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Abstract: As a byproduct of the coal gasification process, a large amount of coal gasification slag
is generated. The failure to fully dispose of it has caused the occupation of land resources and
environmental pollution. Before its comprehensive utilization, the carbon and ash constituents must
be separated, for which flotation is an effective method. However, the small difference in surface
hydrophobicity of them cannot result in a high-efficiency separation. Therefore, a colliding flow
pulp conditioning device (CFPCD) was proposed in this work to improve the interaction between
the collector droplets and fine particles, and strengthen the modification of collector on the particle
surface by generating a properly constructed turbulent flow field. Computational fluid dynamics
(CFD) was employed to simulate the internal flow field of CFPCD to obtain the critical flow field
parameters, such as the velocity, strain rate, turbulent kinetic energy, turbulent dissipation rate,
and turbulent eddy scale. Additionally, particle wrap angle measurements and flotation tests were
conducted to verify the performance of pulp conditioning. The results showed that a velocity gradient
was obvious in the inner cylinder colliding flow area, thereby inducing the large strain rate and
the intense turbulence, which were responsible for the pulp homogenization and the enhanced
particle-collector interaction. With the feeding velocity increased, the fluid shear was larger and the
improved performance was more obvious. According to the flotation results, the maximum recovery
of unburned carbon was obtained with the feeding velocity equal to 2.5 m/s, which was consistent
with the tendency of wrap angle. Meanwhile, the loss on ignition of the tailings reached the optimal
value, corresponding to 9.94%.

Keywords: flotation; colliding flow; pulp conditioning; coal gasification slag; numerical simulation

1. Introduction

Coal gasification technology has been widely used in the coal chemical industry,
which is an efficient technology for the clean utilization of coal. In the coal gasification
process, a large amount of solid by-products, i.e., coal gasification slag, will be generated.
Most of these slags are disposed of in the form of landfill and storage, occupying land
resources and causing a great risk to the environment [1,2]. Substantial studies [3–5] have
confirmed that the coal gasification slag is rich in silicon and aluminum components, which
can be used to prepare for building materials. This can be a reasonable and economical
method to deal with the coal gasification slag. However, some unburned carbon remains
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in it, which is detrimental to the properties of the prepared materials [6,7]. Therefore, the
separation of carbon and ash components in coal gasification slag is a necessary stage before
its comprehensive utilization. Flotation is an efficient method to separate the unburned
carbon from the coal gasification slag, which depends on the differences between surface
hydrophobicity of particles [8–10]. In the flotation process, hydrophobic particles are
expected to attach to the bubble surface and become concentrated, whereas hydrophilic
particles only sink to the bottom of the cell with few attachment events [11,12].

Surface hydrophobicity of the particle has been recognized as the key role affecting
the flotation process, and the collector is usually added to enhance the hydrophobicity of
the particle surface [13–15]. However, the incomplete utilization of coal in the gasification
process leads to the structural loss of the organic aliphatic hydrocarbon of unburned carbon
particle in gasification slag, which aggravates the pore structure and the complexity of
surface physicochemical properties, deteriorating the modification effect of the collector
and flotation efficiency. In recent years, some new types of collectors and solution atmo-
sphere have been proposed to improve the performance of collector and flotation efficiency.
Fan et al. [16] used the waste engine oil mainly composed of hydrocarbons, esters, and
heteroatom-containing species as the collector for coal gasification slag flotation and ob-
tained the good flotation property. It had been found that the nonpolar hydrocarbons could
be adsorbed on the nonpolar region and the polar esters could be adsorbed on the polar
region, ensuring the collector could be absorbed in the nonpolar and polar areas of the
coal gasification slag, which increased the hydrophobicity. Besides, the polar heteroatoms
had the strong electronegativity, improve the dissolution and dispersion capacity of the
collector. Shi et al. [17] applied the mixture of kerosene and oleic acid as the collector to
improve the flotation efficiency of the coal gasification slag. The long-chain hydrocarbons
and the -COOH groups in the collector could be adsorbed on the non-polar region and the
polar region by Van der Waals force and hydrogen bonds, respectively. Zhang et al. [18]
introduced different concentrations of saline water to separate the coal gasification slag to
solve the problem of high consumption of flotation reagents. Saline water was found to re-
duce the surface tension of the flotation solution, weakening bubble decay. In addition, the
saline water could effectively reduce the Zeta potential of the particle surface, improving
the floatability of the coal gasification slag particles.

Pulp conditioning is a preconditioning process before the flotation operation to pro-
mote the dispersion and mixing of the collector and particle, which plays an important
role in improving particle surface hydrophobicity. Extensive researches on the effect of
pulp conditioning on flotation have been conducted. The turbulence condition generated
by pulp conditioning makes collector droplets and mineral particles disperse and collide,
resulting in the increase in the hydrophobicity of the particle surface [19,20]. This behavior
was verified by the flotation result that the high-intensity conditioning before the flota-
tion operation can increase the flotation rate and recovery significantly [21]. Further, it
was reported that the clay coating and the oxidation layer on mineral surfaces could be
removed through the high-intensity conditioning. This promoted the effective adsorption
of collectors on mineral surfaces, resulting in a high flotation recovery [22,23]. However,
the coal gasification slag is rich in a large number of mineral complexes, the carbon and ash
components are seriously embedded, and the embedded particle size is fine, which needs to
be broken and dissociated before separation, resulting in extremely fine particle size. Fine
particles have a low mass and a poor inertia, which are easy to flow around, and difficult to
interact with reagents. Some special pretreatment methods, such as ultrasonic, have been
used to enhance the flotation of coal gasification slag [24]. Ultrasonic pretreatment cannot
only remove impurities on an unburned carbon particles surface, but also strengthen the
dispersion of reagents, thereby improving the flotation efficiency. However, it is difficult to
apply ultrasound on a large scale and achieve industrial application in the field. Therefore,
it is necessary to propose a new method for the pulp conditioning of the coal gasification
slag at the industrial level.
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In this paper, a colliding flow pulp conditioning device (CFPCD) was designed, which
could cause the intense shear force using the colliding flow to strengthen the interaction
between collector droplets and particles. Computational Fluid Dynamics (CFD) numerical
simulation was conducted to analyze the flow field characteristics within the device, in-
cluding the velocity, strain rate, turbulent kinetic energy, turbulent dissipation rate, and
turbulent eddy scale. In addition, the wrap angle tests and conditioning-flotation tests were
carried out to verify the effect of the colliding flow pulp conditioning on the flotation of coal
gasification slag. The results of this study are expected to provide valuable guidance for the
flotation separation of unburned carbon from coal gasification slag and the development of
pulp conditioning technology.

2. Colliding Flow Pulp Conditioning Device

This investigation was performed using a laboratory colliding flow pulp conditioning
device (CFPCD), and the schematic of CFPCD is shown in Figure 1. It consists of four
components: (a) a release outer cylinder of 80 mm diameter and 120 mm length, (b) a
mixing inner cylinder of 40 mm diameter and 80 mm length, (c) two feeding pipes of 10 mm
diameter, and (d) two discharge pipes of 25 mm diameter. Two feeding pipes are in an
opposite direction, and the distance between them is 10 mm. The mixing inner cylinder is a
hollow cylinder with two open ends, which is fixed in the release outer cylinder with four
supports. The discharge pipe is symmetrically arranged on the side of the outer cylinder. In
pulp conditioning process, the pulp is fed into the mixing inner cylinder from the feeding
pipes using two feeding pumps, respectively. The colliding flow is formed to cause intense
turbulence and cross shear forces, promoting the mixing and interaction between particles
and collector. Subsequently, the mixed pulp flows through the openings on both ends of
the inner cylinder into the outer cylinder, and is released through the discharge pipe.
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3. Numerical Simulations
3.1. Governing Equations

In this paper, liquid single-phase flow was considered, and the working medium was
set as the water phase, which was considered to be incompressible and unstable. The
continuity equation is given as follows

∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z
= 0 (1)

where vx, vy, and vz are the component of velocity (v) in x, y, and z directions, respectively.
The momentum equation is given as follows

∂(ρv)
∂t

+∇ · ρv · v = −∇P +∇ · τ + ρg + F (2)
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where, ρ is the density of fluid medium, t is the time, P is the pressure on the fluid micro
element, τ is viscous stress tensor, g is the acceleration due to gravity, F is other external
body forces on the micro element.

3.2. Numerical Methods

The 3D model was constructed using UG NX 10.0 software based on the structure
shown in Figure 1. Subsequently, the above model was meshed using the ANSYS ICEM
17.0 software, and the hexahedral structured grid was generated. The volume-averaged
turbulent dissipation rate (εV) was considered as the characteristic parameter to carry out
the grid independence verification. The results of grid independence verification are shown
in Figure 2. As observed, the value of εV increased with an increase in the number of grids
until the number of grids reached 834072, after which it tended to be stable. By considering
both the calculation accuracy and cost, meshing strategy with 834,072 grids was selected
for the present study.
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ANSYS Fluent 17.0 software was used for numerical calculation of the meshed model.
The effect of gravity was considered. The inlet and outlet boundary condition were set
as the velocity inlet and pressure outlet, respectively. The inlet velocity was set to 1.0,
1.5, 2.0, and 2.5 m/s, respectively. In addition, the inlet initial gauge pressure was set
to 0 Pa, the turbulent intensity was set to 5% and the turbulent viscosity ratio was set
to 10. The outlet pressure was the relative static pressure, and the corresponding value
was 0. Besides, the solid wall was set to no-slip wall. The Eulerian-Eulerian approach was
applied to calculate the liquid single-phase flow, and the standard k-ε model was used for
turbulence modeling. In solution settings, the pressure-velocity coupling scheme was set as
SIMPLE. The gradient was set as Least-Squares-Cell-Based, and the pressure, momentum,
turbulent kinetic energy, and turbulent dissipation rate were solved with a second-order
upwind scheme. A steady simulation was carried out, and the residuals were set to 10−4.
After the calculation converges, the flow field and turbulent characteristic in the CFPCD
were analyzed.

3.3. Numerical Simulation Results
3.3.1. Velocity Analysis

Figure 3 presented the velocity nephograms of the CFPCD at Z = 0 mm and X = 0 mm
section. As observed, the liquid exhibited the highest flow velocity in the feeding pipe,
and the flow velocity decreased rapidly after being released from the feeding tube. The
liquid fed from two feeding tubes collided in the center of the inner cylinder, and then
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spread around until it moved to the inner wall of the inner cylinder. As shown in velocity
nephogram at X = 0 mm section, in the liquid collision region, the liquid had a lower
flow velocity, and it even closed to zero in the center position. In the diffusion region,
the liquid velocity was larger, and decayed with the direction of diffusion. Limited to
the obstruction of the cylinder wall, the liquid transformed into a horizontal flow, which
diverged to both sides and generated the velocity gradient at the cylinder wall. In the
diffusion process at the cylinder wall, the velocity of horizontal flow gradually decreased
due to the resistance of the wall and the fluid itself. As the liquid was discharged from
the inner cylinder to the outer cylinder, the liquid got rid of the obstruction of the inner
cylinder wall, resulting in a spreading movement. However, the liquid tended to maintain
a horizontal flow trend with the inertial effect. Therefore, the liquid moved to the outer
cylinder in a trumpet-like diffusion state. Subsequently, the liquid moved to the two side
walls of the outer cylinder, and spread to the surrounding, achieving dispersion. In the
outer cylinder, the liquid flow velocity was small, which was in a relatively stable flow state.
Finally, the liquid was discharged from the discharge pipe. It was worth noting that the
diameter of the discharge pipe was designed to be larger, and the liquid was discharged at
a lower flow rate, preventing the secondary conditioning of pulp after the interaction. The
feeding velocity had little effect on the velocity distributions in the CFPCD, and the velocity
distributions in the device with different feeding velocities were similar. However, the
liquid flow velocity in the device increased with the feeding velocity increased. It indicated
that the increase in the feeding velocity could enhance the flow of the fluid in the CFPCD.
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3.3.2. Strain Rate Analysis

Strain rate is the change in strain per unit time, which is an important parameter to
reflect strain effect. In the Newtonian fluid, a high strain rate implies a high shear stress
and a velocity gradient, which favorably enhances the interaction of particles and reagents.
Figure 4 presented the strain rate distributions of the CFPCD at line (Y = 0 mm, Z = 0 mm)
and line (X = 0 mm, Z = 0 mm). As shown in Figure 4a, in the feeding pipe, the liquid
had a small strain rate, which corresponded to almost zero value. As the liquid moved to
the position of about 5 mm from the outlet of the feeding pipe, the strain rate gradually
increased, which may be affected by the kinetic energy and momentum transfer of the liquid
after the collision. Subsequently, the strain rate of the liquid continued to increase with the
flow direction, and reached a maximum value when the two liquids collided. This seemed
to imply that the direct collision of two liquids may result in the high shear forces and the
velocity gradient. Different from line (Y = 0 mm, Z = 0 mm), the strain rate of line (X = 0 mm,
Z = 0 mm) was more complicated due to the diffusion caused by liquid collision and wall
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bounce. As shown in Figure 4b, the liquid exhibited the highest strain rate distribution in
the liquid collision region, which was independent of the feeding velocity. In the liquid
collision region, the strain rate increased gradually from the center point (Y = 0 mm) to
both sides and reached a maximum value at the point (Y = ± 5 mm), corresponding to
the edge of the collision region. Subsequently, the strain rate value decreased abruptly
and gradually decreased along the diffusion direction. Approaching the inner wall of the
inner cylinder, the obstruction of the wall greatly changed the movement of the liquid,
resulting in an increase in the strain rate to a higher value. In the inner cylinder region,
the liquid had a higher strain rate distribution, which was favorable for the interaction of
the particles and the reagents. However, the strain rate was small in the outer cylinder
region, indicating that the flow field was relatively stable, which was conducive to the
discharge of pulp. In addition, shear strain increased with increasing feeding velocity
in either study range, implying that an increase in the feeding velocity could facilitate
particle-collector interactions.
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(b) line (X = 0 mm, Z = 0 mm).

3.3.3. Turbulent Kinetic Energy and Dissipation Rate Analysis

Turbulent kinetic energy (k) nephograms of the CFPCD at Z = 0 mm section for
different feeding velocities were shown in Figure 5. As observed, after two liquids collided,
the turbulent kinetic energy of the fluid increased rapidly. Then, in the diffusion process
of fluid, the turbulent kinetic energy gradually increased until it approached the wall.
After that, the turbulent kinetic energy gradually decayed with the flow direction. In the
mixing inner cylinder, the liquid had a high turbulent kinetic energy distribution, while
it was in an opposite state for the outer cylinder. In addition, the feeding velocity had a
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significant effect on the turbulent kinetic energy inside the CFPCD. The turbulent kinetic
energy increased with the increase in the feeding velocity, and the range of high turbulence
kinetic energy region also increased. As the feeding velocities were 1.0, 1.5, 2.0, and 2.5 m/s,
the corresponding volume-averaged turbulent kinetic energy reached 0.0043, 0.0099, 0.0178,
and 0.0281 m2·s−2, respectively.
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Figure 5. Turbulent kinetic energy nephograms of CFPCD for different feeding velocities.

Figure 6 presented the turbulent dissipation rate (ε) nephograms of the CFPCD for
different feeding velocities. As shown in Figure 6, the turbulent dissipation rate within
the CFPCD had a similar distribution to the turbulent kinetic energy, the high turbulent
dissipation rate occurred within the mixing inner cylinder. The turbulent dissipation rate
increased with an increase in the feeding velocity, and the region with high turbulent
dissipation rate also gradually expanded. It is worth noting that for a feeding velocity of
1.0 m/s, the turbulent dissipation rate within the CFPCD was small, without the region of
high turbulent dissipation rate. This indicated that the low input energy, namely the low
feeding velocity, made it difficult to generate the high turbulent dissipation.
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3.3.4. Turbulent Eddy Scale Analysis

The turbulent field can be regarded as composed of turbulent eddies of different
scales. Large-scale eddy is missioned to form several small-scale eddies, causing energy
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transfer. The energy of the small-scale eddy is transferred to smaller eddies, and finally
converted into internal energy due to fluid viscous dissipation [25]. The microturbulence,
i.e., turbulence of the small eddies in the universal equilibrium range can be described by
the Kolmogorov scale (η) [26,27], which is related to the turbulent dissipation rate and fluid
viscosity, and can be defined as

η =

(
υ3

ε

)1/4

(3)

where, υ is the kinematic viscosity.
The Kolmogorov scale distributions of the CFPCD for different feeding velocities

were shown in Figure 7. In each studied feeding velocity, the low Kolmogorov scale was
mainly distributed in the diffusion region after fluid collision and near the inner wall of the
inner cylinder. In the study range, the Kolmogorov scale generated in these regions was
less than 25 µm at any feeding velocity. These eddies with a scale comparable to the fine
particles were more conducive to promoting the interaction between the fine particles and
the collector droplets, which enhanced the pulp conditioning process. This indicated that
the CFPCD can produce the good pulp conditioning effect for particles. In the release outer
cylinder, the eddy scale was generally large, which was conducive to the transportation
and mixing of the pulp. The low Kolmogorov scale distribution range increased with the
increasing feeding velocity. As the feeding velocity reached 2.5 m/s, the Kolmogorov scale
in the entire mixing inner cylinder was almost below 25 µm, and even reached 15 µm in
some regions. Additionally, an increase in the feeding velocity could reduce the average
Kolmogorov scale within the CFPCD.
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4. Experiments
4.1. Materials

In this study, the coal gasification fine slag samples were collected from Shenhua
Ningxia Coal Industry Group in Ningxia, China. To guarantee the sample homogeneity, it
was well blended after drying. In proximate analysis, the moisture content, ash content,
volatile content, and fixed carbon were measured using 5E-MAG6700 Automatic Proxi-
mate Analyzer (KaiYuan, Changsha, China). In ultimate analysis, the content of carbon
and hydrogen were measured using CTCH500 Semi-Automatic Hydrocarbon Detector
(QiuLng, Changsha, China), the content of elemental nitrogen was measured using K1100
Automatic Kjeldahl Nitrogen Detector (HaiNeng, Shandong China), the content of sulfur
was measured using ZCS-8 Intelligent Sulfur Detector (BaoHua, Xuzhou, China), while the
content of oxygen was calculated by difference subtraction. The proximate and ultimate
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analyses of the samples were shown in Table 1. As observed, the moisture content, ash
content, and volatile content were 2.30%, 74.52%, and 4.39%, respectively. The content of
fixed carbon reached 18.79%, indicating that some of the carbon in the coal gasification
fine slag was not fully burned in the gasification process, which was not conducive to the
secondary utilization of ash. In the elemental analysis, the carbon content was 94.61%, and
the contents of hydrogen, nitrogen, sulfur, and oxygen were 2.29%, 0.60%, 0.75%, and 1.75%,
respectively. The residual carbon content occupied the most content in organic matter.

Table 1. Proximate and ultimate analyses of the coal gasification fine slag.

Proximate Analysis (ad, %) Ultimate Analysis (daf, %)

M A V FC # C H N S O #

2.30 74.52 4.39 18.79 94.61 2.29 0.60 0.75 1.75

ad: air dry basis; daf: dry ash-free basis; #: by difference subtraction calculation.

The mineral composition in the coal gasification fine slag samples was studied using a
D8 Advance X-ray diffractometer (Bruker, Bremen, Germany), and the result was shown in
Figure 8. As noted, the major crystalline mineral phases in the samples were quartz, gyp-
sum, and mullite. In addition, the characteristic peaks composed of amorphous minerals
could be observed in the XRD pattern, which may be unburned carbon [18].
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The coal gasification fine slag contained various constituents, wherein the carbon and
ash components were intimately associated. Therefore, dissociation was usually required
before the flotation separation. In this study, the dissociation was carried out using a rod
mill. In the dissociation process, 240 g of samples were put into a rod mill and ground at
50 Hz frequency for 15 min to disassociate carbon and ash. A BT-9300 Laser Particle Sizer
(DanDong Bettersize, Dandong, China) was used to measure the particle size distribution
of the sample after grinding and the result was shown in Figure 9. The D10, D50, and
D90 were approximately 1.66 µm, 12.95 µm, and 39.76 µm, respectively. Obviously, the
content of fine particles in the sample was high, which was the main object of subsequent
conditioning-flotation.
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4.2. Methods

The pulp conditioning tests were conducted using a laboratory CFPCD, and the
schematic layout of the experimental setup was shown in Figure 10. Coal gasification fine
slag samples after grinding and deionized water were added into a mixing tank to prepare
pulp with a concentration of 80 g/L. The diesel oil with a dose of 8000 g/t sample and
methyl isobutyl methanol with a dose of 8000 g/t sample were subsequently added into
the pulp in the mixing tank, respectively. The mixing pulp was fed into the CFPCD using
two feeding pumps, and the feeding velocity were adjusted to 1.0, 1.5, 2.0, and 2.5 m/s,
respectively. Besides, the conditioning time was constant at 2 min. Finally, the conditioned
pulp was collected and prepared for subsequent experiments.
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The wrap angle measurements were carried out using a home-made attachment
process observation system. The prepared coal gasification fine slag samples were added
to the observation tank filled with ultrapure water at a concentration of 0.5%. After stirring
for 2 min, an air bubble with a diameter of 2.2 mm (±0.1 mm) was generated by a syringe.
Subsequently, the pulp was stirred for 60 s using a magnetic stirrer apparatus at a stirring
speed of 200 rpm. The attachment process between the sample particles and the air bubble
was photographed using an i-SPEED 230 high-speed dynamic camera. After the solution
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became clear, the wrap angles of the particles were analyzed and obtained. Each experiment
was repeated three times at the same position of the observation tank, and the average
value was reported as the final data.

In order to avoid the secondary pulp conditioning caused by the stirring of the me-
chanical flotation machine, all flotation experiments were performed with a home-made
inflatable flotation column with a diameter of 50 mm and a height of 600 mm. The collected
samples were added to the flotation column, and then air was introduced at a flow rate of
0.15 m3/h. The flotation process lasted for 3 min. The froth products were collected, and
the remaining pulp in the flotation column was collected as tailings. The concentrates and
tailings were filtered, dried at 80 ◦C until they reached constant weights, and cooled in a
dry atmosphere. The yield (γ), loss on ignition (LOI), and recovery of unburned carbon
(RUC) were calculated using Equations (4)–(6).

γ =
wi
wr
× 100% (4)

LOI = 100− A (5)

RUC =
γ× LOIc

LOIr
(6)

where wi and wr are the weight of each concentrate and raw sample, respectively (%), A is
the ash content, LOIc and LOIr is the LOI of the concentrate and the raw sample.

4.3. Experimental Results and Discussion
4.3.1. Wrap Angle Analysis

Figure 11 presents the wrap angle photos and values of samples for different feeding
velocities and wrap angle was shown with red dotted lines. As shown in Figure 11, the
wrap angle increased gradually with the increase in feeding velocity, and the particle wrap
angle reached 86◦ when the feeding velocity was 2.5 m/s. It indicated that the particle
attachment performance was enhanced with the increase in feeding velocity. This was
consistent with the results of flow field simulation. With the increase in feeding velocity, the
turbulent dissipation rate increased and the turbulent eddy scale decreased. In the study
range, strong turbulence was helpful for achieving the collector dispersion and removing
hydrophilic impurities from the particle surface. Meanwhile, the interaction between
carbon particles and collector droplets was enhanced, and the attachment effect between
them and air bubbles was improved, which was beneficial to the flotation separation of
carbon components. In addition, in the study range, the turbulence intensity induced by
the device did not reach the degree of excessive conditioning intensity. Therefore, the effect
of particle surface modification increased with an increase in feeding velocity.

4.3.2. Flotation Results

The flotation results after pulp conditioning for different feeding velocities were shown
in Table 2 and Figure 12 (The black arrow represents the black line data being read out
on the left axis and the red arrow represents the red line data being read out on the right
axis). As observed, the ash content of tailings increased from 82.60% to 90.06% and the
RUC increased from 49.57% to 69.83% with the feeding velocity increased from 1.0 m/s to
2.5 m/s. Meanwhile, the LOI of tailings decreased from 17.40% to 9.94%. These results were
consistent with the previous flow field simulation and wrap angle analysis. The increase
in feeding velocity brought about the increase in velocity gradient and strain rate, and
the decrease in turbulent eddy scale, which was beneficial for enhancing the interaction
between mineral particles and collector droplets. Therefore, the recovery efficiency of
carbon component was improved. This indicated that the colliding flow enhanced the
flotation process of coal gasification slag, and the feeding velocity of CFPCD significantly
affected the removal performance of unburned carbon. In the study range, the optimum
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feeding velocity was 2.5 m/s, and the corresponding LOI indicators of flotation tailings
products may meet the quality requirements of some mixed mortar and concrete.
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Table 2. Flotation products yield and ash content for different feeding velocities.

Feeding
Velocity (m/s)

Yield (%) Ash Content (%)

Concentrate Tailings Concentrate Tailings

1.0 30.69 69.31 59.67 82.60
1.5 34.49 65.51 57.06 85.81
2.0 39.68 60.32 56.80 88.72
2.5 39.33 60.67 55.67 90.06
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Figure 12. Flotation results after pulp conditioning for different feeding velocities.

5. Conclusions

The CFPCD was designed to enhance the flotation separation of unburned carbon from
coal gasification slag. The flotation intensification mechanism using colliding flow pulp
conditioning was investigated by CFD numerical simulation, wrap angle measurements



Minerals 2023, 13, 398 13 of 14

and conditioning-flotation tests. The results showed that the intense colliding flow existed
in the inner cylinder colliding flow area of the CFPCD, and the fluid velocity gradient was
large, which was conducive to the collision and adhesion between the collector droplets and
fine particles. However, in the outer cylinder, the liquid velocity was relatively small and
in a relatively stable flow state, which was conducive to the transportation and discharge
of pulp. The liquid exhibited the highest strain rate distribution in the liquid collision
region, and it reached a maximum value at the edge of the collision region. Subsequently,
the strain rate value decreased along the diffusion direction until it reached the inner
wall of the inner cylinder, and increased. The turbulent kinetic energy and dissipation
rate within the CFPCD had a similar distribution, the high turbulent kinetic energy and
dissipation rate occurred within the mixing inner cylinder. The turbulent eddy scale was
in the opposite distribution. The feeding velocity had a significant effect on the flow field
characteristics in the CFPCD. As the feeding velocity increased, the flow velocity, strain
rate, turbulent kinetic energy and dissipation rate increased, together with the decreased
turbulent eddy scale. Furthermore, in the study range, the Kolmogorov scale generated in
the partial mixing regions was less than 25 µm at any feeding velocity, which indicated that
CFPCD produced a flow field environment suitable for pulp conditioning. The wrap angle
and conditioning-flotation results illustrated that preconditioning using CFPCD could
enhance particle attachment performance and flotation efficiency. The optimum feeding
velocity was 2.5 m/s, and the corresponding value of wrap angle, RUC, and LOI of the
tailings were 86◦, 69.83%, and 9.94%, respectively. These results demonstrated the potential
industrial application of the CFPCD on the flotation separation of unburned carbon from
coal gasification slag.
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