
Citation: Buccione, R.; Vitale, S.;

Ciarcia, S.; Mongelli, G.

Geochemistry and Geometrical

Features of the Upper Cretaceous

Vitulano Para-Autochthonous Karst

Bauxites (Campania Region,

Southern Italy): Constraints on

Genesis and Deposition. Minerals

2023, 13, 386. https://doi.org/

10.3390/min13030386

Academic Editor: János Haas

Received: 31 January 2023

Revised: 27 February 2023

Accepted: 8 March 2023

Published: 10 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

minerals

Article

Geochemistry and Geometrical Features of the Upper
Cretaceous Vitulano Para-Autochthonous Karst Bauxites
(Campania Region, Southern Italy): Constraints on Genesis
and Deposition
Roberto Buccione 1,* , Stefano Vitale 2 , Sabatino Ciarcia 3 and Giovanni Mongelli 1

1 Department of Sciences, University of Basilicata, 85100 Potenza, Italy; giovanni.mongelli@unibas.it
2 Department of Earth Science, Environment and Resources (DiSTAR), University of Naples Federico II,

80126 Naples, Italy; stefano.vitale@unina.it
3 Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy;

sabatino.ciarcia@unisannio.it
* Correspondence: roberto.buccione@unibas.it

Abstract: In the Vitulano area, Upper Cretaceous bauxite bodies fill small depressions and karst
cavities within Cretaceous shallow-water limestones. These bauxites were studied to understand the
processes that led to their formation. Geochemical, mineralogical, and petrographic analyses were car-
ried out on the bauxite samples, together with image analysis providing geometric parameters. The
texture of Vitulano bauxite consists of ooids and sub-circular aggregates dispersed in a predominantly
Ca-rich matrix. Ooids are generally formed by a single large core, often surrounded by an alternation
of different aggregates of boehmite and Al-hematite reflecting different climate periods. The composi-
tion is dominated by the major elements Al2O3 and CaO with lower concentrations of Fe2O3 and SiO2.
Boehmite, calcite, hematite, and anatase are the main mineralogical phases identified. Image analysis
provided values of fractal dimension D that gives information on carbonate platform exposure times
since it is linked to long-lasting sub-aerial events and diffusion-limited cluster aggregation processes.
The tectonic evolution of the area played an important role in the genesis of the Vitulano bauxites
since it favored the erosion, transport, and re-deposition of pre-existing bauxite material from the sur-
rounding Campania bauxites. Based on this hypothesis, Vitulano bauxites are defined and classified
as para-autochthonous, and this was supported by Eu/Eu* vs. Sm/Nd and Eu/Eu* vs. TiO2 Al2O3

indices displaying a similarity between Vitulano and the other Campania bauxites.

Keywords: geochemistry; image analysis; Campania bauxites; southern Italy; para-autochthonous deposit

1. Introduction

Bauxites are residual rocks that form in a subaerial environment in regions charac-
terized by tropical and subtropical climates [1–3]. The interest in bauxite ores has been
growing because they are not only a major source of aluminum, but also a useful indicator
for paleoclimatic and paleogeographic reconstructions [4–6]. The chemical weathering
processes occurring during bauxite formation may lead to the enrichment of several chemi-
cal elements, such as Al, Ti, Fe, and some trace metals [7,8], especially high field strength
elements and also to the leaching of mobile elements [9].

In order to redefine the processes and paleo-conditions that led to the formation of
bauxites, geochemical element discrimination and heavy mineral tracing methods have
been widely used. These models investigate the distribution of weathering-resistant ele-
ments in bauxites, such as Ti, Zr, Nb, Ta, and Rare Earth Elements (hereafter REEs) as a
tool to unroof parental affinity by comparing the abundances of immobile elements in both
bauxite deposits and potential source rocks [10–18]. Great interest has been focused on the
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Mediterranean Bauxite Province [1,19] since this bauxite province is closely related to the
tectonic evolution and paleoclimatic conditions of the Tethyan realm [20,21].

In southern Italy, several bauxite deposits occur, such as the autochthonous Creta-
ceous and the allochthonous Cenozoic karst-type bauxite deposits [11,22] consisting of
multiple bauxite layers formed within the Cretaceous shallow-water carbonate platform
sequence [20]. The Cenozoic bauxites are classified as Salento-type deposits, formed by the
erosion and re-deposition of pre-existing Cretaceous bauxite rocks [22]. Previous studies on
Italian bauxite deposits focused on ore deposition processes [19], mineralogy [23], elemen-
tal geochemistry [8,11,17,22,24,25], and zircon age for paleogeographic restoration [5,18,26].
These studies provided constraints for the provenance of the southern Italy bauxite de-
posits, the main mineralogical composition, the fractionation of REEs and other critical raw
materials, and paleoenvironmental–paleoclimatic conditions.

This study focuses on patchy bauxite occurrence filling karst cavities and fractures
hosted within Cenomanian–Coniacian radiolitid limestones located in the western sector
of Mt. Camposauro, around the town of Vitulano (Campania region, southern Italy) [27]
(Figure 1). In addition to elemental geochemistry, mineralogy, and petrography, fractal
geometry and image analysis were used to better address the bauxitization process [5,24].
In the Campania region, studied bauxite deposits were limited to the Matese Mts. and
the Caserta district; hence, the discovery and analytical characterization of these bauxite
bodies may provide new analytical data and constraints for the genesis, provenance, and
paleo-condition of their formation.
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2. Geological Framework

The southern Apennines consist of the tectonic superposition of several thrust sheets
belonging to different paleogeographic domains, including oceanic successions (Ligurian
units [28]) and shallow-water to pelagic sedimentary deposits of the continental part of
the down-going Adria plate (Apennine Platform, Lagonegro–Molise Basin, and Apulian
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Platform) [29,30]. The rocks hosting the studied bauxites exposed at Mt Camposauro belong
to the Apennine Platform domain. The pre-orogenic succession consists of Triassic–Upper
Cretaceous shallow-water carbonates directly covered by Miocene synorogenic rocks. How-
ever, in the SE sector (Figure 1) where the karst bauxites are exposed, the succession upward
passes to margin-to-slope deposits, including Maastrichtian–Paleocene recrystallized lime-
stones and an Eocene–Lower Miocene argillitic successions (scaglia-type deposits).

Within the Cenomanian–Coniacian Radiolitid Limestones Fm., bauxite deposits fill
karst cavities (Figure 2a) and fractures (Figure 2b). They are formed by whitish and reddish
calcarenites and calcilutites, hosting fragments and ooids of bauxites (Figure 2a). Karst
cavity walls are frequently covered by calcite cementation (Figure 2c). Normally, bauxite
deposits are dissected by normal and reverse faults (Figure 2c,d) locally showing the
syn-depositional characters. These structures with opposite kinematics are interpreted as
related to collapse [31]), in this case associated with karst processes [27]. According to
Vitale et al. [28], the bauxitic sedimentation was synchronous with an extensional event that
occurred during an abortive rifting that affected the northern Africa sector [32] and started
in the Albian–Cenomanian interval. This extensional episode caused the dismembering of
the Apennine Platform with the passage of several sectors from shallow water to margin
and slope conditions; in contrast, other carbonate blocks passed to sub-aerial conditions.
This is the case of the Matese Mts., including Mt. Camposauro, where the continental
exposure allowed the formation of bauxite deposits (Figure 2) and a pervasive karsism
with the formation of several cavities filled by the bauxite sediments.

These bauxites have been quarried for a long time for use as ornamental stones called
Vitulano and Cautano Marbles [33]. Examples of their use can be found in numerous
churches in the Campania region and the royal palaces of Caserta and Naples.
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Figure 2. Examples of bauxite occurrence in the study area: (a) karst cavity filled by calcareous
deposits hosting bauxitic pisolites (Colle Noce); (b) fractures filled by bauxite (Uria quarry); (c) karst
cavity filled by calcite cement and bauxite material (Uria quarry); (d) parallel-bedding karst cavity
filled by bauxite, hosting syn-sedimentary faults (Uria quarry). Red lines represent the faults, whereas
the red arrows indicate the sense of shear.
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3. Sampling and Analytical Methods

Fifteen samples were taken from karstified Radiolitid Limestones Fm. outcrops in the
Uria quarry, where bauxite fills several small karst cavities and fractures.

Petrographic and microstructural observations were performed by using a Nikon
Alphaphot-2 YS2 optical microscope at the Department of Sciences, University of Basilicata.

The mineralogical composition was determined by X-ray powder diffraction (XRPD)
at the Department of Sciences, University of Basilicata, Italy, using a Siemens D5000 powder
diffractometer with Cu-Kα radiation and a 40 kV, 32 mA, and 0.02◦ (2θ) step size setup.
Samples were first milled in a Retsch planetary mill equipped with two agate jars and
agate milling balls to generate a very fine powder. Microchemical and micromorphological
analysis was made with scanning electron microscopy (ESEM) and an XL30 Philips LaB6
ESEM instrument equipped with an energy dispersive X-ray spectrometer (SEM–EDS) at
the Microscopy Laboratory of the Department of Sciences, University of Basilicata, Italy.

Major oxides and trace element abundances were determined by ICP and ICP-MS
analysis at Activation Laboratories (Ancaster, Canada) after sample powders were digested
using a four-acid attack (HF, HClO4, HNO3, and HCl). A sample of 0.25 g was firstly
digested using hydrofluoric acid, then with a mixture of nitric and perchloric acids, before
being heated in several ramping and holding cycles using precise programmer-controlled
heating that took the samples to incipient dryness. After incipient dryness was attained,
the samples were brought back into solution using aqua regia before being analysed using
Varian ICP and PerkinElmer Sciex ELAN 9000 ICP-MS instruments. Total loss on ignition
(LOI) values was gravimetrically estimated after overnight heating at 950 ◦C.

Image analysis was performed on bauxite sample images by using the free software
ImageJ which is a Java-based image processing software. The software provided the
binarisation of each sample image, which produced black (ooids) and white (bauxite
matrix) images. The fractal dimension D measurement was made using the automatic
box-counting technique that splits the sample image into several boxes of decreasing sizes
and measures the number of boxes filled by ooids (filling frequency) in each dimensional
class. The fractal dimension D value is the slope of the straight line obtained from fitting
the pairs of values of the natural logarithm of the filling frequency vs. the natural logarithm
of the box size.

4. Results
4.1. Texture, Mineralogy, and Geometric Parameters

The texture of karst bauxites consists of ooids, sub-circular structures growing around
a nucleus and dispersed in a fine matrix (Figure 3a,b). In the studied samples, the ooids
can be monomineralic, since they consist of only one single mineralogical phase, generally
boehmite or hematite, whereas in other cases, they are formed by a large nucleus sur-
rounded by a thin layer of different mineral composition (Figure 3c,d). We also observed
larger structures that incorporate numerous ooids with different shapes and compositions,
which have probably undergone transport, deformation, and re-deposition (Figure 3e). The
shape and the organisation of these structures are chaotic, including several aggregates
showing different composition and suggesting they are the result of erosion, transport,
and re-sedimentations of pre-existing bauxites, indicating, according to the definition of
Bardossy [7], the Vitulano bauxite is para-autochthonous. Calcite-rich veins were found in
several samples (Figure 3f).

Microchemical and micromorphological analysis (SEM-EDS) confirmed what was
observed in the petrographic analysis. The ooids may either consist of a core surrounded
by a layer of different composition (Figure 4a,b) or may be formed by a core surrounded by
an alternation of a large number of mineral layers (Figure 4c,d). In some cases, ooids are
formed by a large boehmite core surrounded by thinner hematite layers, while other ooids
consist of hematite surrounded by several layers of boehmite.
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surrounded by a thin layer of Al-hematite in a Ca-rich matrix; (b) Al-hematite core surrounded
by a boehmite rim; (c) large Al-hematite core surrounded by several layers of different compo-
sition; (d) multi-mineral core with two layers of boehmite and Al-hematite in a Ca-rich matrix;
(e,f) two larger chaotic structures incorporating several aggregates and ooids in a Ca-rich matrix.

Larger structures incorporating numerous ooids, which are likely the result of re-
deposition of pre-existing bauxites, were observed mainly surrounded by an outer rim of
boehmite (Figure 4e,f). Accessory minerals, such as zircon and monazite, have been de-
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tected in boehmite concretions. XRPD analysis revealed that the mineralogical composition
of the Vitulano bauxite samples is dominated by calcite and boehmite followed by hematite
and anatase (Figure 5).
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Regarding image analysis and geometric parameters, the average of the fractal dimen-
sion D in the Vitulano bauxite samples is D = 1.86.

4.2. Geochemistry

The geochemical composition of the studied bauxites is dominated by the major oxides
Al2O3 (med = 27.83 wt.%) and CaO (med = 25.64 wt.%) with less abundance of Fe2O3
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(med = 13.74 wt.%) and SiO2 (med = 5.28 wt.%) (Figure 6, Table 1). We calculated the
interquartile range (IQR) for each element which is a measure of statistical dispersion
indicating the spread of the data. IQR is the difference between the third and first quartiles
of the data (Q3-Q1) in the box plot and is the length of each box. For major elements, Al2O3
(IQR = 17.4) and CaO (IQR = 18.1) exhibit high variability, while SiO2 (IQR = 2.1) and Fe2O3
(IQR = 10.9) show lower values of variability.
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Figure 6. Box plot showing major oxide compositions (wt.%) of Vitulano bauxites.

The most abundant trace elements are Zr (med = 257 ppm), Cr (med = 230 ppm),
Sr (med = 157 ppm), and V (med = 118 ppm), while further trace elements, such as
Sc (med = 30 ppm), Ba (med = 39 ppm), Y (med = 44 ppm), Co (med = 20.5 ppm) Ni
(med = 120 ppm), Cu (med = 30 ppm) (med = 118 ppm), Zn (med = 80 ppm), Ga (med = 28 ppm),
Nb (med = 26 ppm), Th (med = 41 ppm), and Th (med = 20.9 ppm), show lower concentra-
tions. High variability was observed for Cr (IQR = 190) and Zr (IQR = 158), while the rest of
the trace elements, such as Ni (IQR = 80), V (IQR = 68.5), Zn (IQR = 52.5), Sr (IQR = 45), Pb
(IQR = 32), Ba (IQR = 30.5), Y (IQR = 28), Sc (IQR = 19), Cu (IQR = 15), and Nb (IQR = 12.5)
show from moderate to low variability (Figure 7). It has to be noted that the sample CS2
shows high Sr value (1520 ppm), and this can be explained by the presence of an Sr-rich
calcite in the matrix or by isomorphogenic substitution and enrichment in SrCO3.

Total REEs concentration (ΣREEs) ranges from 141.74 ppm to 715.5 ppm with a
median of 356 ppm. The chondrite-normalised (Figure 8) (chondrite values are from
Evensen et al. [34]) REEs pattern shows a moderate fractionation with (La/Yb)cho, which
ranges from 9.65 to 13.80 with median values of 10.64. REEs normalised patterns show
both positive and slightly negative Ce anomalies with Ce/Ce* median of = 0.98, while Eu
exhibits only moderately negative anomalies with an Eu/Eu* median = of 0.71 ranging
from 0.68 to 0.72.

Table 1. Major (wt.%) and trace elements (ppm) in the Vitulano bauxite samples.

Element wt. % d.l. CS1 CS2 CS3 CS4 CS5 CS6 CS7 CU1 CU2 CU3 CU4 CU5 CU6 CU7 CU8

SiO2 0.01 7.51 7.07 5.28 6.03 5.67 4.36 6.53 3.89 9.05 3.76 5.24 6.65 4.65 3.84 4.47
Al2O3 0.01 56.57 32.66 41.2 57.1 26.96 37.86 16.45 9.26 9.88 27.83 28.46 20.75 22.84 10.94 34.18
Fe2O3 0.01 20.34 12.44 13.74 20.47 8.15 26.31 5.54 2.58 1.77 15.47 15.56 3.68 13.97 5.48 17.41
MnO 0.001 0.18 0.11 0.24 0.18 0.33 0.38 0.06 0.03 0.03 0.13 0.12 0.04 0.09 0.04 0.13
MgO 0.01 0.58 0.82 0.55 0.5 0.61 0.43 1.01 0.88 0.57 0.38 0.51 0.69 0.57 0.85 0.55
CaO 0.01 0.19 21.62 16.6 0.44 28.52 11.14 37.53 45.19 41.51 25.64 24.3 35.49 29.64 41.86 20.05
Na2O 0.01 0.03 0.03 0.02 0.02 0.02 0.01 0.03 0.02 0.02 0.01 0.01 0.02 0.01 0.02 0.03
K2O 0.01 0.29 0.39 0.14 0.23 0.19 0.11 0.39 0.19 0.22 0.08 0.19 0.23 0.11 0.17 0.09
TiO2 0.001 2.54 1.50 1.79 2.64 1.23 1.76 0.77 0.47 0.45 1.25 1.36 1.08 1.07 0.52 1.65
P2O5 0.01 0.1 0.28 0.61 0.08 0.28 0.1 0.09 0.1 0.17 0.06 0.08 0.13 0.06 0.08 0.05
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Table 1. Cont.

Element wt. % d.l. CS1 CS2 CS3 CS4 CS5 CS6 CS7 CU1 CU2 CU3 CU4 CU5 CU6 CU7 CU8

LOI - 12 23.28 20.23 11.96 26.58 17.13 31.45 36.54 34.84 25.09 24.14 31.02 27.77 34.75 21.32
Total 0.01 100.3 100.2 100.4 99.63 98.54 99.6 99.86 99.16 98.49 99.71 99.96 99.76 100.8 98.57 99.92
ppm
Sc 1 40 30 38 41 26 60 21 12 16 37 35 14 25 14 37
Be 1 8 4 6 8 4 7 2 1 <1 4 4 2 3 2 5
V 5 189 118 132 188 82 217 48 28 21 133 132 71 115 57 119
Ba 2 64 55 44 56 59 73 39 15 15 24 39 26 31 17 29
Sr 2 156 1520 164 145 198 238 184 166 133 149 107 291 114 147 157
Y 1 61 39 69 60 50 71 34 22 22 44 46 25 29 21 48
Zr 2 498 292 335 520 239 400 144 94 87 257 277 201 225 106 326
Cr 20 440 220 240 450 140 310 70 40 40 240 230 90 250 80 300
Co 1 35 22 43 34 31 49 6 1 <1 19 15 9 14 5 22
Ni 20 200 120 190 200 150 200 140 40 40 110 110 80 100 50 150
Cu 10 40 30 30 40 30 40 10 20 20 30 30 20 20 10 110
Zn 30 110 80 110 120 80 110 40 <30 <30 60 80 50 60 30 <30
Ga 1 58 33 41 61 26 41 17 9 7 28 30 20 24 11 38
As 5 30 26 17 32 11 36 11 5 41 17 17 8 21 14 27
Rb 2 17 16 6 13 8 5 15 7 8 4 10 9 6 8 6
Nb 1 50 31 26 53 24 36 17 9 10 26 28 23 23 11 34
Mo 2 4 4 7 5 5 6 2 <2 <2 3 2 <2 <2 <2 3
Sn 1 10 6 5 10 4 8 3 1 2 5 6 4 5 2 7
Sb 0.5 7.5 6.2 5 7.6 3.3 7.2 2.5 2 1.7 10.4 9.7 4 9.5 4.6 8.5
Cs 0.5 3.8 4.2 2.2 3.8 2 1.9 3.6 1.5 1.2 1.5 2.6 2.7 2 1.9 1.8
Hf 0.2 12.5 7.7 3.2 13.8 6.4 10.9 3.8 2.3 2.4 7 7.3 5.3 6.2 2.9 9.4
Ta 0.1 1.5 0.9 0.3 0.9 0.8 1.1 1.1 0.6 0.6 1.2 1.4 1.2 1.3 0.7 2.4
W 1 8 7 7 6 7 4 5 <1 1 10 6 3 3 3 6
Tl 0.1 0.3 0.2 0.2 0.3 0.3 0.2 0.1 <0.1 <0.1 0.1 0.3 0.1 0.2 <0.1 <0.1
Pb 5 64 41 41 68 26 79 20 9 20 51 35 12 42 18 53
Th 0.1 31.1 21.9 24.3 33.9 15.4 37.5 10.7 5.6 7.6 21.1 20.9 15.2 19.6 9.2 32.1
U 0.1 3.3 2.1 2.5 3.5 1.7 2.6 1.1 0.7 0.6 2.3 1.8 1.5 1.5 0.9 2.4
La 0.1 109 75.3 91.2 113 70.4 145 50.3 30 30.8 91.5 81.9 41.4 55.8 33.8 93.7
Ce 0.1 211 217 180 209 167 336 92.6 51.3 58.1 176 140 135 116 69.3 152
Pr 0.05 22.2 17.1 20.3 21.9 16.7 32.4 11.7 7.53 7.1 19.8 18 8.41 11.2 7.84 19.1
Nd 0.1 77.7 65.4 78.2 77.1 64.9 122 45 30.1 27.5 72.5 67.7 30.4 40.6 29.3 71
Sm 0.1 13.2 13 15.4 13.1 12.6 22.1 9.3 6 5.9 13.1 13.2 5.4 7.1 5.7 13.9
Eu 0.05 2.66 2.66 3.28 2.59 2.69 4.59 2 1.3 1.32 2.67 2.73 1.07 1.46 1.22 2.88
Gd 0.1 10.5 9.6 13 10.3 10.4 17.3 7.7 5 4.9 9.8 10.2 4.2 5.7 4.7 11.4
Tb 0.1 1.8 1.3 2.1 1.8 1.6 2.7 1.2 0.8 0.8 1.5 1.6 0.7 0.9 0.7 1.8
Dy 0.1 11.5 7.6 12.2 11.4 9.3 15.1 7.3 4.4 4.5 8.8 9 4.2 5.7 4 10.7
Ho 0.1 2.3 1.5 2.4 2.3 1.7 2.8 1.3 0.8 0.8 1.7 1.7 0.9 1.1 0.8 2.1
Er 0.1 6.4 4 6.3 6.6 4.7 7.3 3.4 2.1 2.2 4.4 4.6 2.6 3.2 2 6.1
Tm 0.05 1.03 0.63 0.95 1.04 0.69 1.11 0.51 0.31 0.32 0.69 0.69 0.41 0.5 0.3 0.88
Yb 0.1 6.9 4.3 6.4 7.2 4.5 7.1 3.4 2.1 2.1 4.4 4.7 2.8 3.3 2 5.6
Lu 0.01 1.08 0.69 0.98 1.16 0.7 1.08 0.56 0.34 0.34 0.68 0.74 0.47 0.52 0.32 0.79
ΣREEs 477.27 420.08 432.71 478.49 367.88 716.58 236.27 142.08 146.68 407.54 356.76 237.96 253.08 161.98 391.95

Note: d.l.: detection limit; Eu/Eu * = [Eucho/
√

(Smcho × Gdcho)]; Ce/Ce * = [Cecho/
√

(Lacho × Prcho)]; <: indicates
that the element composition is lower than the detection limit.

Minerals 2023, 13, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 7. Box plot showing trace element (ppm) compositions of Vitulano bauxites. Black circles 
indicate outliers. 

Total REEs concentration (ƩREEs) ranges from 141.74 ppm to 715.5 ppm with a me-
dian of 356 ppm. The chondrite-normalised (Figure 8) (chondrite values are from Evensen 
et al. [34]) REEs pattern shows a moderate fractionation with (La/Yb)cho, which ranges from 
9.65 to 13.80 with median values of 10.64. REEs normalised patterns show both positive 
and slightly negative Ce anomalies with Ce/Ce* median of = 0.98, while Eu exhibits only 
moderately negative anomalies with an Eu/Eu* median = of 0.71 ranging from 0.68 to 0.72. 

 
Figure 8. Chondrite-normalised REEs patterns of studied bauxites. 

5. Discussion 
5.1. Image Analysis in Bauxites 

Image analysis represents a valuable approach for analysing the properties of a dif-
ferent range of structures ranging from molecules and atoms to the coastlines of conti-
nents [35], and the aggregation of small particles to form larger structures, such as the 
formation of minerals, can be described in terms of fractal geometry [36]. The growth of 
sub-circular concretions, such as ooids within bauxites, is a chemical transport-controlled 

Figure 7. Box plot showing trace element (ppm) compositions of Vitulano bauxites. Black circles
indicate outliers.



Minerals 2023, 13, 386 10 of 15

Minerals 2023, 13, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 7. Box plot showing trace element (ppm) compositions of Vitulano bauxites. Black circles 
indicate outliers. 

Total REEs concentration (ƩREEs) ranges from 141.74 ppm to 715.5 ppm with a me-
dian of 356 ppm. The chondrite-normalised (Figure 8) (chondrite values are from Evensen 
et al. [34]) REEs pattern shows a moderate fractionation with (La/Yb)cho, which ranges from 
9.65 to 13.80 with median values of 10.64. REEs normalised patterns show both positive 
and slightly negative Ce anomalies with Ce/Ce* median of = 0.98, while Eu exhibits only 
moderately negative anomalies with an Eu/Eu* median = of 0.71 ranging from 0.68 to 0.72. 

 
Figure 8. Chondrite-normalised REEs patterns of studied bauxites. 

5. Discussion 
5.1. Image Analysis in Bauxites 

Image analysis represents a valuable approach for analysing the properties of a dif-
ferent range of structures ranging from molecules and atoms to the coastlines of conti-
nents [35], and the aggregation of small particles to form larger structures, such as the 
formation of minerals, can be described in terms of fractal geometry [36]. The growth of 
sub-circular concretions, such as ooids within bauxites, is a chemical transport-controlled 

Figure 8. Chondrite-normalised REEs patterns of studied bauxites.

5. Discussion
5.1. Image Analysis in Bauxites

Image analysis represents a valuable approach for analysing the properties of a differ-
ent range of structures ranging from molecules and atoms to the coastlines of continents [35],
and the aggregation of small particles to form larger structures, such as the formation of
minerals, can be described in terms of fractal geometry [36]. The growth of sub-circular
concretions, such as ooids within bauxites, is a chemical transport-controlled process ex-
plained with diffusion-based models [37–41] and can be described as the growth of fractal
aggregates using a molecular diffusion pattern [36,42].

Previous studies on southern Italy karst bauxites performed image analysis on tex-
tural components, providing some geometric parameters of the ooids, such as circularity,
aspect ratio, and fractal dimension (D) [5,24]. For instance, the fractal dimension aver-
age (D) for the Salento autochthonous bauxite pebbles is very close to D values related
to diffusion-limited aggregation models, while Campania bauxites exhibit higher frac-
tal dimension values [24], which are close to the fractal dimension associated with the
diffusion-limited cluster aggregation processes where small particles join together to form
further clusters that continue to keep on joining to form larger and larger clusters [36].

The average fractal dimension D in the Vitulano bauxite samples (median = 1.86;
Figure 9) is very similar to the values of the Matese Mts. and Caserta district bauxites
(median = 1.85). Since it has been demonstrated that the fractal dimension D provides
information on carbonate platform exposure during bauxite deposition [5,24], this finding
suggests that Campania bauxite deposits formed, overall, during the same emersion span
of the Apennine carbonate platform, such as the Matese Mts and the Caserta district [30,32].
This is consistent with the genesis of the Vitulano bauxites, which, in fact, derives from the
alteration, transport, and deposition of pre-existing bauxites.

5.2. Genesis of Vitulano Bauxites

The Upper Cretaceous to Eocene evolution of the Vitulano area was characterized by
a NW–SE extension due to a rifting event [30,32]. In the Maastrichtian–Paleocene interval,
some blocks locally emerged and started to experience erosion, whereas others sank and
were characterized by the deposition of margin-slope carbonates (“Calcari Cristallini” Fm.).
In the Eocene–Miocene period, the subsidence continued with the deposition of deep basin
clayey and calcareous sediments (“Scaglia Detritica” Fm.).
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Figure 9. Binary images of selected samples for image analysis. The binarization of sample images
was provided by the software Image J which produced black (ooids) and white (bauxite matrix)
images. (a) binary image of the sample CS2; (b) binary image of the sample CS4, (c) binary image of
the sample CU1, (d) binary image of the sample CU3.

The age of the Vitulano bauxites was dated back to the Cenomanian–Coniacian [30,32];
this could indicate that the bauxites that outcrop extensively in the Matese Mts. and Caserta
district areas [26,43–45] may have undergone weathering processes that led to the formation
of bauxites under study. These processes of dismantling, transport, re-sedimentation, and
diagenesis probably took place during the first phase of the evolution of the Vitulano area,
which includes, in fact, an extension event characterized by the emergence of limestone
rocks and pre-existing bauxite deposits.

The composition and textural features of karst bauxites result from several processes,
such as parent-rock(s) dissolution, neo-mineralization, sedimentation, transport, and
diagenesis [11,22,26].

The main process that allowed the sediment to evolve with its typical appearance
and structure is karstic activity, which can create micro-fractures, more or less extensive,
pervasive fractures, and karstic voids in the carbonate substrate that can subsequently be
filled by bauxite [22,24].

The studied bauxites do not share the same features observed in the Matese Mts.
and the Caserta district deposits consisting of flat, contiguous lenses with a thickness
of a few meters. Rather they occur as small tasks and depressions filled with bauxitic
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material. The karst cavities in the Vitulano area are filled, as clearly indicated by the texture
features, by a para-autochthonous bauxite that, in turn, is affected by post-depositional
micro-fractures filled by calcite, due to the precipitation of calcium carbonate from cir-
culating solutions. Consequently, the Vitulano bauxite, different from what has been
observed in other southern Apennine deposits [7] and consistent with the geochemical and
mineralogical composition, shows high CaO abundances and is calcite-rich.

Further, and similarly to what was observed in the other southern Italy bauxites,
the alternation of Al-rich and Fe-rich concretions would be conditioned by climatic fac-
tors: hematite cores indicate periods in a humid tropical environment, while boehmite
formed under conditions of low water activity in climatic regimes characterized by reduced
rainfall [22,24].

The alternation of different climatic conditions is also suggested by the ooid/matrix
ratio and the geometric features of the ooids characterized by a hematite core surrounded
by alternating accretions of boehmite and hematite.

The positive Ce anomaly in some samples reflects the peculiar redox chemistry of Ce
and can be due to the Ce3+ to Ce4+ oxidation with the precipitation of cerianite (CeO2) or
by its further dissolution followed by the formation of Ce-rich fluorocarbonate minerals,
as observed in other upper Cretaceous karst bauxite deposits in southern Italy [11]. All
samples show uniformly negative Eu anomalies which are usually associated with mafic
source rocks and furthermore reveal that the bauxite formation is not affected by the Eu
anomaly values in the studied bauxites [8].

In the Vitulano area, the presence of normal faults and fractures bounding the karst
cavities, together with new fractures cutting off the bauxite deposits and filled with the
same sediments, support the presence of an active extensional regime that entered the
platform through major faults [27]. This scenario suggests a different sedimentological
evolution for the various blocks that experienced differential uplift and subsidence).

In order to confirm the Vitulano bauxite derived from pre-existing Cenomanian–Turonian
bauxite bodies occurring in the Matese Mts. and the Caserta district, we used geochemical
indices, including Eu/Eu *, Sm/Nd, and TiO2/Al2O3 that have proven their effectiveness
in assessing parental affinity of karst bauxites [11]. The Eu/Eu * vs. Sm/Nd and Eu/Eu *
vs. TiO2/Al2O3 binary plots (Figures 10 and 11) strongly suggest the Vitulano bauxites are
closely related to the Albian–Cenomanian bauxites of the Campania Region, confirming
portions of the latter were affected by dismantling and transport, thus originating the
para-autochthonous Vitulano bauxite.
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Felsic rocks and cratonic sandstones values are from [46]; PAAS (Post-Archean Australian Shales)
and andesite values are from [47]; limestone values are from [11].
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6. Conclusions

i. In the environs of the town of Vitulano, several small bauxite bodies have been found.
appearing as filling of small depressions and karst cavities on which minero-chemical
and petrographic assessments were performed together with image analysis assessment.

ii. The petrographic analysis revealed that the texture of the studied bauxites consists of
sub-circular aggregates (ooids) dispersed in a fine Ca-rich matrix.

iii. The mineralogy of aggregates mainly consists of boehmite and Al-hematite, reflecting
different climate conditions that occurred during their formation since boehmite
formed in a dry climate, while Al-hematite formed during more humid periods.

iv. The chemical composition of Vitulano bauxites is dominated by Al2O3 and CaO and
subordinately by Fe2O3 and SiO2.

v. Tectonic activity has controlled the formation and deposition of the studied bauxites,
which are para-autochthonous, as demonstrated by their textural and compositional
features, deriving through erosion, transport, and the re-deposition of pre-existing
bauxitic deposits.

vi. Textural and parental affinity geochemical indices, together with image analysis
parameters, indicate that the original deposits that formed the Vitulano bauxites most
likely were exposed in the Matese Mts. and the Caserta district areas which are located
close to the studied bauxites.
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