still needed regarding
improving the photocatalytic activity.

Briefly, the treatment of xanthate wastewater is of great significance for the sustain-
able development of the mineral processing industry and environmental protection. The
available various treatment methods have both advantages and disadvantages. The main
reasons being that the existing technology is quite specialized, focusing on a specific aspect.
In other words, researchers have mainly studied the treatment of xanthate wastewater
based on the perspective of single discipline, and this research paradigm is not conducive
to technological innovation. Currently, the treatment effect, cost, and efficiency are usually
not comprehensively assessed. Furthermore, most research is now focused on simulated
xanthate wastewater at laboratory scale, while actual mine plant xanthate wastewater
is less tested. In fact, actual mine plant xanthate wastewater often has more intricate
physico-chemical properties. Thus, the adaptability and repeatability of each method
needs to be highly valued, although desirable results can be obtained with simulated
xanthate wastewater at laboratory scale. In addition, combined methods for the treatment
of xanthate wastewater will be conducive to achieving high efficiency, low costs, and no
secondary pollution. We believe that interdisciplinary research of a more organized manner
may generate more original and innovative technologies for the treatment of xanthate
wastewater in the future.
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