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Abstract: The operation of a froth flotation column can be described by a nonlinear
convection–diffusion partial differential equation that incorporates the solids–flux and drift–flux
theories as well as a model of foam drainage. The resulting model predicts the bubble and (gangue)
particle volume fractions as functions of height and time. The steady-state (time-independent) ver-
sion of the model defines so-called operating charts that map conditions on the gas and pulp feed
rates that allow for operation with a stationary froth layer. Operating charts for a suitably adapted
version of the model are compared with experimental results obtained with a laboratory flotation
column. Experiments were conducted with a two-phase liquid–bubble flow. The results indicate good
agreement between the predicted and measured conditions for steady states. Numerical simulations
for transient operation, in part for the addition of solid particles, are presented.

Keywords: froth flotation; drainage; drift flux; mathematical model; partial differential equation;
steady state; numerical simulation

1. Introduction

Froth flotation is the most important concentration operations in mineral processing
and is widely used for the recovery of valuable minerals from low-grade ores (cf. [1], ([2],
Chapter 12) or ([3], Part 7)). This unit operation is an important stage particularly for
copper mining in Chile. The flotation process selectively separates hydrophobic materials
(that are repelled by water) from hydrophilic (that would be attracted to water), where
both are suspended in a viscous fluid. It is well known that a flotation column works as
follows: gas is introduced close to the bottom and generates bubbles that rise through the
continuously injected pulp that contains the solid particles.

The hydrophobic particles (the valuable mineral particles) attach to the rising bubbles,
forming froth that is removed through a launder. The hydrophilic particles (slimes or
gangue) do not attach to bubbles but settle to the bottom (unless they are trapped in
the bulk upflow) and are removed continuously as flotation tailings. Close to the top,
additional wash water can be injected to assist with the rejection of entrained impurities
and to increase the froth stability [1,4,5]. This unit operation is particularly suitable for
processing low-grade ores, such as copper ores in Chilean deposits; however, this requires
huge amounts of process water.
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Since water is a scarce resource for most economic activity in Chile—in particular in the
desert areas where most mines are located—the improvement of the scientific understand-
ing of flotation processes and the development of suitable tools for the design, simulation
and control of flotation devices is of critical economical, ecological and societal importance.
This situation has motivated collaborative research between applied mathematicians and
metallurgical engineers at Universidad de Concepción.

Modelling flotation and developing strategies to control this process are research areas
that have generated many contributions [6–15]. The development of control strategies requires
dynamic models along with a classification of steady-state (stationary) solutions of such
models. These models should focus on the separation process aligned with gravity and are,
therefore, spatially one-dimensional. (In fact, we wish to avoid the additional computational
effort associated with spatially two- or three-dimensional models, mostly based on compu-
tational fluid dynamics (CFD) that also involve the solution of additional equations for the
motion of the mixture; we refer to [16] for a review on CFD-based models of flotation).

The sought unknowns are the volume fractions of gas (bubbles), liquid, and possibly
solid particles as functions of both time and spatial position, so that the resulting governing
equations are partial differential equations (PDEs). With the aim of developing controllers,
some authors [9–12] used hyperbolic systems of PDEs for the froth or pulp regions coupled
to ordinary differential equations (ODEs) for the lower part of the column. These include
the attachment and detachment processes; however, with their approaches, the phases
seem to have constant velocities, which is not in agreement with the established drift–
flux theory [17] that establishes that the velocity of a unit of the disperse phase (droplet,
bubble or particle) is a function of the local volume fraction (or concentration). Nonlinear
dependence of the phase velocities on the volume fractions gives rise to discontinuities in
the concentration profiles, which was confirmed experimentally [6].

Narsimhan [18] showed realistic conceptual transient solutions of an initially homoge-
neous bubble–liquid suspension. The rising bubbles form a layer of foam at the top, which
can undergo compressibility due to gravity and capillarity. Separate equations are derived
for the foam region, and boundary assumptions between regions have to be imposed.
The purpose of our previous contribution [19] (see also [20]), which is utilized herein in a
slightly modified form, is to let one single equation govern the bubble–liquid behaviour in
the whole column under any dynamic situation without any imposed boundary conditions.

Such are automatically assumed by the PDE solutions, which satisfy the so-called
entropy conditions by definitions of the PDE coefficients that are discontinuous across the
feed, discharge and overflow levels of height. When solids are also fed into the column,
an additional equation modelling the settling of solids outside the bubbles is needed—still
without any imposed boundary conditions.

Phenomenological models for two-phase systems with bubbles rising (or, analogously,
particles settling) in a liquid, are derived from the physical laws of conservation of mass
and momentum [21,22]. Under certain simplifying assumptions on the stress tensor and
partial pressure of the bubbles/solids, one can obtain first- or second-order PDEs involving
one or two constitutive (material specific) functions, respectively. The resulting first-order
PDE modelling such a separation process in a one-dimensional column of rising bubbles is
a scalar conservation law

∂tφ + ∂z jb(φ) = 0, (1)

where t is time, z is a spatial position (height), φ = φ(z, t) is the sought volume fraction of
bubbles, and

jb(φ) := φṽ(φ) (2)

is the bubble (aggregate) batch flux density function, where ṽ(φ) is a given drift–flux veloc-
ity function. The formulations (1) and (2) are in agreement with the drift–flux theory [17].
With additional bulk flows due to the inlets and outlets of the column, that theory has
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mostly been used for investigations of steady states of flotation columns [5,23–26]. Models
of and numerical schemes for column froth flotation with the drift–flux assumption and
possibly simultaneous sedimentation have been presented in [27–30].

The analogy of the drift–flux theory for sedimentation is the established solids–flux
theory [17,31–33]. With an additional constitutive assumption on sediment compressibility,
the corresponding model becomes a second-order degenerate parabolic PDE [21]. Sedimen-
tation in a clarifier–thickener unit is mathematically similar to column flotation. A full PDE
model of such a vessel necessarily contains source terms and spatial discontinuities at both
inlets and outlets. Steady-state analyses, numerical schemes, dynamic simulations and the
control of such models are reported in [32,34–37].

The first-order PDE of the flotation process advanced in [28] does not include capil-
larity in the foam. Such effects have been studied intensively [38–40]; see also [13]. Solids
motion in froth was investigated in [41]. A generalized model PDE that captures both
the rising bubbles of low concentrations and the formation and drainage of froth at high
concentration was recently presented in [19]. That article contains a generalized model
when settling particles are also present in a specific flotation column with a common feed
inlet for both pulp and gas.

In this contribution, we adjust the generalized drainage model to an experimental
laboratory flotation column with separate inlets for gas and mixture (Figure 1), derive the so-
called desired steady state (which has a foam layer in the upper part and no bubbles leaving
at the underflow) and find a single set of parameters in the model that qualitatively captures
several steady state experiments. The numerical simulations presented here are made with
the numerical method in [19] and adapted to the setup of the pilot column (Figure 1).
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Figure 1. Conceptual drawing of the model of the pilot flotation column: (left) denomination of
zones, (middle) height axis (z-axis) showing the locations of the feed and discharge levels and (right)
schematic of the column. The green open circles and solid magenta dots represent bubbles and
hydrophilic particles (bubbles and particles are not drawn to scale), respectively. The information
to the right indicates the overflow rate, volume feed rates and concentrations and the underflow
volume rate along with limitations that the feed concentrations must satisfy. The denomination of
zone 2 as a “collection zone” is common in mineral processing, although the process of collection (the
adhesion of hydrophobic particles to bubbles) is not part of the model.
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2. Materials and Methods
2.1. Pilot Flotation Column and Experimental Setup

The experiments were conducted at the laboratory of the Department of Metallur-
gical Engineering of Universidad de Concepción with a laboratory-scale flotation col-
umn; see Figure 2a. This column was made of acrylic to visualize the internal phe-
nomena that occur in both the collection and cleaning areas. The column had a vol-
ume of 54.7 L and an interior diameter of 6 inches so that its cross-sectional area was
A = (π/4)(0.1524 m)2 ≈ 0.0182415 m2 and was 2.8 m high (see Table 1).

The air was injected from the lower central part of the column through a sparger
whose pores were 1 mm in diameter. The locations of the inlets and outlets are detailed in
Figure 1. The column was instrumented as shown in Figure 2b. For the tests, the use of
solids was not considered, the only reagent to be used was a mix (1:1) of MIBC (methyl
isobutyl carbinol, an organic chemical compound used primarily as a frother in mineral
flotation) and polyglycol as a frother at a dosage of 100 g/L of water.

Table 1. Dimensions of the pilot flotation column.

Symbol Significance Value

zU underflow level 0 m
zG gas feed level 0.07 m
zF pulp feed level 2.20 m
zW wash water feed level 2.80 m
zE overflow level 2.80 m
A interior cross-sectional area 0.018241 m2

(a) (b)

Figure 2. (a) Photograph of the laboratory column and (b) schematic of the piping and instrumenta-
tion devices (P & ID). See Table 2 for explanation.
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Table 2. Legend of the P & ID schematic (Figure 2, right).

Instrument Tag Quantity Measured Connected to PLC?

Mass flowmeter transmitter FIT-01/02 feed/discharge flowrate yes
Mass flowmeter controller FIC-03 air flowrate yes
Magnetic flowmeter FT-01 wash water flowrate yes
Variable frequency drive SV-01/02/03 pump velocity yes
Differential pressure transmitter PT-01 holdup yes
Feed manual valve V-01 —— no
Discharge manual valve V-02 —— no
Air manual valve V-03 —— no
Pressure taps valve V-04 —— no
Wash water manual valve V-05 —— no

Equipment Tag Type Range/Dimensions and Unit

Feed pump P-01 centrifuge 20–110 L/min
Discharge pump P-02 peristaltic 0–18 L/min
Wash water pump P-03 peristaltic 0–12 L/min
Regulator filter with water decanter FLR manual 0–16 bar
Pulp tank T-01 plastic cylinder 200 L
Flotation column T-02 acrylic tube 55 L
Wash water tank T-03 plastic cylinder 200 L

2.2. Experimental Determination of Stability Regions

We performed five steady-state experiments; see Table 3. There are 36 data points
in the interval [0, 1.630] of the underflow velocity qU = QU/A. The resulting upper and
lower limits of qF within which a pulp–froth interface is present in zone 3 are presented in
Figures 3 and 4. The enclosed region between the two curves may be called the stability
region since, for values of (qU, qF) therein, a stable pulp–froth interface in zone 3 was
observed experimentally. On the other hand, for choices of (qU, qF), outside that region,
unstable operation was observed, which means that either no froth layer was produced
at all or that the froth layer reached into zone 2 and possibly that bubbles left through
the underflow.

A stable pulp–froth interface in zone 2 is a valid stationary solution (corresponding
to a mode of operation in which the pulp feed acts as a submerged feed source), but such
steady states are very difficult to control, and we, therefore, address them as “unstable
operation”. This procedure is consistent with the theoretical steady-state analysis of [19]
(see also Section 3.4) and in particular the construction of operating charts in which any
theoretical situation in which the froth level cannot be accommodated within zone 3 is
deemed “unstable,” independently of whether the parameters permit a froth layer within
zone 2 or not (i.e., bubbles leave through the underflow).

Table 3. Overview of the five steady-state experiments.

Experiment No. 1 2 3 4 5

φG [−] 1 1 1 1 1
φF [−] 0 0 0 0 0
qG [cm/s] 1.3 1.8 2.3 1.8 1.8
qW [cm/s] 0 0 0 0.3 0.5
qU [cm/s] [0, 1.630] [0, 1.630] [0, 1.630] [0, 1.630] [0, 1.630]
qF [cm/s] see Figure 3 see Figure 3 see Figure 3 see Figure 4 see Figure 4
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Figure 3. Experiments 1–3 (no wash water added): stability regions enclosed between two curves
formed by points in the (qU, qF) plane.
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Figure 4. Experiments 4 and 5 (with wash water added): stability regions enclosed between two
curves formed by points in the (qU, qF) plane.
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In order to ensure the reproducibility of the experiments, the tests were performed in
duplicate and randomly, and we report only the average values. The standard deviation of
the tests was less than 5%.

3. Theory
3.1. Mathematical Model

The governing model combines the setup with separated inlets for gas and the pulp
formulated in [27] with the approach of describing foam drainage developed in [19].
The model is formulated as a three-phase model formed of the gas bubbles and (hydrophilic
gangue) solid particles as primary and secondary disperse phases that move in the fluid
that forms the continuous phase.

The present experimental support refers to a two-phase flow model only, but for
illustrative purposes, we present one numerical simulation corresponding to a (hypothet-
ical) solids feed. The three phases and their (dimensionless) volume fractions are the
fluid φf = φf(z, t), the solids ψ = ψ(z, t) and the bubbles (aggregates) φ = φ(z, t), where
φf + ψ + φ = 1. A mixture of fluid and solid particles is addressed as a suspension. The
volume fraction of solids within the suspension that fills the interstices between bubbles ϕ
is defined by

ϕ :=
ψ

ψ + φf
=

ψ

1− φ
.

The system of PDEs that governs the evolution of φ and ψ can be formulated as

A(z)∂t

(
φ
ψ

)
+ ∂z

(
A(z)

(
J(φ, z, t)

−F̃(ψ, φ, z, t)

))
= ∂z

(
A(z)γ(z)

(
1

−ψ/(1− φ)

)
∂zD(φ)

)
+ ∑

S∈{G,F,W}
QS(t)

(
φS(t)
ψS(t)

)
δ(z− zS).

(3)

Apart from the variables introduced in the context of (1) and above, here, A = A(z) is
the cross-sectional area of the tank, and J = J(φ, z, t) and F̃ = F̃(ψ, φ, z, t) are convective
flux functions that depend discontinuously on z at the locations of the gas inlet (z = zG),
the pulp feed inlet (z = zF), the wash water inlet (z = zW), the underflow outlet (z = zU) at
the bottom and the overflow outlet (z = zE) at the top; see Figure 1.

The system (3) is valid for t > 0 and all z, −∞ < z < ∞. The characteristic function γ
indicates the interior of the tank:

γ(z) :=

{
1 inside the tank, i.e., if zU ≤ z ≤ zE,
0 outside the tank, i.e., if z < zU or z > zE.

The nonlinear function D, see Figure 5, models the capillarity present when bubbles
are in contact and is given by

D(φ) :=
∫ φ

0
d(s)ds, (4)

where the function d (introduced in [19] and specified later in this work) is assumed
to satisfy

d(φ) = D′(φ)

{
= 0 for 0 ≤ φ ≤ φc,
> 0 for φc < φ ≤ 1.

(5)

Consequently, at each point (z, t) where φ(z, t) ≤ φc, there holds D(φ(z, t)) = 0, and
therefore (3) degenerates at such points into a first-order system of conservation laws of
hyperbolic type. (Precise algebraic definitions of J, F̃ and d are provided further below).
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The last term on the right-hand side describes three singular sources located at the
level z = zS, S ∈ {G, F, W}, where QS(t) is the corresponding volume feed rate (as a
given function of time) and φS(t) and ψS(t) are the respective bubble and solids feed
concentrations. Of course, under normal circumstances the solids feed concentration at
the gas inlet should be zero (ψG ≡ 0), the bubble feed concentrations at the pulp feed inlet
should be zero (φF ≡ 0), and the concentrations of both disperse phases at the wash water
inlet should be zero (φW ≡ 0, ψW ≡ 0). Outside the tank, the mixture is assumed to follow
the outlet streams. Consequently, boundary conditions are not needed; the conservation of
mass determines the outlet volume fractions in a natural way.

Figure 5. Functions d(φ) (left) and D(φ) (right) modelling the capillarity. In both figures, we set
φc = 0.74.

Since the wash water is located at the top of the column, we have zW = zE. Thus,
the interior of the flotation column can be subdivided into three zones. In what follows,
for the ease of discussion, we refer to the z-subintervals z ≥ zE as “the effluent zone,”
zF ≤ z < zE as “zone 3,” zG ≤ z < zF as “zone 2,” zU ≤ z < zG as “zone 1” and z < zU as
“the underflow zone.”

Applying the conservation of mass to each of the three phases, introducing the volume-
average velocity, or bulk velocity, of the mixture q and the relative velocities of both the
aggregate suspension and the solid–fluid, Bürger et al. [28] derived a PDE model similar
to (3) without the capillarity function D(φ) and assuming that there is one joint inlet for
both the pulp and the gas. Extending this approach to the present setup, we obtain the flow
rates (velocities) in and out of the flotation column

q(z, t) :=


qE := (−QU + QG + QF + QW)/A in the effluent zone,
q3 := (−QU + QG + QF)/A in zone 3,
q2 := (−QU + QG)/A in zone 2,
q1 = qU := −QU/A in zone 1 and the underflow.

(6)

The drift–flux and solids–flux theories utilize constitutive functions for the aggregate
upward batch flux jb(φ) and the solids batch sedimentation flux

fb(ϕ) := ϕvhs(ϕ),

where vhs(ϕ) is the hindered–settling function. For simplicity, we employ the Richardson–
Zaki expression [42]

vhs(ϕ) = v∞(1− ϕ)nRZ , where nRZ > 1, (7)
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and v∞ is the velocity of a single particle. In the underflow and effluent zones, all phases are
assumed to have the same velocity, i.e., they follow the bulk flow. Then, the total convective
fluxes for φ and ϕ are given by

J(φ, z, t) =



jE(φ, t) := qE(t)φ in the effluent zone,
j3(φ, t) := q3(t)φ + jb(φ) in zone 3,
j2(φ, t) := q2(t)φ + jb(φ) in zone 2,
j1(φ, t) := q1(t)φ + jb(φ) in zone 1,
jU(φ, t) := q1(t)φ in the underflow zone,

(8)

F(ϕ, φ, z, t) =



fE(ϕ, φ, t) := −(1− φ)qE(t)ϕ in the effluent zone,
f3(ϕ, φ, t) in zone 3,
f2(ϕ, φ, t) in zone 2,
f1(ϕ, φ, t) in zone 1,
fU(ϕ, φ, t) := −(1− φ)q1(t)ϕ in the underflow zone,

(9)

with the zone-settling flux functions (positive in the direction of sedimentation, that is,
decreasing z)

fk(ϕ, φ, t) := (1− φ) fb(ϕ) +
(

jb(φ)− (1− φ)qk(t)
)

ϕ

= (1− φ) fb(ϕ) +
(

jk(φ, t)− qk(t)
)

ϕ, k = 1, 2, 3.

Here, the batch drift–flux function jb = jb(φ) is given by (2), where ṽ(φ) is given by

ṽ(φ) :=


vterm(1− φ)nb for 0 ≤ φ ≤ φc,

vterm
(1− φ)2nS+1

(1− φc)2nS+1−nb
for φc < φ ≤ 1.

(10)

Here, vterm is the constant velocity of a single bubble in liquid, and nb is a dimension-
less constant. The expression in the first case of (10) is valid as long as the bubbles are
not all in contact with each other. This contact is assumed to occur whenever φ exceeds
the critical concentration φc. The expression in the second case of (10) is derived from a
compatibility condition that makes it possible to express the drainage velocity of the liquid
in the froth relative to the bubbles with respect to gravity and dissipation in terms of vterm
and the dimensionless constant nS.

The latter emerges from empirical connections between the radius of the Plateau
borders in the foam, the radius of the bubbles and the volume fraction of the liquid in the
foam 1− φ; see [19] for all details. The function d(φ) arising in (5), and which describes
capillarity, is given by

d(φ) :=

0 for 0 ≤ φ ≤ φc,

vtermdcap
φ(1− φ)nS

(1− φc)2nS+1−nb
for φc < φ ≤ 1,

(11)

where dcap is a capillarity-to-gravity constant present in the froth when φ > φc and involv-
ing, among others, the surface tension of water; see [19]. In light of (11), we obtain

D(φ) =

0 for 0 ≤ φ ≤ φc,

vtermdcap
ω(φc)−ω(φ)

(1− φc)2nS+1−nb(nS + 1)(nS + 2)
for φc < φ ≤ 1,

(12)
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where ω(φ) := (1− φ)nS+1((nS + 1)φ + 1), and we reconfirm the property (5). Finally, we
define the total convective flux for the solids appearing in the governing system (3) by

F̃(ψ, φ, z, t) :=

F
(

ψ

1− φ
, φ, z, t

)
if 0 ≤ φ < 1,

0 if φ = 1.

3.2. Reduced Model for Two-Phase Flow of Bubbles in Liquid

The description provided so far refers to the full model that involves a feed of both gas
bubbles and solids in the water. The currently available experimental data, however, are,
for the moment, limited to a two-phase gas–liquid system; measurements of the system
behaviour with solids feed are currently being made and will be presented in forthcoming
work. We here focus on the dynamics of the gas–liquid system considering the effects of
froth drainage. Furthermore, since the pilot column is cylindrical, we assume that A is
constant (we utilize A = 0.0182415 m2 as indicated in Section 2.1).

Under this assumption (that is, the presence of particles is neglected) the model
reduces to the scalar PDE

∂tφ + ∂z J(φ, z, t) = ∂z
(
γ(z)∂zD(φ)

)
+ ∑

S∈{G,F,W}
qS(t)φS(t)δ(z− zS), (13)

where we define the velocities

qS(t) := QS(t)/A, S ∈ {G, F, W},

and the definitions J(φ, z, t), (8), D(φ), (12) and γ(z) remain in effect. These and other
variables have the range of values given in Table 4.

Table 4. Range of parameters according to the literature (typical values employed in [43–47]) and
used in the present work.

Parameter Symbol Working Range
Range (Literature) in Present Work

Froth height [m] 0.5–2.0 0.5–1.5
Bubble diameter [mm] 0.5–2.0 0.5–1.3
Hold-up in zone 2 φ2 [−] 0.05–0.30 0.09–0.20
Gas feed rate qG [cm/s] 0.5–3.0 1.3–2.3
Pulp feed rate qF [cm/s] 0.2–2.0 0.8–1.5
Discharge rate qU [cm/s] 0.2–2.0 1.0–1.4
Wash water rate qW [cm/s] 0.2–1.0 0.3–0.5

3.3. Numerical Method

The numerical method used for the solution of the complete model is outlined, and in
part analysed, in [19]. It is based on subdividing the computational domain, corresponding
to a z-interval that encloses the tank (that is, the interval [zU, zE] into a number N of layers
(subintervals) of equal height ∆z, and time is discretized through time points tn = n∆t,
n = 0, 1, 2, . . . . Without entering into any details, assume that the unknowns of the scheme
are φn

j and ψn
j , where these quantities are approximate values of φ and ψ in cell j at time tn,

respectively. The general scheme can then be written in the form

φn+1
j = H

(
φn

j−1, φn
j , φn

j+1, j, n
)
,

ψn+1
j = K

(
φn

j−1, φn
j , φn

j+1, ψn
j−1, ψn

j , ψn
j+1, j, n

)
, j = 1, . . . , N; n = 0, 1, 2, . . . ,

(14)

We refer to [19] for all details regarding the precise algebraic forms of the functionsH
and K, which are chosen in such a way that (14) represents a consistent finite difference
approximation of the system (3) and all ingredients outlined in Section 3.1. While any
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specific information is omitted here (for brevity), the general formulation (14) is useful
to indicate some particular properties of the numerical scheme of [19]: first, the scheme
is explicit, that is, from the given initial values φ0

j and ψ0
j , j = 1, . . . , N, one successively

calculates φ1
j and ψ1

j , j = 1, . . . , N, then φ2
j and ψ2

j , j = 1, . . . , N and so on for n = 3, 4, . . . .
Furthermore, the system (3) is triangular, which means that the first equation, the PDE

for the update of φ, contains, apart from ∂tφ, only terms that depend on known functions
and φ and its z-derivatives. On the contrary, the second PDE, for the update of ψ, contains,
apart from ∂tψ, terms that depend on both φ and ψ. Thus, the bubble volume fraction φ
can be updated independently from the solids volume fraction ψ, which is also reflected in
the different arguments ofH and K in (14).

Consequently, the first update formula of (14) is a valid numerical scheme for the
one-equation reduced model outlined in Section 3.2. Furthermore, the functionsH and K
are based on particular numerical fluxes that satisfy the so-called monotonicity property,
which ensures that, if the initial values are physically relevant, i.e.,

φn
j ≥ 0, ψn

j ≥ 0, φn
j + ψn

j ≤ 1 for all j

is in effect for n = 0, then the same property is valid for all n = 1, 2, . . . . The latter
property makes the approach of [19] interesting for practical applications. That said, for
a given layer thickness ∆z, one needs to choose the time step ∆t in such a way that the
Courant–Friedrichs–Lewy (CFL) condition is satisfied. Such a condition also ensures that
the numerical approximations converge (as ∆z, ∆t→ 0) to an exact solution of the model
as is outlined in [48].

3.4. Desired Steady States for the Two-Phase System

There are many different steady-state solutions of (13) depending on the values of
all the feed velocities in and out of the column and volume fractions of the inlets. We
are interested in the desired steady states, which means that no bubbles leave through the
underflow, and there is a froth level. This is the interface in zone 3 (above the feed inlet
z = zF) above which the froth is located. Similar desired steady states were presented
in [19] for the general model (3) but for the special case when the gas and slurry feed
inlets coincide.

We here follow the description in [19], which, in turn, refers to [28,49], and we leave
out the mathematical details. The latter involves uniqueness issues and entropy conditions
for discontinuities of the solution φ = φ(z, t). Such discontinuities arise in three different
situations, namely: (1) in regions where φ(z, t) < φc and the PDE is hyperbolic; (2) across
the discontinuity from a lower concentration φ < φc up to the critical concentration φc,
beyond which the PDE is parabolic; and (3) across the z-positions of inlet and outlets, where
the total flux function J = J(φ, z, t) of (13) is discontinuous (with respect to z).

We directly let φF = 0, since there is no gas in that feed inlet. If we write the delta
symbol on the right-hand side of (13) formally as δ(z− zS) = H′(z− zS), where

H(x) =

{
0 if x ≤ 0,
1 if x > 0

is the Heaviside function, then time-independent solutions φ = φ(z) of (13) satisfy the
second-order ODE

d
dz

(
J(φ, z)− γ(z)

dD(φ)

dz
− qGφGH(z− zG)− qWφWH(z− zW)

)
= 0.

This ODE can be integrated with respect to z to yield

J(φ, z)− γ(z)d(φ)
dφ(z)

dz
− qGφGH(z− zG)− qWφWH(z− zW) = M for all z, (15)
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where the constant mass flux per area unit M can be determined by considering (15) outside
the tank—that is, for setting either z < zU or z > zE, such that γ(z) = 0, and hence

M = jU(φU) = −qUφU,

M = jE(φE)− qGφG = qEφE − qGφG, (16)

Since, in a desired steady state, φU and M = 0, (16) implies that the effluent concentra-
tion is given by

φE =
qGφG

qE
=

qGφG

qW + qF + qG − qU
. (17)

In zone 2, we want a solution that satisfies φ2(z) < φc; hence, d(φ2) = 0, and choosing
z ∈ (zG, zF) in (15), we obtain

j2(φ; q2)− qGφG = 0, (18)

where writing out the dependence of j2 on q2 is convenient when investigating the depen-
dence of steady-state solutions on the bulk velocities. We denote by φ̄2 the smallest solution
of (18), which is thus the constant solution φ2(z) = φ̄2 in zone 2. The conditions for this
solution are

qGφG ≤ j2(φM
2 (q2); q2), (19)

φ̄2 ≤ φ1Z(q1), (20)

where φM
2 is the maximum point of j2 for given q2 and φ1Z(q1) the positive zero of j1(φ; q1);

see [19] for exact definitions. The analogous conditions can be found in [19].
In Figure 6 (left), we can see a possible steady-state value for zone 2, with φ̄2 ≤ φM

2 and
satisfying both conditions (19) and (20). Another steady state with high volume fractions
greater than φM

2 in the entire zone 2 could, in some cases, be possible theoretically; however,
this is not a desirable steady state. Here, and in the rest of the text, φ2M(q2) will denote
the local minimum point greater than the inflection point of j2, analogously for φ3M(q3);
see [19] for details.

Figure 6. Possible steady-state values φ̄2 satisfying condition (18) for zone 2 (left) and φ̄3 satisfy-
ing (23) for zone 3 (right). Note that, in zone 1, we suppose φ̄1 = 0, since we suppose that that
no bubbles leave through the underflow. These graphics were obtained using φG = 1, φF = 0,
qU = 0.5 cm/s, qG = 1.3 cm/s, qF = 1.035 cm/s and qW = 0 cm/s.

With z in zone 3, Equation (15) yields

j3(φ; q3)− d(φ)
dφ(z)

dz
= qGφG, zF < z < zE. (21)
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As in [19], we construct a solution in zone 3, which is

φ3(z) =

{
φ̄3, zF < z < zfr,
φ3par(z), zfr < z ≤ zE,

(22)

where φ̄3 is a constant volume fraction above z = zF and below the pulp–froth interface
located at z = zfr. Flux continuity and an entropy condition not detailed here yield that φ̄3
is the smallest solution of

j3(φ; q3) = j2(φ̄2; q2), (23)

which means that φ̄3 < φ̄2 when qF > 0. Furthermore, in (22), φ3par(z) is the strictly
increasing solution of the ODE

dφ(z)
dz

=
j3(φ; q3)− qGφG

d(φ)
; φ(zfr) = φc, φ(zE) = φE (24)

(see (21)), where zfr is the unknown location of the pulp–froth interface φ = φc. Thus, prob-
lem (24) defines a function Zfr from all input variables to the pulp–froth interface zfr via
(recall that φE is given by (17))

zfr = Zfr(φF, qG, qF, qU, qW).

Necessary conditions for the existence of a steady-state solution profile φ3 = φ3(z)
given by (22) are

qG

(
1− φG

φc

)
< qU − qF − qW ≤ qG(1− φG), (25)

zF < Zfr(φG, qG, qF, qU, qW), (26)

qGφG

{
< j3(φ3M(q3); q3) if φ3M(q3) < φE,
≤ j3(φE; q3) if φ3M(q3) ≥ φE.

(27)

In Figure 6 (right), we can see a possible steady-state value for zone 3, with φ̄3 < φ3
M

satisfying (23). Note that, in this case, there does not exist a steady-state value with φ̄3 > φM
3 ,

since the straight line given by qGφG does not intersect with the flux function j3(φ, t) for
values of φ > φM

3 . Moreover, since condition (27) is not satisfied for the values of the
volumetric flows chosen, the solution in zone 3 will be constant and equal to φ̄3, i.e., the
solution φ3par(z) of the ODE (24) does not exist, and hence a froth layer is not possible in
this scenario.

In conclusion, the desired steady state for the two-phase gas–liquid system is, thus,

φSS(z) =



0 in the underflow zone and zone 1,
φ̄2 in zone 2,
φ̄3 in zone 3 for zF < z < zfr,
φ3par(z) in zone 3 for zfr < z < zE,
φE in the effluent zone.

(28)

In Figure 7, some desired steady states of this type are shown. This solution can only be
obtained if the conditions (19), (20) and (25)–(27) are satisfied. We visualize these conditions
in two-dimensional operating charts in the (qU, qF)-plane for given qG, φG and qW. To
exemplify, we illustrate these conditions in Figure 8 for the first steady-state experiment.
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(a) (b) (c) (d)

Figure 7. Examples of desired steady states for the gas phase, given by (28). To obtain these fig-
ures, we used fixed values of φG = 1, φF = 0, qU = 1 cm/s, qG = 1.3 cm/s and qW = 0 cm/s,
and we varied qF, choosing: (a) qF = 1.3 cm/s, (b) qF = 1.1 cm/s, (c) qF = 1.04 cm/s and
(d) qF = 1.032 cm/s. With these values for the volumetric flows, we obtained a pulp–froth in-
terface located at (a) zfr = 2.7856 m, (b) zfr = 2.7062 m, (c) zfr = 2.4628 m and (d) zfr = 2.2155 m,
respectively, and an effluent volumetric fraction of (a) φE = 0.8125, (b) φE = 0.9286, (c) φE = 0.9701
and (d) φE = 0.9760.

Figure 8. Operating charts showing the theoretical conditions for a steady-state with a froth present
in the upper part of the flotation column for the first steady-state experiment. A white region means
that the condition is satisfied. The superposition of all these charts results in a white strip, which can
be seen in the (qU, qF)-plane in Figure 9 (Experiment 1). The labels (FIa), (FIb), (Froth1), (Froth2), and
(Froth3) correspond the notation in [19] and to the respective inequalities (19), (20), (25), (26), and
(27) in the present work.
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Figure 9. Experiments 1–3 (no wash water): Comparisons between the model with stationary
conditions. Here, and in Figure 10, each (qU, qF)-plane shows the operating chart in which the white
region shows the theoretical conditions for a pulp–froth level above the feed level z = zF (cf. Figure 8).
The red lines in that plane (see also Figures 3 and 4) show the experimental lower and upper values
of qF for each given qU, in between which, a pulp–froth level was observed. The yellow surface is the
graph of the function (qU, qF) 7→ Zfr(φF, qG, qF, qU, qW), i.e., the estimated height of the pulp–froth
interface by the model.

Figure 10. Experiments 4 and 5 (with wash water added): comparisons between the model and
experiments with stationary conditions.



Minerals 2023, 13, 344 16 of 24

4. Results
4.1. Choice of Parameters

The model contains several parameters. We fixed φc = 0.74 and nS = 0.46 with
the arguments given in [19] for a general froth and let nb, vterm and dcap be those that
should be adjusted to reproduce the experiments—at least qualitatively. We thus aimed
to find the same fixed values for all experiments. As stated in [28], there exist a number
of methods to calculate vterm. The generalized correlation by Wallis [50] is recommended;
see [23], Appendix A for details. This correlation involves additional quantities, such as
the equilibrium surface tension and the viscosity of the fluid. Its discussion is beyond
our focus.

Values for nb normally range from 2 to 3.2. For given values of qU and qG, the constant
volume fraction φ̄2 in zone 2 could be estimated experimentally. Equation (18) could then
be used to estimate

vterm =
qGφG + (qU − qG)φ̄2

φ̄2(1− φ̄2)nb
, (29)

where φG = 1 in our experiments. Choosing nb = 2, we obtained the value vterm = 15 cm/s,
which gave qualitatively similar operating charts by the model as from the experiments. As
for the capillary-to-gravity parameter dcap involved in the modelling of the capillary effect
in the froth, we found that the single value dcap = 2 cm could be used for a qualitative
description of all five steady-state experiments.

All the numerical results were obtained with a spatial discretization of N = 800
computational cells, which means a spatial step size of ∆z = 3.50× 10−3 m and a time step
∆t = 4.43× 10−3 s satisfying the CFL condition.

4.2. Comparison between the Model and Experimental Stationary Data

Comparisons between the model and the five steady-state experiments can be seen
in Figures 9 and 10. The goal is that the region between the two experimental lines
coincides with the white region of the theoretical operating chart, i.e., the (qU, qF)-plane. The
qualitative agreement between the experimental data and the model must be considered
very good, considering that the theoretical model contains several idealized assumptions
and several parameters whose values were taken from the literature for a general sludge.
We emphasize that the same parameter values were used in the model for all experiments.
The model prediction of the froth level zfr is given by the yellow surface in each subplot of
Figures 9 and 10.

In Figure 11, we explain the use of the operating charts of Figures 9 and 10 for
the particular case of Experiment 1 (Figure 9a). For a fixed value of qU = 1.02 cm/s,
we chose four values of qF on the line (1.02, qF)—shown in dark green in the 3D plot
(Figure 11a) inside the white region of the operating chart. For each point chosen, using
the correspondence (qU, qF) 7→ Zfr(φF, qG, qF, qU, qW), we know the estimated height of
the pulp–froth interface given by the model; see Figure 11b. In Figure 11c–f, we show the
graphs of the steady states for the gas phase recovered with the values of (qU, qF) chosen,
which are in accordance with the results shown in Figure 11b.

Figure 12 shows a dynamic simulation of the model from a column initially filled
with only water and with the parameters of Experiment 1. As can be seen, a steady-state
solution arises with a froth layer at the top and with constant volume fractions of bubbles
in each zone otherwise. In particular, the steady-state concentration in zone 2, φ̄2, is slightly
larger than the volume fraction φ̄3 in the lower part of zone 3 as the theoretical steady
states predict.
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(a) (b)

(c) (d) (e) (f)

Figure 11. Experiment 1: Example of the use of the operating charts in Figures 9 and 10. (a) Enlarged
view of Figure 9a. For a fixed value of qU = 1.02 cm/s, the line (qU, qF) is marked in dark green, and
four points with qF between 1.0568 and 1.2039 cm/s inside the white region of the operating chart
were chosen. (b) Cross section of the surface Zfr(φF, qG, qF, qU, qW) for qU = 1.02 cm/s (the qF-axis
is oriented in decreasing order for ease of comparison with plot (a)). (c–f) Steady states for the gas
phase obtained with the points (qU, qF) marked in plots (a,b). The values used in each figure are (c)
qF = 1.2039 cm/s, (d) qF = 1.1150 cm/s, (e) qF = 1.0628 cm/s and (f) qF = 1.0568 cm/s.

The qualitative agreement between the model and experiments lies in the fact that
both the model and the experiments confirm that it is only for a small region in the four-
dimensional space of (qU, qG, qF, qW)-values that a froth layer exists. Both the model and
the experiments verify that, once a steady state has been found with a froth level, a small
change in any of the bulk velocities will either make the froth layer be flushed out upwards
or the entire column filled with bubbles, which also leave through the underflow.
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Figure 12. First row: Numerical simulation of a fill-up process (left) and operating chart (right) of
the model with parameter values of Experiment 1 and bulk velocities (qU, qF) = (1.178, 1.292) cm/s,
which is the red point inside the white region. Second row: Zoom in time of the fill-up process during
the first 50 s (left) and a zoom in space showing the top of the column, where the foam formation in
zone 3 is clearly seen during the first 100 s (right).

4.3. Simulation of Dynamic Behaviour and a Case with a Solids Feed
4.3.1. A Dynamic Simulation of Two-Phase Bubble–Liquid Flow

We start with the tank full of only fluid at time t = 0 s (φ(z, 0) = ψ(z, 0) = 0 for all z)
when we start pumping gas and fluid, with φF = 0 and ψF = 0 at the feed inlet and φG = 1
and ψG = 0 at the gas inlet. We choose the flow rates

(qU, qF, qG, qW) = (1.132, 1.292, 1.8, 0) cm/s

in the white region of the theoretical operating chart in Figure 13—marked in red colour.
With these parameters, we obtain a desired steady state with a froth layer at the top of
the column and no bubbles leaving through the underflow after about t = 600 s; see
Figure 13 (left).

Once the system is in a steady state at t = 600 s, we make a step change from
qF = 1.292 cm/s to qF = 0.9 cm/s. The new point chosen lies in the grey region of
the theoretical operating chart—marked in blue in Figure 13 (right). As one expects after
this change, the froth layer increases, and bubbles at high volume fractions fill the entire
column as can be seen in Figure 13 (left). This illustrates how our model is capable of
predicting changes in the system and thus is able to take the appropriate control actions.
In this case, the control action leads to an undesired steady state since there are gas bubbles
leaving through the underflow.
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Figure 13. Dynamic simulation of a bubble–liquid flow. (Left) Time evolution of the volumetric
fraction profile of loaded gas bubbles φ from t = 0 s to t = 1500 s. (Right) Theoretical operating
chart for the simulation in Section 4.3.1. The point marked in red corresponds to (qU, qF, qG, qW) =

(1.132, 1.292, 1.8, 0) cm/s and the one in blue to (qU, qF, qG, qW) = (1.132, 0.9, 1.8, 0) cm/s.

4.3.2. A Dynamic Simulation of Three-Phase Bubble–Solids–Liquid Flow

As in the previous example, the column is initially full of only fluid when we start
pumping bubbles and solids with the volume fractions φG = 1, ψG = 0, φF = 0 and
ψF = 0.1 along with fluid and wash water. We choose the flow rates

(qU, qG, qF, qW) = (1.087, 1.8, 1.120, 0.3) cm/s

Figure 14 shows the time evolution of the volume fractions φ and ψ. It can be seen
that a desired steady state arises with a layer of froth at the top, while the solids are present
only below the feed level zF where they settle to the bottom.

Figure 14. Dynamic simulation of bubble–solids–liquid flow. Time evolution from t = 0 s to t = 500 s
of the volume fraction profiles of bubbles φ (left) and solids ψ (right).

5. Discussion

The theoretically derived PDE model automatically captures several different phenom-
ena (hindered bubble rise, hindered settling of particles and the formation of foam) without
any boundary conditions. The model predicts that a desired steady-state solution with a
froth layer above the feed level is only possible in a thin region in (qU, qG, qF, qW)-space.
The same set of model parameters was used for all comparisons with the five experiments.
The model involves nonlinearities in both the convective and diffusive parts and is strongly
degenerate in the diffusive part and, therefore, gives rise to discontinuities in the concen-
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tration profiles, which was confirmed experimentally [6] (as emphasized in [19]; see also
([3], p. 915, Figure 3)).

This property is inherent to drift–flux analyses (that disregard a diffusive term that,
in our context, models capillarity) (see, for instance, [5,23–25,27]). However, this contrasts
with the approaches by Azhin et al. [11,12] and Tian et al. [9,10] that are based on linearized
models and where continuity conditions and boundary conditions are imposed explicitly,
and therefore continuous steady-state profiles are obtained. The qualitative agreement
between our model and the experiments is interesting and shows the possibilities for
further investigations and model calibration. A reason for the discrepancies between the
model output and the experimentally determined regions in the operating charts, when a
stationary froth level in zone 3 is possible (see Figure 9), is the following.

Above the white region in each theoretical operating chart, i.e., the (qU, qF)-plane,
the combination of the bulk velocities are such that no layer of foam can exist according to
the PDE model. In decreasing the value of qF for fixed qU, qG and qW such that the point
(qU, qF) lies in the white region, then a froth level zfr is possible in zone 3 (zF < z < zE). In
the upper strip of the white region, the model predicts a froth level zfr (the yellow surface)
close to the effluent level zE, which means a very thin layer of froth. It may well be that such
thin froth layers were not registered as valid in the experiments. It is therefore natural that
the upper experimental red line lies some distance below the upper line of the white region.

The fact that the lower red line, at least when wash water is present, lies further
down in the grey region, means that a froth level is observed close to, but above, the feed
level zF, i.e., almost the entire zone 3, is filled with froth. The theoretical model does not
fully capture this behaviour and predicts that, for points (qU, qF) below the white region,
the entire zone 3 is filled with foam, and there are possibly bubbles dragged down to the
underflow. This discrepancy between the model and experiments near the location of the
pulp–froth interface when wash water is applied should be further investigated.

In the model development in [19], several reasonable assumptions (partially verified
by reported experiments) for the drainage in the froth were assumed to hold for volume
fractions close to but above the critical concentration φc in order to obtain a unified model.
It appears that further modelling is needed for the behaviour near the pulp–froth interface.
That said, we suggest that that the foam model and the description of that interface by a
critical concentration is consistent with the approach by Neethling and Cilliers [39] (which
is further elaborated, e.g., in [40]).

6. Conclusions

The conclusions arising from the specific findings of our theory, simulations and ex-
periments are outlined in Section 5. In summary, we can say that the model (3), plus
constitutive equations and specifications of control functions, is based on several existing
theories (the drift–flux and solids–flux models as well as the model of foam drainage) and
lays the ground for a complete simulator of a flotation column in one space dimension
without the need to impose boundary conditions or track, for instance, the pulp–froth
interface. We once again refer to [19] for an exposition of all technical details. Let us
emphasize here the following aspect.

Our previous work [19,28,29], as well as the transient simulations presented herein,
have demonstrated that the (theoretical) steady-state theory is consistent with (numerical)
simulations of transient scenarios in the sense that steady states are assumed precisely when
the various parameters are chosen such that the point (qU, qF) lies in the “white region”
of the corresponding operating chart. In addition, the model does not catastrophically
“break down” when the desired steady-state conditions are violated but makes precise
predictions of the “unwanted” behaviour (e.g., bubbles leave through the underflow
as seen in Figure 13). This consistency is internal to the mathematical model; however, the
comparison with experimental results conducted in this work are the first results that
indicate that the model is also consistent with experimental observations. That said, further
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experiments and comparisons with simulations should be conducted with a focus on
transient behaviour and involving solids.

With respect to the potential use of the model in real flotation practice (for instance, to
optimize the flotation performance) we mention that the model presented is an advance-
ment of the phenomenological models currently reported in relation to the description
of the foam level within the column as well as the gas hold-up. Although it does not yet
consider the attachment and detachment mechanism of particles to bubbles, the model is
reasonably accurate in determining the stable operating zones, which would allow its use
as a complement to current control systems [7,8,10,12–15,45]. Examples of control systems
based on the involved phenomenological models (coupled PDEs) have been reported and
used in other unit operations [32,51–56].

The present approach captures the multiphase hydrodynamics of aggregates (bubbles)
and gangue particles in the column but does not model the aggregation process itself
(that is, the attachment of hydrophobic (valuable) particles to gas bubbles). That process
usually takes place in the collection zone (zone 2 in Figure 1). To add realism and to explore
the interdependence of velocities and reaction kinetics, the flotation model (3) should be
extended to include the process of attachment of hydrophobic (valuable) particles. One
option consists of considering the valuable and gangue particles as two independent
disperse solid phases (while the present approach only includes the gangue) and adding
another field variable that describes the local state of aggregation. This procedure leads
to two additional PDEs for the two new variables and likely involves spatial variants of
known kinetic models for the adhesion of particles (as reviewed, for instance, in [16]).
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Glossary

List of Symbols
The following symbols are used in this manuscript:
Symbol Significance and Unit
A interior cross-sectional area of column [m2]

D(φ) integrated capillarity function [m2/s]
J(φ, z, t) convective flux function of bubbles [m/s]
F(ϕ, φ, z, t) convective flux function of solids [m/s]
F̃(ψ, φ, z, t) convective flux function of solids [m/s]
H(z) Heaviside step function [−]
N no. of numerical subintervals for numerical method [−]
Q volumetric flow [m3/s]
Zfr(φG, qG, qF, qU, qW) function giving height of pulp–froth interface [m]

d(φ) capillarity function [m2/s]
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dcap capillarity constant [m]

jb bubble batch flux function [m/s]
fb solids batch sedimentation flux function [m/s]
nb constant exponent in bubble batch flux [−]
nS constant exponent related to Plateau borders in foam [−]
nRZ Richardson–Zaki exponent [−]
q bulk velocity, flow rate [m/s]
t time [s]
ṽ(φ) drift–flux velocity function [m/s]
vhs(φ) hindered–settling velocity function [m/s]
vterm terminal velocity of single bubble [m/s]
v∞ terminal velocity of single particle [m/s]
z height [m]

zfr height of pulp–froth interface [m]

∂t� = ∂�/∂t [s−1]

δ Dirac delta distribution [m−1]

∆t temporal step size of numerical method [s]
∆z spatial step size of numerical method [m]

γ(z) characteristic function; = 1 inside column; = 0 outside [−]
φ volume fraction of bubbles (aggregates) [−]
φSS(z) steady-state solution [−]
φc critical volume fraction [−]
φf volume fraction of fluid [−]
φn

j volume fraction of bubbles of numerical method [−]
ϕ volume fraction of solids in suspension outside bubbles [−]
ψ volume fraction of solids [−]
Subscripts and Superscript
The following sub- and superscripts are used in this manuscript:
Sub-/Superscript Significance
�1, �2, �3 zone 1, zone 2, zone 3
�E effluent
�F feed
�G gas
�M (local) minimum point
�SS steady state
�U underflow
�W wash water
�Z zero (of a function)
�c critical
�b batch
�f fluid
�fr froth
�par parabolic
�M (local) maximum point
Abbreviations
The following abbreviations are used in this manuscript:
CFD computational fluid dynamics
CFL Courant–Friedrichs–Lewy (condition)
MIBC methyl isobutyl carbinol
ODE ordinary differential equation
PDE partial differential equation
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