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Abstract: The Dongxiang tungsten–copper deposit is a large W–Cu deposit located in the northeast
of Jiangxi province in south China. Previous studies have mainly considered the geochemical and
isotopic attributes of the ore deposit, but information is still lacking on the genesis and setting of
Dongxiang W–Cu mineralization-related intrusive rocks. This paper presents systematic elements
and Sr–Nd–Hf isotopic data of the Dongxiang granodiorite porphyry. The Dongxiang granodiorite
porphyry is intermediate–acidic in composition, with SiO2 contents of 60.00–75.16 wt.%, Al2O3

contents of 10.15–18.53 wt.%, an K2O contents of 2.95–4.28 wt.%. The REEs content ranges from 64.2
to 198.1 ppm, with LREE/HREE ratios of 7.67–17.47. It is characterized by adakitic geochemical
affinities with high Sr/Y and (La/Yb)N ratios but low Y and Yb contents. A slight Eu anomaly,
extreme depletion in Y and Yb, relatively low MgO content, and relatively high 207Pb/204Pb ratios
together indicate that the Dongxiang granodiorite porphyry was likely derived from partial melting of
the thickened lower continental crust. Based on zircon εHf(t) values (−11.8–−4.5), two-stage Hf model
ages (1.33–1.94 Ga), and the regional geological setting, it can be inferred that Dongxiang granodiorite
porphyry magma is mainly derived from Neoproterozoic juvenile crust with the involvement of
Paleoproterozoic ancient crust.

Keywords: granodiorite porphyry; adakitic rock; W–Cu deposit; Dongxiang; southeast China

1. Introduction

Southeast (SE) China is well-known for its extensive development of Mesozoic igneous
rocks (Figure 1a) [1,2]. Due to the large-scale Cu-Au-Pb-Zn-W-Sn polymetallic mineraliza-
tion and the important tectonic features of this area, its igneous rocks have been studied in
great depth [2–6]. The Dexing–Dongxiang district in eastern Jiangnan Orogen (northeast
Jiangxi province) and the middle–lower reaches of the Yangtze river valley metallogenic
belt (MLYB; Figure 1a) are the two most important metallogenic districts, and both have
been studied extensively [7,8]. The Dongxiang W–Cu deposit (E 116◦36′34′′–116◦39′41′′,
N 28◦17′15′′–28◦17′55′′) is located 100 km southwest of the Dexing and Yinshan deposits in
the northeast of Jiangxi province. By means of a geological survey, the Dongxiang W–Cu
deposit was discovered in the 1950s by the 912 Geological Team of the Jiangxi Bureau of
Geology and Mineral Resources. The deposit contains 19,000 t of W with an average grade
of 0.65 wt.% W, 0.166 Mt of Cu metal with an average grade of 1.1 wt.% Cu, 1.09 Mt of iron
with an average grade of 46 wt.% Fe, and 3.59 Mt of sulfur metal with an average grade of
22 wt.% S [9].
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Figure 1. (a) Sketch map of the late Mesozoic volcanic-intrusive complex belt in southeast China 
(adapted from Wang, et al. 2012 [10]); (b) cross-section through the ore bodies (prospecting line 67) 
of the Dongxiang deposit (adapted from Cai, et al. 2016)[11]. Pt3sh—Shuangqiaoshan Group; C1z—
Zhongpeng Formation; C1-2z—Zishan Formation; C2H—Hutian Group; K2n—Nanxiong Formation; 
Fz—fracture zone. 

Figure 1. (a) Sketch map of the late Mesozoic volcanic-intrusive complex belt in southeast China
(adapted from Wang et al., 2012 [10]); (b) cross-section through the ore bodies (prospecting line 67)
of the Dongxiang deposit (adapted from Cai et al., 2016) [11]. Pt3sh—Shuangqiaoshan Group; C1z—
Zhongpeng Formation; C1-2z—Zishan Formation; C2H—Hutian Group; K2n—Nanxiong Formation;
Fz—fracture zone.
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This deposit has been previously studied by researchers [11–17] who have considered
such matters as fluid inclusions and H–O–S–Pb isotopes [11], zircon U-Pb dating and Rb–Sr
dating [12], mine structural geology [16], sedimentary rocks [14] and volcanic rocks [17]
in ore-bearing strata, and prospecting exploration [9,18]. The deposit is of the Manto type
which is associated with Jurassic magmatic hydrothermal activities [11]. However, the
ore-related granodiorite porphyry that is closely related to W–Cu mineralization is still
poorly understood. In this study, we selected Dongxiang intrusive rocks that were closely
related to W–Cu mineralization, carried out detailed geochemical and Sr–Nd–Hf isotope
analysis, and discussed the origin of the intrusive rocks in the Dongxiang deposit.

2. Geological Setting

South China consists of the Yangtze block in the northwest and the Cathaysia block in
the southeast, separated by the Qinzhou–Hangzhou belt, whose eastern part is well-known
as the Jiangshan–Shaoxing fault zone (Figure 1a) or shear zone [1,19,20].

Between the two blocks, the Jiangnan Orogen belt extends 1500 km along the south-
eastern margin of the Yangtze block, and represents both Neoproterozoic subduction and
convergence between the Yangtze and Cathaysia blocks [1,6,20,21]. It is also an important
polymetallic metallogenic region which is especially noted as one of the major W–Cu re-
sources of the world [22]. The eastern part of the Jiangnan Orogen is located in the eastern
part of the Yangtze block, north of the Jiangshan–Shaoxing fault zone, and is cut off by
the northeast Jiangxi deep fault in the southeast. The ophiolite complex (ca. 1000 Ma) is
distributed along the line of this fault and represents a subordinate Neoproterozoic suture
zone between the Yangtze block and the oceanic island arc [23,24].

The northeast Jiangxi region of the Qinzhou–Hangzhou belt is one of the most im-
portant polymetallic deposits in China, and many large- and superlarge-size Cu (Au)
polymetallic deposits have been discovered, such as the Dexing Cu–Au deposit, the Yong-
pin Cu deposit, and the Yinshan Cu–Pb–Zn polymetallic deposit [1,6,11,25–30]. Recently,
W–Sn deposits have also been discovered, such as the Dahutang, Zhuxi, Yangchuliang,
Xianglushan, and Pengshan deposits, whose identified resources total nearly 4 Mt. WO3,
0.75 Mt. Cu and 0.3 Mt. Sn [22]. In this belt, magmatic activities were frequent and intensive
from the Jurassic to Cretaceous periods, especially during the mid–late Jurassic.

3. Dongxiang Deposit and Intrusive Rocks

The Dongxiang W–Cu deposit is located at the junction of the northeast Jiangxi
deep fault and the Pinxiang–Guangfeng deep fault. The stratigraphy sequence in the
ore district comprises the Neoproterozoic Shuangqiaoshan Group, the Upper Devonian–
Lower Carboniferous Zhongpeng Formation, the Upper–Lower Carboniferous Zishan
Formation, the Upper Carboniferous Hutian Group, and Cretaceous sedimentary rocks
(Figure 1b). Neoproterozoic rocks, occurring in the northwestern parts of this area, consist
of phyllite-based epimetamorphic rocks. The Upper Devonian–Lower Carboniferous
Zhongpeng Formation unconformity covers the Neoproterozoic rocks, mainly composed of
clasolite and shale, which are exposed in the middle area of the deposit. The Upper–Lower
Carboniferous Zishan Formations are composed of gray quartz sandstone, sandstone, shale,
and conglomerate, intercalated with marl. The Upper Carboniferous Hutian Group is
composed of marine carbonate rocks. Cretaceous sedimentary rocks consist of silicious
clasolite conglomerate, and sandstone with thick-layered siltstone, both of which occur in
the southeastern area of the deposit [11,12,31].

The ore bodies occur in the sandstone and shale of the upper section of the Zishan
Formation as stratiform-to-substratiform lenses and veins. Ore minerals include wolframite,
chalcopyrite, pyrite, bornite, and chalcocite. The ore bodies and intrusive rocks are all
restricted by NE-NEE faults, indicating that the intrusive rocks and faults are closely related
to mineralization. Wall rocks locally exhibit phyllic alteration, within more widespread
alteration minerals that include quartz, sericite, pyrite, and chlorite [11,12,31].
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The main intrusions are granodiorite porphyries and quartz porphyry dikes in the
Dongxiang area. The granodiorite porphyry in this area extends underground from south-
west to northeast and is controlled by NE faults but cut by NNE or NWW faults. Unlike
concealed granodiorite porphyry, the quartz porphyry is exposed on the surface. It con-
tains large quartz phenocrysts and plagioclase with accessory zircon, apatite, and titanite.
The quartz porphyry exhibits weathering processes and most of the plagioclase has been
altered to kaolin. However, there is no evidence that quartz porphyries are related to metal
mineralization. Therefore, in this study, only the granodiorite porphyry is analyzed, tested
and discussed.

4. Samples and Analytical Methods

The samples for analysis were collected from the drill cores ZK6702 and ZK6701. The
samples were initially observed by optical microscopy. The least-altered samples were se-
lected for the geochemical and Sr–Nd isotopes analyses. They exhibited porphyritic textures
and were mainly composed of 10%–30% quartz, 50%–60% plagioclase, and 5%–10% biotite.
Phenocrysts are basically euhedral or subhedral, with a grain size of 0.2–4 mm. Quartz
is frequently characterized by a melting corrosion structure. The matrix displays a fine
microcrystalline texture, consisting of quartz, biotite, amphibole, and plagioclase with ac-
cessory zircon, apatite, and titanite (Figure 2). The alteration mainly involves silicification,
sericitization, and pyritization. The mineralization-related alterations are mainly intensive
silication and sericitization.
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Figure 2. Pictures and photomicrographs of the Dongxiang granodiorite porphyry. (a,b) Hand
specimens of Dongxiang granodiorite porphyry samples ZK6701 and DT026; (c,d) photomicrographs
showing the mineralogy of the two sample porphyries from the area. Abbreviations: Pl—plagioclase;
Kf—alkaline feldspar; Bio—biotite; Qtz—quartz.

To carry out a whole-rock analysis of major and trace elements, eleven samples were
collected from the granodioritic porphyries. Among these, the five samples with the least
alteration were used for Sm–Nd and Rb–Sr isotope analysis, and two samples were used
for a combined study involving CL imaging and the Lu–Hf isotope.

The major-element content of the samples was determined at the MiDeR, Nanjing
University by ICP-OES. Trace elements were analyzed by Finnigan Element II ICP-MS at
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MiDeR, Nanjing University. The precision was higher than 5% for all the major elements,
and higher than 10% for the trace elements [32].

The isotopic compositions of Sr and Nd were measured using Triton Ti thermal ion-
ization mass spectrometry (TIMS) equipment at Nanjing University [33]. 87Sr/86Sr and
143Nd/144Nd ratios were recorded as measured and normalized to a 86Sr/88Sr value of
0.1194 for Sr and to a 146Nd/144Nd value of 0.7219 for Nd. During the analysis, measure-
ments resulted in a 143Nd/144Nd ratio of 0.511842 ± 4 (2σ, n = 5) for the La Jolla standard
and a 87Sr/86Sr ratio of 0.710260 ± 10 (2σ, n = 30) for the NBS-987 Sr standard. The total
analytical blanks were 5 × 10−11 g for Sm and Nd and (2-5) × 10−10 g for Rb and Sr.

An in situ analysis of the zircon Hf isotope was carried out using a New Wave UP213
laser-ablation microprobe, attached to a Neptune Multi-Collector ICP-MS at the Institute of
Mineral Resources, Chinese Academy of Geological Sciences (CAGS) [34]. In this study, a
stationary spot was used for analysis, with a beam diameter of 40 µm or 55 µm depending
on the size of ablated domains. For routine analysis, zircon GJ1 and Plesovice were used as
reference standards, and the weighted average 176Lu/177Hf ratios were 0.282001± 0.000006
(2σ, n = 33) and 0.282476 ± 0.000009 (2σ, n = 8), respectively. Using the solution analysis
method, these values are not distinguishable from the weighted average 176Hf/177Hf ratios
of 0.282000 ± 0.000005 (2σ) and 0.282482 ± 0.000008 (2σ) [35,36]. We calculated the εHf(t)
values [37] and two-stage “crustal” model Hf ages for their source materials, assuming a
176Lu/177Hf ratio of 0.015 for average continental crust [38]. The data were processed using
the software package GLITTER (v 4.4) and program ISOPLOT (v 3.0) [39], and common
lead correction was carried out using the EXCEL program of ComPbCorr#151 [40].

5. Results
5.1. Major Elements

Dongxiang intrusive rocks are of intermediate–acidic composition, with a SiO2 content
of 60.00–75.16 wt.% (Table 1), Al2O3 content of 10.15–18.53 wt.%, and K2O content of
2.95–4.28 wt.%. They are calc-alkaline, and the data are mainly concentrated around the
calc-alkaline series, usually with relatively low MgO content (0.32–0.67 wt.%). In the TAS
diagram (Figure 3), most of the test results are plotted in the granodiorite–granite region.
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Table 1. Test data for major and trace elements of Dongxiang granodiorite porphyry.

Sample DT028 DT030 DT050 DT051 DT053 DT056 DT057 DT082 DT084 DT086 DT088

Major elements (wt.%)
Al2O3 10.97 10.15 14.20 12.33 13.47 12.34 13.28 18.37 14.74 16.33 18.53
CaO 0.13 0.04 0.16 0.09 0.25 0.06 0.05 0.36 0.27 0.32 0.35

Fe2O3 2.00 2.96 1.01 2.20 1.03 3.16 2.57 1.12 1.34 0.71 5.86
FeO 1.80 2.67 0.91 1.98 0.93 2.85 2.31 1.01 1.21 0.64 5.28

TFe2O3 4.00 5.93 2.03 4.41 2.07 6.33 5.14 2.25 2.69 1.42 11.73
K2O 3.55 3.31 4.06 3.90 3.65 3.88 4.28 3.42 3.48 3.97 2.95
MgO 0.64 0.61 0.39 0.55 0.41 0.59 0.67 0.32 0.40 0.51 0.50
Na2O 0.02 0.04 0.01 0.05 0.04 0.04 0.05 0.00 0.01 0.11 0.09
P2O5 0.09 0.03 0.09 0.06 0.15 0.05 0.05 0.18 0.13 0.16 0.19
SiO2 76.30 74.74 75.16 74.46 76.55 71.11 71.56 69.38 74.55 73.50 60.00
TiO2 0.24 0.21 0.30 0.24 0.29 0.25 0.26 0.58 0.43 0.46 0.63
LOI 4.12 5.02 3.31 3.90 3.39 5.18 4.68 4.85 3.49 3.36 4.74
Total 99.86 99.78 99.62 99.77 100.18 99.51 99.77 99.61 100.07 100.08 99.12

Trace elements (ppm)
Ti 1463.87 1186.44 1619.81 1290.93 1490.69 1388.75 1459.59 3161.81 2732.81 2848.40 3546.81
V 40.77 49.62 38.01 46.72 37.06 39.24 46.83 87.41 85.63 85.22 292.93
Cr 6.56 8.02 8.72 4.86 8.34 9.80 7.86 55.12 33.18 26.85 304.86
Mn 19.84 15.36 58.54 31.43 59.83 15.98 103.17 41.86 60.61 61.86 27.32
Co 12.66 25.92 3.46 21.58 5.23 12.61 14.42 7.24 2.14 0.84 0.91
Cu 7.62 18.06 25.85 111.27 80.23 15.39 12.43 8.28 4.91 4.56 83.27
Zn 12.58 22.51 7.28 20.99 22.02 18.44 18.95 28.41 85.14 68.78 79.42
Ga 13.59 14.33 15.00 14.95 14.64 14.69 16.10 15.66 18.34 18.86 128.30
Rb 171.51 135.08 245.61 172.57 203.77 146.98 161.91 244.55 257.61 307.99 237.47
Sr 22.54 9.94 54.84 34.67 123.60 11.64 16.48 24.89 32.16 37.72 145.33
Y 13.84 10.03 10.36 12.59 9.11 11.86 10.30 6.13 10.35 7.00 14.83
Zr 89.60 69.54 110.09 92.73 105.83 82.19 92.02 135.71 111.48 139.15 153.74
Nb 12.45 10.17 13.96 12.35 11.94 11.57 11.66 13.58 12.78 13.88 12.32
Mo 63.99 2.64 4.02 2.81 2.23 5.34 14.15 4.48 5.86 3.39 8.91
Sn 10.52 12.42 3.15 10.42 3.49 10.82 10.78 2.93 3.58 2.82 17.75
Cs 13.24 7.35 34.47 10.41 34.55 10.60 5.13 40.29 39.02 52.29 46.88
Ba 422.32 526.58 206.02 493.58 248.74 643.27 572.12 62.64 517.82 643.46 57.51
La 28.41 16.15 26.07 26.26 23.39 29.23 13.97 24.12 23.70 31.78 47.47
Ce 53.48 30.20 44.04 48.25 40.34 52.62 26.55 41.91 33.02 47.54 85.54
Pr 6.11 3.32 4.88 5.15 4.72 5.70 2.93 3.98 4.24 6.39 8.60
Nd 21.72 11.69 17.46 18.72 16.03 20.88 11.03 12.96 14.62 21.12 33.48
Sm 4.03 2.10 3.01 2.82 3.11 3.52 1.95 2.01 2.37 3.81 6.38
Eu 0.91 0.50 0.63 0.53 0.67 0.83 0.40 0.46 0.72 0.95 1.68
Gd 3.58 2.12 2.57 2.75 2.48 2.96 1.89 1.39 2.25 2.96 5.04
Tb 0.52 0.35 0.36 0.45 0.35 0.47 0.33 0.20 0.42 0.36 0.66
Dy 2.71 2.00 2.01 2.53 2.00 2.52 1.96 1.25 2.01 1.76 3.59
Ho 0.45 0.39 0.41 0.48 0.36 0.46 0.40 0.25 0.39 0.29 0.66
Er 1.37 1.11 1.21 1.56 0.98 1.33 1.17 0.83 1.15 0.77 2.11
Tm 0.19 0.15 0.16 0.20 0.13 0.18 0.16 0.11 0.17 0.11 0.31
Yb 1.40 1.15 1.09 1.45 1.06 1.40 1.31 0.75 1.24 0.84 2.19
Lu 0.20 0.15 0.17 0.21 0.18 0.19 0.19 0.11 0.18 0.16 0.39
Hf 2.93 2.54 3.71 3.39 3.53 2.95 3.16 4.41 3.69 4.45 5.02
Ta 1.34 1.17 1.68 1.59 1.37 1.36 1.39 1.30 1.35 1.43 1.32
Th 14.26 9.34 14.49 13.09 13.80 11.82 9.66 9.14 13.71 14.70 15.65
U 3.61 2.55 4.37 2.46 3.33 3.36 3.36 3.57 2.88 4.78 17.63

(La/Yb)N 13.68 9.52 16.21 12.21 14.85 14.07 7.23 21.70 12.92 25.70 14.67
∑REE 125.08 71.38 104.07 111.36 95.83 122.30 64.24 90.35 86.47 118.84 198.10

5.2. Trace Elements

The Dongxiang intrusive rocks exhibit enrichment of LREE relative to HREE with
(La/Yb)N ratios ranging from 7.2 to 25.7. The REE ranges from 64.2 to 198.1 ppm with
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an average of 108 ppm, with LREE/HREE ratios of 7.67–17.47. On primitive mantle-
normalized trace element diagrams, they show enrichments of large ion lithophile elements
(LILEs), but depletions of Nb and Ti (Figure 4). They exhibit a narrow range of Eu/Eu*
(Eu/Eu* = 2EuN/(SmN + GdN)) ratios, and insignificant negative Eu anomalies with an
average ratio of 0.75.
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Boynton,1984, respectively [42].

5.3. Sr-Nd-Hf Isotopes

The whole-rock Sr and Nd isotopic data for Dongxiang granodiorite porphyry are
shown in Table 2. The Nd isotope composition of Dongxiang intrusive rocks is relatively
homogeneous, with εNd (t = 164 Ma) levels ranging from −6.6 to −7.5, and two-stage
Nd model ages of 1.57 to 1.68 Ga. These samples have variable (87Sr/86Sr)i ratios of
0.706675–0.715872. The εNd(t) vs. (87Sr/86Sr)i diagram shows no anticipated inverse
(87Sr/86Sr)i vs. εNd(t) correlation (Figure 5b), possibly the result of post-emplacement
mobilization of Rb and Sr [43–45].
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one type of mantle end-members are from Zindler and Hart, 1986 [47]; data of Precambrian ancient
crust are from Qi et al., 2007 [48]. Additional data are from Wang et al., 2008 [23].
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Zircon U–Pb dating has been used in previous research on the Dongxiang intrusive
rocks [12]. In this study, Lu–Hf isotope analysis was also carried out on zircons with the
same domain position or a similar structure (Figure 6a). Initial 176Hf/177Hf ratios and εHf(t)
values were calculated at the time of zircon growth from the magmas. The results indicated
that Dongxiang intrusive rocks have negative initial εHf values (age corrected using U–Pb
age for individual grains), with a weighted mean of −11.8–−4.5. In addition, the Hf model
ages of zircons from Dongxiang intrusive rocks were 1.01–1.33 Ga, with a two-stage model
age of 1.33–1.94 Ga.
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dashed circles indicate the spots of Hf isotopes analyses. Ages and εHf(t) values are shown for each
spot (age data are from Cai et al., 2017) [12]. (b) Histogram of two-stage model ages (TDM

C) for
zircons from the Dongxiang intrusive rocks. (c) Histogram of εHf(t) values for zircons from the
Dongxiang intrusive rocks.
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Table 2. Sr–Nd isotope data of the Dongxiang granodiorite porphyry.

DT028 DT050 DT051 DT053 DT056
87Rb/86Sr 22.125863 12.993669 14.453388 4.778184 36.839156
87Sr/86Sr 0.760611 0.737420 0.747496 0.727036 0.792723

2σ 0.000007 0.000006 0.000006 0.000006 0.000006
(87Sr/86Sr)i 0.708930 0.707070 0.713736 0.715875 0.706675

147Sm/144Nd 0.113000 0.105000 0.091800 0.118000 0.103000
143Nd/144Nd 0.512166 0.512152 0.512186 0.512193 0.512154

2σ 0.000003 0.000005 0.000003 0.000003 0.000005
(143Nd/144Nd)i 0.512045 0.512039 0.512087 0.512066 0.512044

εNd(t) −7.50 −7.60 −6.60 −7.00 −7.50
TDM

C(Ga) 1.68 1.67 1.57 1.66 1.66
TDM(Ga) 1.49 1.40 1.21 1.53 1.37

6. Discussions
6.1. Alteration Effects

Petrological observations show that the Dongxiang intrusive rocks exhibit different
degrees of magmatic hydrothermal alteration. These alterations show a transformation
from Ca- and Na-rich plagioclase and alkaline feldspar to K-rich sericite, calcite, and clay.
The Sr content decreases with the reduction of Ca content in the plagioclase. These data
are consistent with previous results indicating Ca, Na, and the LILEs (e.g., Sr, Ba, Pb, Rb)
are generally mobile [21,49]. In contrast, during the most intense hydrothermal alteration,
some major elements, such as Al, P, and the HFSEs, are essentially immobile [21,49]. As
sericite can take up all of the available REE, whole-rock REE abundance was not affected
during serictic alteration in this study [50].

Although Table 1 shows that the LOI varies from 2% to 5%, the ratios of MgO, TiO2,
Nb, Zr, La, and (87Sr/86Sr)i of the intrusive rocks do not change significantly with higher
LOI values, and neither do their La/Sm and La/Yb values, indicating that these data were
not significantly affected by alteration (Figure 7). The LOI versus εNd(t) diagram (Figure 7i)
also shows minimal variation in the εNd(t) values of the Dongxiang intrusive rocks as
the LOI increases, indicating that the 143Nd/144Nd ratios of rocks are rarely affected by
hydrothermal alteration. Therefore, for discussion purposes, for samples of igneous rocks
with large alterations, only certain major elements (e.g., TiO2, MgO), HFSEs (e.g., Zr, Nb,
Ta, Hf), REEs, and isotopic compositions (Nd, Pb) that are not significantly affected by
alterations were considered.

6.2. Genesis of the Dongxiang Intrusive Rocks

The intrusive rocks in the Dongxiang deposit have relatively high Sr content (10–145 ppm),
and ratios of Sr/Y (1.0–13.6) and La/Yb (7.2–25.7), as well as low Y (<12.8 ppm) and
Yb (<2.2 ppm) content. In addition, chondrite-normalized REE patterns show that these
rocks are enriched with light REEs (LREEs), and depleted in heavy REEs (HREEs), with
a slight Eu anomaly (Figure 5). Moreover, the data of Dongxiang intrusive rocks can be
plotted in the adakite region on a (La/Yb)N versus YbN diagram (Figure 8). This indicates
that the Dongxiang ore-related granodiorite porphyry has adakite affinities, in common
with other igneous rocks in the Dexing, Yinshan, and Jiande regions [10,26]. Previous
research has found that many typical adakites are formed by slab melting in subduction
zones [6,51,52]. Similar models have been proposed to explain the origin of the Mesozoic
adakitic rocks in the Dexing area and in the Yangtze river valley metallogenic belts in
southeastern China [6,10,26,53,54]. In intracontinental settings, partial melting of thickened
or delaminated lower continental crust has been proposed as a possible mechanism for
the formation of adakitic rocks [55–58]. Alternatively, the origin of adakitic rocks may be a
consequence of the fractional crystallization process of basaltic magmas [59].
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Figure 8. (La/Yb)N vs. YbN for the Dongxiang intrusive rocks (adapted from Defant and Drummond,
1990) [52].

There are two explanations for the crystallization process and melting. The first
draws attention to the phenomenon that removal of plagioclase and amphibole under low
pressure produces patterns that are concave-upwards between MREE and HREE, resulting
in a higher Dy/Yb ratio and increased SiO2 content [59]. The alternative explanation
involves high-pressure crystallization with garnet as a residual phase in the deep magma
chamber [59].

Figure 9 clearly shows the partial melting trend in plots of Zr/Nb versus Zr and Y
versus Ce. In addition, samples from the Dongxiang intrusive rocks showed no concave-
upwards REE patterns between MREEs and HREEs (Figure 4) and the Dy/Yb ratio did
not decrease significantly with an increase in SiO2 (Figure 9c). Therefore, the geochemical
characteristics of the Dongxiang intrusive rocks indicate that their adakitic features are
unlikely to have been generated by fractional crystallization under low pressure.

Minerals 2023, 13, x FOR PEER REVIEW 14 of 20 
 

 

 
Figure 9. (a) Zr/Nb vs. Zr diagram; (b) Y vs. Ce diagram; (c) Dy/Yb vs. SiO2 diagram. 

6.2.1. Partial Melting of the Subducted Oceanic Slab and the Delaminated Lower Conti-
nental Crust 

Adakite was originally thought to be produced by partial melting of the subducting 
oceanic plate [51,52]. Adakitic rocks from Dongxiang have higher 207Pb/204Pb ratios than 
MORB and adakites that are derived from slab melting [46], suggesting that the 
Dongxiang intrusive rocks have radiogenic 207Pb which differs from that of the adakitic 
rocks originating from the subducted oceanic crust (Figure 6a). Dongxiang samples show 
notably higher (87Sr/86Sr)i values, and lower εNd(t) values (Figure 6b) than study samples 
of MORB and adakites that are derived from slab melting [60], indicating a source other 
than the oceanic crust. Furthermore, no definite Mesozoic basaltic arc magmatism has 
been found in the intracontinental region of southeast China. Therefore, the partial melt-
ing of the subducted oceanic plate cannot be considered a reasonable mechanism to ex-
plain the adakitic character of the Dongxiang intrusion. 

Partial melting of the delaminated lower continental crust has also been proposed as 
a genetic mechanism for adakitic rocks in southeastern China [57]. Partial melting occurs 
when the delaminated lower crust is heated by the surrounding hot mantle, and pristine 
melt is created. During the emplacement of pristine melt through mantle rocks into the 
upper crust, significant chemical interactions occur between mantle rocks and the melts. 
Thus, adakite magmas that are produced in this model show higher MgO, Cr, and Ni 
contents, indicating a significant involvement of mantle components [57]. However, the 
Dongxiang intrusive rocks have lower MgO content, in comparison with the adakitic 
rocks that are formed by partial melting of the delaminated lower crust (Figure 10), and 
this indicates that they were not hybridized by the mantle material. Therefore, the model 
is not suitable for assessment of the Dongxiang intrusive rocks genesis. 

Figure 9. (a) Zr/Nb vs. Zr diagram; (b) Y vs. Ce diagram; (c) Dy/Yb vs. SiO2 diagram.

6.2.1. Partial Melting of the Subducted Oceanic Slab and the Delaminated Lower
Continental Crust

Adakite was originally thought to be produced by partial melting of the subducting
oceanic plate [51,52]. Adakitic rocks from Dongxiang have higher 207Pb/204Pb ratios
than MORB and adakites that are derived from slab melting [46], suggesting that the
Dongxiang intrusive rocks have radiogenic 207Pb which differs from that of the adakitic
rocks originating from the subducted oceanic crust (Figure 6a). Dongxiang samples show
notably higher (87Sr/86Sr)i values, and lower εNd(t) values (Figure 6b) than study samples
of MORB and adakites that are derived from slab melting [60], indicating a source other
than the oceanic crust. Furthermore, no definite Mesozoic basaltic arc magmatism has been
found in the intracontinental region of southeast China. Therefore, the partial melting of
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the subducted oceanic plate cannot be considered a reasonable mechanism to explain the
adakitic character of the Dongxiang intrusion.

Partial melting of the delaminated lower continental crust has also been proposed as a
genetic mechanism for adakitic rocks in southeastern China [57]. Partial melting occurs
when the delaminated lower crust is heated by the surrounding hot mantle, and pristine
melt is created. During the emplacement of pristine melt through mantle rocks into the
upper crust, significant chemical interactions occur between mantle rocks and the melts.
Thus, adakite magmas that are produced in this model show higher MgO, Cr, and Ni
contents, indicating a significant involvement of mantle components [57]. However, the
Dongxiang intrusive rocks have lower MgO content, in comparison with the adakitic rocks
that are formed by partial melting of the delaminated lower crust (Figure 10), and this
indicates that they were not hybridized by the mantle material. Therefore, the model is not
suitable for assessment of the Dongxiang intrusive rocks genesis.
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6.2.2. Partial Melting of the Thickened Juvenile Continental Crust

Direct partial melting of the thickened lower continental crust has also been proposed
to explain the production of adakitic magmas [55,56]. This model is consistent with the
elemental characteristics of the Dongxiang intrusive rocks, such as high SiO2 and K2O
(Figure 5). In a previous study, U–Pb dating data of the Dongxiang intrusive rocks revealed
a relatively high radiogenic 207Pb/204Pb [12] ratio, indicating that Dongxiang adakitic
rocks were derived from continental crustal materials (Figure 6a). The low εNd(t) and
high (87Sr/86Sr)i values of the Dongxiang intrusive rocks are similar to those of adakitic
porphyries from the melting of the lower continental crust [61], indicating that these
intrusive rocks were probably generated by partial melting from the continental crust
rather than the oceanic crust. The εNd vs. (87Sr/86Sr)i diagram (Figure 6b) shows that
all of the samples are plotted below the average Nd isotopic bulk earth line, suggesting
that they originated from the juvenile continental crust [62,63]. Two-stage models of Nd
and Hf isotope ages also support a continental crustal origin, and the ages of these two
isotopes are significantly older than their emplacement ages. In addition, their relatively
low MgO levels are similar to those that were found in experimental melts of metabasalts
and eclogites at 1.0–4.0 GPa [64], and in adakitic rocks that were generated by partial
melting of the lower continental crust [55] (Figure 10). The low MgO content suggests that
these adakitic magmas were directly derived from the lower continental crust without any
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interaction between the adakitic melts and the mantle source [65]. According to the history
of regional evolution, such reworking (i.e., re-melting and emplacement) is also thought to
have occurred along the Jiangnan Orogen, with the growth of the juvenile crust resulting
from arc magmatism at 1.0–0.9 Ga. [66]. The reworking of arc crust by syncollisional and
postcollisional magmatism (870–800 Ma) led to a bulk crust composition more similar to a
continental crust composition [66,67]. A continental origin of the Dongxiang adakitic rocks
is, therefore, consistent with regional reworking of the Neoproterozoic juvenile crust, and
supports the assumption of partial melting of the thickened continental crust.

High levels of elements such as Th, U, and LREEs, along with a marked depletion in
Nb, Ta, and Ti, represent findings similar to those that were obtained from rocks that were
generated from the arc-like magma source [68], and show that Dongxiang intrusive rocks
also exhibit arc geochemical affinities. However, according to previous studies, during the
Jurassic, southern China was in an intracontinental tectonic setting [3,20,43,69]. Therefore,
the intrusive rocks with typical arc-like magmatic characteristics, may be inherited from
the juvenile crust in this region, as has been suggested for Yinshan and Jiande igneous
rocks, produced during the Neoproterozoic oceanic subduction between the Yangtze and
Cathaysia blocks [6,10,25,70,71].

The Neoproterozoic juvenile lithosphere in the eastern part of the Jiangnan orogenic
belt has been widely identified, and includes the sedimentary rocks of the Shuangqiaoshan
Group, the Shuangxiwu arc volcanic rocks, and the Tieshajie arc volcanic rocks [70,72]. The
Dongxiang intrusive rocks can be almost perfectly plotted in the Neoproterozoic band of
crustal evolution of the eastern Jiangnan Orogen (Figure 11), indicating that these rocks
were mainly generated by melting of the Neoproterozoic juvenile crust. However, the
Dongxiang intrusive rocks have lower εHf(t) (Figure 11) and εNb(t) (Figure 6b) values
than the Dexing igneous rocks, indicating that an older crustal endmember is required.
The Paleoproterozoic crust (such as the Zhoutan Group) is distributed in the northwest
margin of the Cathaysia Block near the Dongxiang deposit. Moreover, there are both
Neoproterozoic juvenile crustal materials and Paleoproterozoic ancient crustal materials
in the regional basement rocks of the Zhoutan Group [28,73]. The evidence suggests that
the underlying juvenile and ancient crustal materials may be the source of the Dongxiang
granodiorite porphyries.
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Figure 11. εHf(t) vs. U-Pb ages diagram for the Dongxiang intrusive rocks [21,38,70]. The dashed
lines of crustal extraction were calculated using an 176Lu/177Hf ratio of 0.015 as an average for the
continental crust using data from Griffin et al., 2002 [38]. The data of the Shuangqiaoshan Group and
Zhoutan Group are from Li et al., 2009 [70]. The data of Dexing, Yinshan and Jiande are from Wang
et al., 2006 [21]. Symbols are the same as in Figure 10.
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7. Conclusions

(1) The geochemical characteristics of Dongxiang granodiorite porphyry indicate that
the Dongxiang intrusive rocks have arc-like geochemical characteristics and the gran-
odiorite porphyry has adakite affinities, in common with other igneous rocks in the
Dexing, Yinshan, and Jiande regions.

(2) The Dongxiang granodiorite porphyry was probably generated by the partial melting
of the thickened juvenile continental crust and ancient crustal materials, during the
Middle Jurassic.
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