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Abstract: The recognition of coal and gangue is the premise and foundation of coal gangue intelligent
sorting. Adaptive boosting (AdaBoost) algorithm-based coal gangue identification has not been
studied in depth. This paper proposed a coal gangue image recognition algorithm and a strong
classifier based on the AdaBoost algorithm with a genetic algorithm (GA)-optimized support vector
machine (SVM). One thousand coal gangue images were collected on-site and expanded to five
thousand via rotation and exposure adjustment. The 12 gray-level gradient co-occurrence matrix
texture features of the images were extracted to construct a feature vector, establishing the training
dataset and test dataset. Selection of the SVM kernel function, the GA optimization parameter
setting, and the base classifier number was discussed. The coal gangue image recognition effects
of the AdaB-GA-SVM classifier and the other strong classifiers with different base SVM classifiers
were investigated. The results indicated that the recognition accuracy of GA-SVM was the best
when the kernel function of SVM was RBF and the population number, crossover probability, and
mutation probability were 80, 0.9, and 0.005, respectively. The AdaB-GA-SVM classifier has excellent
identification and effective classification performance with the highest accuracy of 95%, a precision
rate of 92.8%, recall rate of 97.3%, and KS values of 0.79.

Keywords: coal gangue recognition; image recognition; support vector machine; genetic algorithm;
adaptive boosting integrated algorithm

1. Introduction

Gangue sorting is one of the crucial processes in coal preparation because raw coal
is mixed with gangue impurities during production. A gangue has a low calorific value
and releases toxic gases, such as SO2, CO, CO2, and NOx, when burned, which results
in coal quality reduction and environmental pollution, affecting the clean and efficient
use of coal [1]. The existing coal gangue sorting methods mainly involve manual and
mechanical sorting. As shown in Figure 1, when the raw coal flow flows into the raw coal
preparation workshop, the iron and sundries in the raw coal flow are removed through the
iron remover, and then enter the raw coal classification screen for screening. Those with
particle sizes of less than 50 mm directly enter the mechanical separation operation. Those
with particle sizes of more than 50 mm are manually selected to remove part of the sundries
in the coal and visible gangue, and then broken into qualified particle sizes (less than
50 mm), and further separation is carried out using other mechanical separation methods
such as a moving screen jig. When manually sorting gangue, illustrated in Figure 2, the
workers judge the gangue in the coal flow through the naked eye and pick it out by hand.
The labor intensity is high, the working environment is bad, the workers can very easily
inhale fine particles (although wearing protective masks) and can easily be injured by
the high-speed belt or scraper conveyor, seriously affecting the health of the workers and
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posing great potential safety risks [2]. To keep the sorting workers away from the harsh
working environment, intelligent coal gangue sorting equipment, especially coal gangue
sorting robots, has received considerable attention in the industry [3–6]. Coal gangue
recognition is the foundation of its intelligent sorting and is a crucial coal gangue sorting
robot technology.
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Figure 2. The picture of the manual sorting scene and the sorted coal gangue. (a) Manual sorting;
(b) sorted coal gangue.

The investigations on coal gangue identification can be traced back to the 1960s with
more than 10 identification methods, such as the γ-ray, X-ray, photoelectric, and infrared
methods [7–11]. Despite numerous accomplishments, these methods have bottlenecks, such
as limited application occasions, radiation hazards, and low recognition accuracy. With the
development of image processing technology and machine learning, coal gangue identifica-
tion methods have shifted their focus onto coal gangue image recognition. Wang, Li, and
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Yang [12] investigated coal gangue response characteristics under different illuminations
and used a SVM classifier to realize the identification of coal and gangue. Zhao et al. [13]
constructed a PSO-SVM model to recognize coal and gangue. Su et al. [14] and Pu et al. [15]
introduced transfer learning for the identification of coal and gangue based on a convo-
lutional neural network (CNN). Li et al. [16] proposed a hierarchical framework for coal
gangue detection based on CNNs. McCoy and Auret [17] reviewed the machine learning
applications in mineral processing. Hou [18] established a coal gangue separation system
based on the difference between coal and gangue in their surface textures and grayscale
features, and proposed a method of combining image feature extraction and a feed-forward
artificial neural network.

Alfarzaeai et al. [19] addressed the topic of coal gangue recognition. They created a
new model called CGR-CNN based on CNN using thermal images as standard images
for coal gangue recognition. Lei et al. [3] constructed a visual depth neural network fast
coal classification net (FCCN) based on CNN, and implemented a visual coal classifica-
tion detection algorithm for coal gangue sorting robots. Liu, Li, et al. [1] studied coal
gangue detection based on enhanced YOLOv4. Li et al. [20] conducted research on a coal
gangue detection and recognition algorithm based on deformable convolution YOLOv3
(DCN-YOLOv3). Yan et al. [21] studied an intelligent classification method of coal gangue
based on multispectral imaging technology and target detection by the YOLOv5.1. In
the coal preparation streamline, the state of gangue in raw coal flow is diverse, such as
exposing outside coal, being partially or fully covered by pulverized coal. Furthermore,
extracting the features of a coal gangue image is challenging due to the harsh site condi-
tions of low illumination and high dust. The present coal gangue recognition methods
in the literature have limited applications. Therefore, further study is required for the
segmentation, enhancement, feature extraction, and recognition of a coal gangue image. A
coal gangue recognition algorithm based on deep learning does not need to consider the
extracted features. Still, the classifier’s training needs a large number of marked samples
and a large amount of calculation; thus, the requirements for lightweight and real-time
performance pose a significant challenge to its field application. Li et al. [22] investigated
the effects of illuminance and external moisture on grayscale and texture features of coal
and gangue images, which provided an essential guide for the image-based identification
of coal and gangue under working conditions. Li and Gong [23] studied a preprocess-
ing model for low-quality images of coal and gangue based on a bilateral filtering joint
enhancement algorithm.

Above all, literature investigations on coal gangue recognition have been extensively
conducted, but a practical solution has not yet been satisfactorily provided. Wang, Li,
and Yang [12] and Li et al. [4] have studied the coal gangue recognition model based on a
support vector machine (SVM). Still, low accuracy and insufficient robustness problems
were caused by its insensitivity to noise and difficult parameter adjustment. There are
few studies on the use of integrated algorithms to improve the accuracy of SVM coal
gangue classification.

Therefore, the novel contributions of this paper are as follows:

• Aiming at the shortcomings of the SVM classifier for coal gangue recognition, this
paper used a genetic optimization algorithm to improve its noise insensitivity and
difficult parameter adjustment, used an adaptive boosting (AdaBoost) algorithm to
enhance its recognition accuracy, and constructed a coal gangue recognition and
classification model;

• The indices of GGCM were introduced to characterize the features of the coal and
gangue and a coal-gangue sample dataset was constructed with the coal and gangue
images obtained by experiment and on-site to verify the performance of the pro-
posed algorithm.
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2. Principle and Theory

This section presents the proposed method and its algorithm. This study used an SVM
classifier as the AdaBoost integration base classifier, and a genetic algorithm (GA) was
employed to optimize the SVM parameters.

2.1. SVM Algorithm and SVM Classifier

SVM is a machine learning method based on a statistical theory proposed by Vapnik
and Chervonenkis [24]. It is widely used in text classification, handwritten character
recognition, and image classification owing to its excellent generalization performance
and ability to process high-dimensional data. The fundamental principle is to find an
optimal hyperplane that can meet the classification requirements and which has the most
considerable interval, as presented in Figure 3.
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Let D = {(xi, yi), i = 1, 2, . . . , N, x ∈ R, y ∈ (−1,1)}, xi is the sample data to be classified,
and yi is the label of the data xi. The classification plane (ω, b) can be described using the
following linear equation:

ωT gx + b = 0 (1)

where ω denotes the normal vector to the classification plane, and b indicates the displace-
ment term. For any sample in the linearly separable sample set, there are{

yi = +1, ωTxi + b ≥ +1
yi = −1, ωTxi + b < +1

(2)

Equation (2) can be abbreviated as

yi

(
ωTxi + b

)
≥ 1 (3)
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In all the vectors ω, there is a vector whose distance from the classification plane is the
smallest and satisfies the equal sign of Equation (2), which is called the support vector. The
sum of the distances γ from all the support vectors to the hyperplane is

γ =
2
‖ω‖ (4)

The hyperplane with the largest distance γ is the optimal hyperplane. Then, the
classification problem is transformed into the problem of finding the optimal hyperplane,
namely, finding the optimal parameters ω and b in Equation (1) under constraints

max
ω,b

2
‖ω‖

s.t. yi
(
ωTxi +b) ≥ 1, i = 1, 2, . . . , N

(5)

or:
min
ω,b

1
2‖ω‖

s.t. yi
(
ωTxi + b

)
≥ 1, i = 1, 2, . . . , N

(6)

For calculation convenience, remove the root sign in Equation (6), then

min
ω,b

1
2‖ω‖

2

s.t. yi
(
ωTxi + b

)
≥ 1, i = 1, 2, . . . , N

(7)

If the Lagrange function is introduced into the above formula, there is

L(ω, b, α) =
1
2
‖ω‖2 +

N

∑
i=1

αi

(
1− yi

(
ωTxi + b

))
(8)

where the Lagrange multiplier αi ≥ 0. Then, the problem of finding the optimal classification
plane comes down to solving

max
α

(
N
∑

i=1
αi − 1

2

N
∑

i=1

N
∑

j=1
αiαjyiyjxi

Txj

)
s.t. 0 ≤ αi,

N
∑

i=1
αiyi = 0, i = 1, 2, . . . , N

(9)

For the nonlinear classification problem, the kernel function of K(xi, xj) is introduced,
and the classification problem is reduced to

max
α

(
N
∑

i=1
αi − 1

2

N
∑

i=1

N
∑

j=1
αiαjyiyjK

(
xi, xj

))
s.t. 0 ≤ αi ≤ C,

m
∑

i=1
αiyi = 0, i = 1, 2, . . . , N

(10)

where C denotes the penalty factor. The final classification discriminant function is defined as

f (x) = sgn

(
N

∑
i=1

aiyiK
(
xi, xj

)
+ b

)
(11)

where sgn(x) is the sign discrimination function. When x > 0, it returns 1; otherwise, it
returns 0.

The loss function of SVM is an unbounded convex function, resulting in the same
penalty on classification error samples, and exceptionally susceptible to noise while ensur-
ing the confidence of the classification results. In addition, SVM has parameter sensitivity,
complex parameter tuning, and unstable classification accuracy. The coal gangue recogni-
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tion model based on the basic SVM algorithm lacks accuracy and robustness, impacting the
effect of the algorithm on coal gangue recognition.

2.2. GA Optimization and SVM Base Classifier Construction

The introduction of parameter optimization algorithms, such as the GA algorithm [25],
particle swarm optimization (PSO) algorithm [26], and ant colony algorithm [27], can adap-
tively search the global optimization and effectively reduce the difficulty of the parameter
tuning of the SVM model. This paper introduced GA into the SVM algorithm to optimize
the penalty factor and kernel function parameters, and the GA-SVM model was created.

GA is a method for searching for the optimal solution by simulating the natural
evolutionary process. This algorithm converts problem-solving into a process that is similar
to the crossover and mutation of chromosomal genes in biological evolution. Owing to
its strong robustness, it is widely used in combination optimization, machine learning,
signal processing, adaptive control, and artificial life. The optimization process of the GA
is as follows:

• Set the evolutionary iteration counter t = 0, the maximum evolutionary iteration T,
and randomly generate M individuals as the initial population P(0);

• Calculate the fitness of each individual in the population P(t);
• Obtain the next generation’s population P(t + 1) through selection, crossover, and

mutation of population P(t);
• Judge whether the termination condition is reached. If t < T, repeat Step 3; else, if t = T,

terminate the evolution;
• Take the individual with the greatest fitness obtained in the evolution process as the

optimal solution, and the SVM base classifier is constructed using the optimal parameters.

2.3. ADAB-GA-SVM Classifier Construction

The AdaBoost algorithm was employed to obtain a strong classifier model to improve
the anti-noise performance of the SVM algorithm, referred to as the AdaB-GA-SVM model.
AdaBoost is the most representative boosting tree algorithm proposed based on Boosting by
Freund and Schapire [28]. The AdaBoost tree algorithm is widely used for classification in
various fields as it can keep the training between classifiers unaffected to ensure structural
stability and maximize model generality. Dou, Chen, and Yue [29] proposed a multi-
classification algorithm based on AdaBoost, which exhibited an excellent remote sensing
image classification performance. Zhang et al. [30] employed the AdaBoost algorithm
to integrate the SVM base classifier into strong classifiers to achieve higher classification
accuracy in different dataset sizes. The AdaBoost algorithm flow is as follows:

(1) Initialize the weight of the sample set D.

ω1
i = 1

/
N, i = 1, 2, · · · , N (12)

(2) Let the iteration number be M, for t = 1, 2, . . . , M:

a. Train the GA-SVM classifier using the sample set D with weight ωi
t and obtain

a base classifier ft(x);
b. Calculate the classification error rate et and weight of the classifier λt:

et =
N

∑
i=1

ωt
i · I(yi 6= ft(xi)) (13)

λt =
1
2

ln(
1− et

et
) (14)

where I (yi 6= ft(xi)) is a discriminant function, which returns 1 when the pre-
diction result of the base classifier ft(x) is inconsistent with the sample label yi;
otherwise, it returns 0.
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c. Update the weight of the training set sample to ωi
t+1 according to the prediction

result of the base classifier ft(x):

ωt+1
i =


ωt

i exp(−λt)

∑N
i=1 ωt

i exp(−λt)
ft(xi) = yi

ωt
i exp(λt)

∑N
i=1 ωt

i exp(λt)
ft(xi) 6= yi

(15)

(3) Build the final strong classifier as

F(x) =
M

∑
t=1

λt ft(x) = FM−1(x) + λM fM(x) (16)

Generally, the step size and maximum number of iterations are used together to
determine the fitting effect of the AdaBoost algorithm, and the constructed strong classifier
is given by the following equation:

F(x) = FM−1(x) + νλM fM(x) (17)

where ν denotes the learning rate, 0 < ν ≤ 1. The classification discriminant function g(x) is
defined as

g(x) = sgn( F(x)) (18)

where sgn(x) is the same as Equation (11).

3. Materials and Methods
3.1. Coal and Gangue Image Collection and Preprocessing

The coal gangue image samples were collected from the Wuyuan Coal preparation
plant. Considering the impact of environmental factors, such as light and coal dust, on the
quality of the collected coal-gangue image, the coal gangue image data were collected at
different periods to increase the model’s generalization performance.

After the screening, cutting, and labeling of the coal and the gangue images collected
on-site, 500 images of the coal and the gangue were individually obtained, comprising
a total of 1000 sample data. A total of 800 data were selected as the training set and the
remaining 200 as the test set. During selection, the proportion of the coal gangue images
was controlled at 1:1 to keep the coal gangue sample data balanced. The training and test
sets were expanded to 4000 and 1000, respectively, through left–right rotation and exposure
adjustment, to enrich the dataset.

The coal gangue images were preprocessed by gray conversion, gamma function
correction, and image enhancement. After preprocessing, the gray-level of each coal-gangue
image was 256, the size was 2000 × 2000, and the format was PNG. Figure 4 demonstrates
the effect comparison of the coal gangue images before and after preprocessing.

3.2. Gray-Level Gradient Co-Occurrence Matrix Texture Feature Extraction

The gray-level co-occurrence matrix (GLCM) is a matrix function of image pixel
distance and angle. It reflects the comprehensive information of an image in direction,
adjacent interval, and change range through the correlation between the gray levels of two
pixels with a certain distance and direction in the image [31]. The generation principle is
described as follows. Starting from the pixel point (x, y) of the gray value i, move a certain
distance δ at an angle θ along the matrix construction direction toward the pixel point
(x + ∆x, y + ∆y) of the gray value j, as presented in Figure 5, and calculate the number of
pixel pairs with the relative position relationship in the whole image to obtain the joint
probability distribution P(i, j) of pixel pair (i, j); construct a square matrix with the joint
probability distribution P(i, j) of all pixel pairs (i, j), then normalize the square matrix by the
total number of (i, j) combination, and finally obtain the GLCM. ∆x and ∆y are determined
by spacing δ and angle θ, and θ indicates the generation direction of GLCM.
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The addition of the gradient information of the image to the GLCM constitutes the
GGCM, which can contain the texture primitives and their arrangement information. This
reflects the relationship between the gray-level and the image pixel point gradient (or edge).
The gray-level of each pixel is the basis of an image, and the gradient is the element of the
image edge contour [32]. The GGCM is expressed as follows:{

H(x, y); x = 0, 1, . . . L f − 1; y = 0, 1, . . . , Lg − 1
}

(19)

where H(x, y) is the element of the GGCM, representing the number of pixels with grayscale
x in the normalized grayscale image F(i, j) and gradient y in the normalized gradient image
G(i, j); Lf, the maximum gray-level of the grayscale image; and Lg, the maximum gradient
level of the gradient image. The GGCM is normalized as follows:

Ĥ(x, y) =
H(x, y)

∑
L f−1
x=0 ∑

Lg−1
y=0 H(x, y)

(20)

Based on the normalized GGCM Ĥ(x, y), the 15 grayscale gradient texture features of
the coal gangue image can be extracted using the formula in Table A1.

Xue et al. [33] analyzed the importance of 15 coal gangue image texture features using
the random forest model, presented in Figure 6. According to the importance, the top 12
of the 15 texture features were selected to construct a feature vector x = [T1, T3, T4, T5, T6,
T7, T8, T9, T10, T13, T14, T15]. The coal image was labeled as 1, and the gangue image was



Minerals 2023, 13, 329 9 of 18

labeled as −1. Figure A1 presents the texture features of 100 groups of coal gangue image
samples. The abscissa represents the sample serial number, and the ordinate represents the
feature value of the sample. The aforementioned 12 GGCM texture features of coal gangue
image training and test sets were extracted respectively to provide the training dataset {(xi,
yi)| xi = [T1i, T3i, T4i, T5i, T6i, T7i, T8i, T9i, T10i, T13i, T14i, T15i], yi ∈ (−1,1), i = 1, 2, . . . , 4000}
and the test dataset {(xj, yj)| xj = [T1j, T3j, T4j, T5j, T6j, T7j, T8j, T9j, T10j, T13j, T14j, T15j], yj ∈
(−1,1), j = 1, 2, . . . , 1000} for the subsequent model training and testing.
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3.3. Classification Model Training Process

The training steps of the AdaB-GA-SVM model are as follows:

(1) Input the coal gangue training dataset (xi, yi), i = 1, 2, . . . , 4000, set the initial weight
ωi

t = 1/4000 (t = 1), and construct a weighted training set (ωi
t xi, yi);

(2) Set the value range of penalty factor C and parameter g of RBF-SVM as [0, 100]
and [0, 10], respectively, and convert C and g into chromosomes by 8-bit binary
coding. According to the abovementioned research results, the initial population size,
crossover probability, and mutation probability of GA were set to 80, 0.9, and 0.0005,
respectively, and the number of evolutionary iterations was set to 100. The roulette
selection method was adopted;

(3) Using the weighted training dataset and taking the average recognition accuracy Acc
of four-fold cross-verification as the chromosome’s fitness, the current population
is crossed, mutated, and selected to generate the next generation of population and
calculate each fitness value;

(4) Judge whether the number of iterations has been reached. If not, return to step (3);
otherwise, select the individual with the highest fitness in all iterative populations to
obtain the final GA-SVM base classifier ft(x);

(5) Calculate the error rate et of ft(x) and its weight λt, and update the weight of the
sample data to ωi

t+1 according to the prediction result of ft(x);
(6) Loop through steps (2)–(5) until all 20 GA-SVM base classifiers are obtained, and the

final classifier F(x) is constructed using Equation (16).

Four indicators usually evaluate the classification and identification models, namely,
accuracy Acc, precision rate P, recall rate R, and F1 score, which are defined as follows:

Acc =
TP + TN

TP + TN + FP + FN
(21)

P =
TP

TP + FP
(22)
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R =
TP

TP + FN
(23)

F1 =
2× P× R

P + R
(24)

where TP is a true-positive case (the actual coal is predicted as coal); FP, a false-positive
case (the actual coal is predicted as gangue); TN, a true-negative case (the actual gangue is
predicted as gangue); and FN, a false-negative case (the actual gangue is predicted as coal).

3.4. Experimental Configuration

The training and testing of the classifier were conducted with the coal gangue image
sample set in the software environments of Python 3.7.6 on the Windows 10 professional
operating system. The SVM classifier was generated from the SVM function, and the
GA-SVM integration method was to call the AdaBoost classifier function in Sklearn [34].

4. Results and Discussion
4.1. Kernel Function Selection

Coal gangue image recognition is a nonlinear classification problem that introduces a
kernel function. Different kernel functions have a significant impact on the SVM classifica-
tion accuracy. The commonly used kernel functions include polynomial, RBF, and Sigmoid
kernel function [35]. The existing research shows that the SVM classifier based on the RBF
kernel function has good applicability and is more suitable for the classification problem
of multidimensional vector space. The RBF kernel function parameter g will not increase
the spatial complexity in a particular range. SVM models with different kernel functions
were constructed, trained, and tested with the coal gangue image dataset via a four-fold
cross-validation. The results are presented in Table 1. It can be seen from Table 1 that the
accuracy rate reached 83% when the kernel function of SVM was RBF, higher than that of
polynomial and sigmoid. The recognition time was slightly longer than the SVM classifier
based on the other kernel functions. Therefore, the SVM model based on the RBF kernel
function will be used in the follow-up research of this paper.

Table 1. The accuracy and runtime of the coal-gangue identification by SVM models with a different
kernel function.

Kernel Function Accuracy Rate Runtime (s)

Polynomial 73% 0.0078
RBF 83% 0.0142

Sigmoid 82% 0.0128

4.2. Genetic Algorithm Parameter Tuning

In this paper, GA was used to optimize parameter g and penalty factor C of the SVM
model based on the RBF kernel function. During optimization, the GA parameter settings,
such as population size, crossover probability, and mutation probability, significantly
impacted the optimization effect of GA. In general, the population size range was 20–100,
the crossover probability range was 0.4–0.99, the mutation probability range was 0.0001–0.1,
and the number of evolutionary iterations was 100–500.

The GA parameters, such as population size, crossover probability, and mutation
probability, were studied by a 3-factor 9-level orthogonal test to obtain the best optimization
effect on the SVM model. The orthogonal table and test results are presented in Table 2. It
can be seen that the population number, crossover probability, and mutation probability of
the GA optimal parameters were 80, 0.9, and 0.0005, respectively.
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Table 2. Orthogonal table L81 (9 × 72) design for GA parameter settings and experimental results.

No.
Factor

Accuracy
Population Size Crossover Probability Mutation Probability

1 30 0.4 0.01 0.892
2 20 0.4 0.0001 0.884

. . . . . . . . . . . . . . .
80 70 0.5 0.01 0.897
81 80 0.8 0.05 0.889
k1 0.8976 0.8995 0.8977
k2 0.9016 0.8958 0.9047
k3 0.8936 0.8997 0.8996
k4 0.9012 0.9001 0.8999
k5 0.9 0.8967 0.8966
k6 0.9031 0.9029 0.9004
k7 0.9038 0.9017 0.8997
k8 0.8963
k9 0.8976

4.3. Number of Base Classifiers

The number of base classifiers has a significant impact on the recognition accuracy of
the model. Suppose there are very few integrated base classifiers when using the AdaBoost
adaptive ensemble algorithm for classification and recognition. The recognition accuracy
cannot reach the recognition effect in such a case. Still, there may be overfitting if there are
too many integrated base classifiers, which results in the poor generalization ability of the
trained model.

The recognition effect of the AdaB-SVM model with a different number of base classi-
fiers on the coal gangue images was investigated. Figure 7 presents the relationship of the
coal gangue image recognition accuracy of AdaB-GA-SVM with the number of integrated
base classifiers. It can be seen from Figure 7 that when the number of integrated base
classifiers was 20, the coal-gangue image identification and classification accuracies of the
AdaB-SVM classifier in the training and the test sets were the highest, up to 95.3% and 95.1%,
respectively, which resulted in no overfitting phenomenon and good generalization ability.
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4.4. Classification Model Training Results and Evaluation

Figure 8 shows the variation curve of the highest fitness of all individuals during the
training process of each of the 20 base classifiers. The training process data of a GA-SVM
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base classifier ft(x) are shown in Table A2, in which the parameters in the red box are those
of the final selected base classifier. Table A3 presents the accuracy, the penalty factor c, the
parameter g, the error rate et, the classifier weight λt, and the training time of the obtained
20 GA-SVM base classifiers.
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From Figure 8, we can see the difference of the maximum individual fitness change
curve of each basic classifier in the training process, and the number of iterations cor-
responding to the fitness stability was also different. However, after 100 iterations, the
maximum individual fitness of each base classifier was stable and above 90.9%.

The AdaB-GA-SVM model was tested with the test dataset, and the results are pre-
sented in Table 3. The test results of the GA-SVM model are also listed for comparison.
Figure 9 presents the KS curve of AdaB-GA-SVM. It can be seen that the KS value was 0.79.
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Table 3. The results of the GA-SVM model and the AdaB-GA-SVM model when tested with the
aforementioned test set.

Evaluation Indicator GA-SVM AdaB-GA-SVM

TP 426 464
FP 74 36
FN 15 13
TN 485 487
Acc 0.911 0.951
P 0.852 0.928
R 0.966 0.973
F1 0.905 0.950

Table 4 demonstrates that the accuracy of Acc, the precision of P, and the F1 value of
the AdaB-GA-SVM model compared with the GA-SVM model increased by 4%, 7.6%, and
4.5%, reaching 95.1%, 92.8%, and 95%, respectively. During coal preparation, the industry
specialists focus more on the precision rate of gangue. The gangue precision rate of the
GA-SVM model was 85.2%, and the recall rate was 96.6%; the gangue precision rate of
the AdaB-GA-SVM model was 92.8%, and the recall rate was 97.3%, indicating that the
recognition model proposed in this paper has a better performance and effect. The KS
value of 0.79 shown in Figure 9 indicates that the AdaB-GA-SVM model performs well in
coal gangue identification.

Table 4. Coal gangue recognition accuracy and recognition runtime of different base classifiers before
and after adaptive boosting.

Base Classifier
Accuracy (%) Recognition Runtime (s)

Before After Before After

SVM 83 84 0.0142 0.076
GS-SVM 85 86 0.0121 0.104

PSO-SVM 86 90 0.0139 0.171
GA-SVM 91 95 0.0173 0.124

4.5. Comparison with other SVM Base Classifier

To compare the recognition of the AdaBoost model with different base classifiers, the
base classifiers such as SVM, GS-SVM, and PSO-SVM and the corresponding adaptive
enhancement classification models were also trained. Then, the SVM, GS-SVM, PSO-
SVM, and GA-SVM classification models before and after AdaBoost were tested using
the aforementioned test dataset. The classification accuracy and recognition runtime are
presented in Table 4.

Table 4 demonstrates that after adopting the AdaBoost adaptive enhancement algo-
rithm, the recognition accuracy of the SVM, GS-SVM, PSO-SVM, and GA-SVM models
all improved. The accuracy of the AdaB-GA-SVM classifier was the highest, up to 95%,
which was 11%, 9%, and 5% higher than that of AdaB-SVM (84%), AdaB-GS-SVM (86%),
and AdaB-PSO-SVM (90%), respectively. The running time of each classification model
had a different degree of increment before and after integration enhancement. The recogni-
tion time of the classifier after adaptive enhancement was equivalent, and the recognition
running time of AdaB-GA-SVM was about 0.124 s.

5. Conclusions

Coal gangue identification is the foundation of realizing coal gangue intelligent sorting
in coal preparation. Coal gangue identification based on the adaptive boosting algorithm
has not been studied in depth in the literature. This paper proposed an adaptive enhance-
ment recognition algorithm and classification model using AdaB-GA-SVM based on coal
gangue images. The main conclusions are as follows:
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(1) The coal gangue image data were been collected on-site, the gray-level gradient co-
occurrence matrix texture features were extracted, and the coal gangue image dataset
was constructed. The AdaB-GA-SVM classification model proposed in this paper
was trained and tested. The results indicated that the model had a precision rate of
92.8% for gangue, a recall rate of 97.3%, and a KS value of 0.79, suggesting that the
AdaB-GA-SVM model has excellent classification and identification performance and
good generalization ability in coal gangue identification.

(2) The coal gangue identification effects of the proposed algorithm with other SVM
base classifiers, such as SVM, GS-SVM, and PSO-SVM, were compared and analyzed.
The results indicated that the enhanced classification model’s accuracy improved.
The AdaB-GA-SVM classifier had the highest accuracy of 95%, 5% to 11% higher
than the AdaB-SVM, the AdaB-GS-SVM, and the AdaB-PSO-SVM classifiers with
equivalent runtimes.

(3) Image texture features and classification algorithms significantly impact the effect
of coal gangue identification. More texture feature extraction methods or machine
learning algorithms, such as improved local ternary pattern [36], XGBoost (eXtreme
Gradient Boosting) [37,38] and deep learning algorithms, will be further studied for
coal gangue recognition.
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Appendix A

Table A1. The 15 grayscale gradient texture features and their calculation formulas.

No. Texture Feature Calculation Formula

1 large gradient advantage T1 =
L f−1

∑
x=0

Lg−1
∑

y=0
y2Ĥ(x, y)

/L f−1
∑

x=0

Lg−1
∑

y=0
Ĥ(x, y)

2 small gradient advantage T2 =
L f−1

∑
x=0

Lg−1
∑

y=0

Ĥ(x,y)
(y+1)2

/L f−1
∑

x=0

Lg−1
∑

y=0
Ĥ(x, y)

3 gray distribution nonuniformity T3 =
L f−1

∑
x=0

[
Lg−1

∑
y=0

Ĥ(x, y)

]2/L f−1
∑

x=0

Lg−1
∑

y=0
Ĥ(x, y)

4 gradient distribution nonuniformity T4 =
Lg−1

∑
x=0

[
L f−1

∑
y=0

Ĥ(x, y)

]2/L f−1
∑

x=0

Lg−1
∑

y=0
Ĥ(x, y)

5 energy T5 =
L f−1

∑
x=0

Lg−1
∑

y=0
Ĥ2(x, y)

6 gray average T6 =
L f−1

∑
x=0

x
Lg−1

∑
y=0

Ĥ(x, y)
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Table A1. Cont.

No. Texture Feature Calculation Formula

7 gradient average T7 =
Lg−1

∑
y=0

y
L f−1

∑
x=0

Ĥ(x, y)

8 gray mean square error
T8 =

[
L f−1

∑
x=0

(x− T6)
2

Lg−1
∑

y=0
Ĥ(x, y)

] 1
2

9 gradient mean square error
T9 =

[
Lg−1

∑
y=0

(y− T7)
2

L f−1
∑

x=0
Ĥ(x, y)

] 1
2

10 correlation T10 =
L f−1

∑
x=0

Lg−1
∑

y=0
(x− T6)(y− T7)Ĥ(x, y)

11 gray-level entropy T11 = −
L f−1

∑
x=0

Lg−1
∑

y=0
Ĥ(x, y) log

Lg−1
∑

y=0
Ĥ(x, y)

12 gradient entropy T12 = −
L f−1

∑
x=0

Lg−1
∑

y=0
Ĥ(x, y) log

L f−1
∑

x=0
Ĥ(x, y)

13 mixed entropy T13 = −
L f−1

∑
x=0

Lg−1
∑

y=0
Ĥ(x, y) log Ĥ(x, y)

14 inertia T14 =
L f−1

∑
x=0

Lg−1
∑

y=0
(x− y)2Ĥ(x, y)

15 inverse difference moment T15 =
L f−1

∑
x=0

Lg−1
∑

y=0
Ĥ(x, y)/

[
1 + (x− y)2

]

Table A2. Process data during the training of a certain GA-SVM base classifier f t(x).

1 2 3 4 . . . 46 . . . 97 98 99 100

1
Acc 0.9013 0.9005 0.8982 0.9013 . . . 0.9009 . . . 0.9004 0.9004 0.9101 0.9018
C 32.560 87.607 71.395 88.029 . . . 25.495 . . . 14.757 27.174 60.671 52.160
g 1.405 6.562 0.027 6.561 . . . 2.870 . . . 6.015 6.739 3.300 23.737

2
Acc 0.8924 0.8888 0.8911 0.8926 . . . 0.9108 . . . 0.9013 0.9044 0.8960 0.8906
C 83.454 92.829 84.333 35.835 . . . 60.278 . . . 3.282 78.138 39.206 28.448
g 3.944 1.337 2.899 2.4575 . . . 2.739 . . . 7.124 2.966 6.233 6.873

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

79
Acc 0.8968 0.8960 0.9105 0.8946 . . . 0.9031 . . . 0.8986 0.8991 0.9009 0.9039
C 50.863 54.997 53.990 72.738 . . . 84.658 . . . 45.364 84.817 84.817 65.289
g 8.624 8.624 2.312 9.072 . . . 5.033 . . . 7.015 1.391 5.189 0.999

80
Acc 0.8977 0.9035 0.8964 0.8964 . . . 0.9018 . . . 0.9022 0.9098 0.8960 0.9012
C 10.203 54.631 54.631 29.729 . . . 72.700 . . . 52.399 72.750 3.401 35.384
g 8.163 3.749 8.291 3.134 1.884 6.040 2.011 4.009 2.291

Note: The parameters in the red box are those of the final selected base classifier with highest fitness.

Table A3. Training results of the 20 GA-SVM base classifiers.

Base
Classifier Accuracy C g et λt Train Time Base

Classifier Accuracy C g et λt Train Time

f 1(x) 0.91 51.73 3.16 0.18 1.475 15 min 26 s f 11(x) 0.91 62.02 2.86 0.45 0.187 17 min 22 s
f 2(x) 0.91 66.54 2.82 0.34 0.635 17 min 42 s f 12(x) 0.91 61.47 2.85 0.48 0.064 17 min 42 s
f 3(x) 0.91 55.30 3.08 0.39 0.444 18 min 21 s f 13(x) 0.91 61.73 2.86 0.45 0.188 17 min 16 s
f 4(x) 0.91 57.36 2.94 0.40 0.418 17 min 36 s f 14(x) 0.91 67.35 2.77 0.45 0.182 18 min 13 s
f 5(x) 0.91 94.35 2.52 0.40 0.400 17 min 20 s f 15(x) 0.91 83.86 2.02 0.46 0.156 17 min 43 s
f 6(x) 0.91 55.41 3.02 0.43 0.279 17 min 30 s f 16(x) 0.91 66.99 2.79 0.47 0.110 15 min 58 s
f 7(x) 0.91 63.79 2.87 0.47 0.099 17 min 43 s f 17(x) 0.91 67.71 2.80 0.49 0.009 17 min 22 s
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Table A3. Cont.

Base
Classifier Accuracy C g et λt Train Time Base

Classifier Accuracy C g et λt Train Time

f 8(x) 0.91 54.26 2.82 0.47 0.119 17 min 25 s f 18(x) 0.91 93.30 2.51 0.44 0.233 17 min 23 s
f 9(x) 0.91 56.29 2.98 0.48 0.077 16 min 30 s f 19(x) 0.91 69.78 2.76 0.45 0.201 16 min 47 s
f 10(x) 0.91 44.73 3.26 0.41 0.361 17 min 35 s f 20(x) 0.91 68.63 1.94 0.50 0.001 17 min 35 s
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Appendix A 

   
(a) Gradient advantage (b)Nonuniformity of gray distribution (c) Nonuniformity of gradient distribution 

   
(d) Energy (e) Gray average (f) Gradient average 

   
(g) Gray mean square error (h) Gradient mean square error (i) Correlation 

   
(j) Mixed entropy (k) Inertia (l) Inverse difference moment 

Figure A1. Texture features of sample of coal-gangue image. Figure A1. Texture features of sample of coal-gangue image.
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