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Abstract: Tianshan is one of the world’s largest gold provinces; however, the relationship between
gold mineralization and metasomatized subcontinental lithospheric mantle (SCLM) remains poorly
understood. To improve our understanding, we present new bulk-rock geochemistry and platinum
group element (PGE) concentrations of the SCLM-sourced Aksu Neoproterozoic diabase dykes
in Chinese South Tianshan. These data, combined with in situ laser ablation inductively coupled
plasma mass spectrometry (LA-ICP-MS) analyses of hydrothermal pyrite grains in the diabase
dykes, are used to discuss the SCLM source characteristics in the region and their potential links
to formation of gold deposits. The diabase dykes exhibit high Th/Yb (0.47–0.62) and low Nb/U
(13.4–16.3) ratios, indicating that magma evolution involves subduction-related fluid metasomatism
and limited contamination of the continental crust. This is consistent with little variation in whole-
rock Pd/Zr, Cu/Zr, and Ni/MgO ratios, suggesting that no sulfide segregation was caused by crustal
contamination and magma mixing. In addition, the diabase dykes show low PGE and Au contents,
with high Cu/Pd (>105) and low Cu/Zr (<0.5) ratios, indicating that magmas were derived from
low-degree partial melting of the SCLM under S-saturated conditions. Such source characteristics
indicate residual sulfides and chalcophile elements (e.g., PGEs, Au, and Cu) were concentrated at the
SCLM reservoir in South Tianshan. Hydrothermal pyrite in the studied dykes has similar Au/Ag
ratios and trace element distribution patterns to gold-bearing pyrite of lode gold deposits in Chinese
South Tianshan, indicating that metasomatized SCLM may have contributed ore metals during the
formation of these gold deposits. Adding to the available data, our study highlights that the SCLM
may be a potential metal source reservoir, and it may have contributed to formation of the lode gold
deposits in Chinese South Tianshan.

Keywords: diabase dykes; sub-continental lithospheric mantle; lode gold deposit; metal source;
Chinese South Tianshan

1. Introduction

The relationship between subcontinental lithospheric mantle (SCLM) and formation
of gold metallogenic provinces has received considerable attention in the last 20 years [1–3].
For instance, the SCLM has been suggested to be a prominent source in some major gold
provinces, such as Jiaodong [4,5], Deseado Massif [6], and the western margin of Yangtze
Craton [7]. However, there are also major gold provinces that are thought to be unrelated
to the SCLM, e.g., Yilgarn Block [8], Central Victoria [9], Lena [10,11], Otago Schist [12,13],
and the Abitibi greenstone belt [14].

Tianshan is one of the world’s largest gold provinces and hosts an array of world-
class lode gold deposits, e.g., Muruntau, Kumtor, and Unkurtash [15–17]. However, the
relationship between formation of these gold deposits and metasomatized subcontinental
lithospheric mantle (SCLM) remains poorly understood [18]. Mantle-derived components
have been recognized in ore-forming fluids of the giant Muruntau gold deposit based on low
radiogenic initial Os isotope ratios of auriferous arsenopyrite and elevated 3He/4He ratios
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of fluid inclusion in gold-bearing quartz [19,20]. Moreover, Mao et al. (2004) confirmed
comparable ca. 296-298 Ma ages for gold ores and alkalic granitoids at the Kumtor gold
deposit, indicating a mantle-related source [21]. Conversely, Wall et al. (2004) argued
that mantle-related magmatic rocks have no genetic links with gold deposits, but instead
provided magmatic heat to generate gold-bearing metamorphic fluids (TAG model) [22,23].
Uncertainty about a metal source derived from mantle also concerns lode gold deposits in
the Chinese part of Tianshan, e.g., the partial mantle-related C–H–O isotopic characteristics
of the Sawayaerdun gold deposit [24]. These controversies are largely due to relatively
poor exposure of SCLM-derived rocks in the region, and limited attention has been paid to
their relationship with the formation of gold deposits.

The Neoproterozoic Aksu diabase dykes (ca. 760–745 Ma) occur sporadically in
southwestern Chinese Tianshan and are thought to be derived from a metasomatized
SCLM source [25]. Contemporaneous lode gold deposit, i.e., Djamgyr gold deposit (ca.
802 Ma), has also been reported elsewhere in Kyrgyzstan’s Tianshan [26]. In the Chinese
part of Tianshan, although the Aksu diabase dykes formed several hundred million years
earlier than the regional Au mineralization (ca. 280–290 Ma [16,20]), host rocks of these
diabase dykes also host the Awanda lode gold deposit, which represents the second-largest
gold deposit in the region [27]. The potential link between these dykes and regional gold
metallogeny requires further evaluation.

In this study, we report new whole-rock geochemical and PGE data on the Aksu
diabase dykes, as well as in situ LA-ICP-MS trace element analyses of pyrite grains in the
Aksu diabase dykes. Based on the findings, we discuss the SCLM source characteristics in
the Chinese Tianshan region and their potential links to large-scale gold mineralization.
Adding to the available data, we advance the current understanding of the metal sources
of the lode gold deposits in the Tianshan gold province.

2. Geological Setting

The Tianshan orogen in the southwestern part of the Central Asian Orogenic Belt
(CAOB; Figure 1a) extends from the Kyzylkum Desert in western Uzbekistan, through
Tajikistan and Kyrgyzstan, to Xinjiang in NW China (Figure 1b) [28]. The Chinese part of
the Tianshan orogen has been subdivided into four major suture-bounded tectonic domains
from north to south, namely Chinese North Tianshan, the Kazakhstan-Yili Block, the Middle
Tianshan Block, and South Tianshan (Figure 1b) [29].
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Figure 1. (a) Tectonic location of the Tianshan orogen in the Central Asian Orogenic Belt. (b) Sim-
plified geological map of Tianshan showing the locations of major lode gold deposits (modified 
from [16]). (c) Geological map of Chinese South Tianshan showing the location of the Aksu terrane 
(modified from [30]). 

South Tianshan, hosting major lode gold deposits, represents a late Paleozoic accre-
tionary complex bounded by the North Tarim Fault to the south and the Atbashi–
Inylchek–South Nalati Fault to the north (Figure 1c) [29]. It is composed of a series of dis-
membered Precambrian terranes that are overlain by Paleozoic meta-sedimentary se-
quences [28]. The Precambrian terranes are composed mainly of the Paleoproterozoic Xin-
ditagh Group, and the Neoproterozoic Aksu Group, and they are all exposed in the south-
ernmost part of Chinese South Tianshan. The Lower Paleozoic strata are mainly exposed 
in the middle part of South Tianshan (Figure 1b) and are composed of Lower Cambrian 
to Ordovician passive margin sediments and Upper Silurian clastic sedimentary se-
quences [31,32]. Upper Paleozoic strata occur extensively across South Tianshan (Figure 
1c) and mainly consist of Devonian to Carboniferous clastic sedimentary rocks, including 
carbonaceous rocks, calcareous siltstone, grey siltstone, marine carbonate rocks, sand-
stone, calcareous sandstone, and shale [31]. The Upper Silurian to Carboniferous metased-
imentary formations are the most important gold-hosting sequences in Chinese South 
Tianshan (Figure 1c) [15,33]. Permian fluvial sediments and rift-type volcanic rocks are 
tightly overlain by the Pre-Carboniferous strata [34]. 

A few outcrops of Neoproterozoic mafic and voluminous Early Permian A-type 
granites and basalts are exposed in Chinese South Tianshan (Figure 1c). The Neoprotero-
zoic mafic dykes cross-cut the Neoproterozoic Aksu Group, cropping out mainly in the 
southwestern part of Aksu city (Figure 2). The Early Permian (ca. 290–280 Ma) A-type 
granitoids are widespread across South Tianshan and show both A1 and A2 affinities, 

Figure 1. (a) Tectonic location of the Tianshan orogen in the Central Asian Orogenic Belt.
(b) Simplified geological map of Tianshan showing the locations of major lode gold deposits (mod-
ified from [16]). (c) Geological map of Chinese South Tianshan showing the location of the Aksu
terrane (modified from [30]).

South Tianshan, hosting major lode gold deposits, represents a late Paleozoic accre-
tionary complex bounded by the North Tarim Fault to the south and the Atbashi–Inylchek–
South Nalati Fault to the north (Figure 1c) [29]. It is composed of a series of dismembered
Precambrian terranes that are overlain by Paleozoic meta-sedimentary sequences [28]. The
Precambrian terranes are composed mainly of the Paleoproterozoic Xinditagh Group, and
the Neoproterozoic Aksu Group, and they are all exposed in the southernmost part of
Chinese South Tianshan. The Lower Paleozoic strata are mainly exposed in the middle
part of South Tianshan (Figure 1b) and are composed of Lower Cambrian to Ordovician
passive margin sediments and Upper Silurian clastic sedimentary sequences [31,32]. Upper
Paleozoic strata occur extensively across South Tianshan (Figure 1c) and mainly consist of
Devonian to Carboniferous clastic sedimentary rocks, including carbonaceous rocks, calcare-
ous siltstone, grey siltstone, marine carbonate rocks, sandstone, calcareous sandstone, and
shale [31]. The Upper Silurian to Carboniferous metasedimentary formations are the most
important gold-hosting sequences in Chinese South Tianshan (Figure 1c) [15,33]. Permian
fluvial sediments and rift-type volcanic rocks are tightly overlain by the Pre-Carboniferous
strata [34].

A few outcrops of Neoproterozoic mafic and voluminous Early Permian A-type gran-
ites and basalts are exposed in Chinese South Tianshan (Figure 1c). The Neoproterozoic
mafic dykes cross-cut the Neoproterozoic Aksu Group, cropping out mainly in the south-
western part of Aksu city (Figure 2). The Early Permian (ca. 290–280 Ma) A-type granitoids
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are widespread across South Tianshan and show both A1 and A2 affinities, which have
been interpreted to be related to the Tarim mantle plume [35] or formed in a post-collisional
extension setting [36]. Basaltic lavas and mafic–ultramafic complexes (295–285 Ma) are
exposed in the southernmost part of Chinese South Tianshan, e.g., the Keping and Bachu
areas. These rocks show oceanic island-arc basalt (OIB)-like features, and are accepted to
be related to the Permian Tarim mantle plume [37,38].
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Figure 2. Simplified geological maps of the Aksu terrane with locations of samples (modified
from [39,40]), as well as published ages for the diabase dykes and Precambrian schist [39–44].

The Aksu district is localized in the southwestern part of Chinese South Tianshan
(Figure 1c). The Precambrian basement belts are composed mainly of the Neoprotero-
zoic Aksu Group and Ediacaran Sugetbrak Formation [41]. The Aksu Group is mainly
exposed in southwestern Aksu (Figure 2), including greenschist, blueschist, psammitic
schist, pelitic schist, and metagreywacke [39,42]. The blueschist protolith has been dated
to be of ca. 806–754 Ma based on whole-rock 40Ar/39Ar and detrital zircon U–Pb dating
methods [39,40]. The pelitic schist has a 40Ar/39Ar age of 756–741 Ma [43] or detrital
zircon U–Pb age of 730 Ma [42]. The psammitic schist has a detrital zircon U–Pb age of
ca. 791 Ma [43]. The deformed sequence of the Aksu Group is crosscut by a series of
NW-striking diabase dykes (Figures 2 and 3a), which have U–Pb zircon ages of 759 ± 7 Ma
(SHRIMP; [27]) and 757 ± 9 Ma (LA–ICP–MS; [44]). In addition, amphibole from the mafic
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dyke yielded a 40Ar/39Ar plateau age of 744.5 ± 2.8 Ma [41]. These different ages indicate
that the crystallization age of the Aksu diabase dyke is most probably Neoproterozoic
(~760–745 Ma; [45]). In addition, these diabase dykes show an enrichment of large-ion
lithophile element (LILE) and light rare-earth element (LREE), along with depletion of high-
field-strength element (HFSE) and heavy rare-earth element (HREE), which are similar to
arc-like geochemical signatures [27]. The large range of radiogenic 87Sr/86Sr(i) from 0.7050
to 0.7074, and 143Nd/144Nd with initial εNd(t) values ranging from −6.4 to 1.5, further
indicate that they might have been derived from a metasomatized SCLM source [27,45].
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Figure 3. Photographs and photomicrographs showing the occurrence and mineralogy of the diabase
dykes in the Aksu area. (a,b) Neoproterozoic diabase dykes intruding the deformed Neoproterozoic
Aksu Group; (c) hand specimen of the Aksu Neoproterozoic diabase; (d,e) photomicrograph of
diabase showing the mineral assemblage of the diabase under cross-polarized light. Abbreviations:
Pl = plagioclase, Cpx = clinopyroxene.
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3. Field Geology and Sample Description

Field investigation and sample collection focused on the SCLM-derived Neoprotero-
zoic diabase dykes in southwestern Aksu (Figures 1b and 2). The diabase dykes have
NW–SE strikes with variable extended widths ranging from 2 to 10 m (Figures 2 and 3a–c),
intruding into quartz mica schist and chlorite schist of the Neoproterozoic Aksu Group
(Figure 3a–c). Five fresh diabase samples were collected from the Aksu diabase dykes
(Figures 2 and 3a,d). The collected diabase samples were greyish-green in color and free
of alteration (Figure 3e). They were composed of plagioclase (50–60%), clinopyroxene
(30–35%), and hornblende (5–10%), with some magnetite and pyrite (Figure 3f). Sampling
coordinates and petrological descriptions of the diabase samples are given in Table 1.

Table 1. Major oxide (wt.%) and trace element (ppm) compositions of the Aksu Neoproterozoic
diabase dykes, Chinese South Tianshan.

Sample AKSQ-15 AKSQ-16 AKSQ-18 AKSQ-22 AKSQ-23

Coordinates N41◦10′05′′,
E80◦03′40′′

N41◦10′07′′,
E80◦03′37′′

N41◦10′08′′,
E80◦03′36′′

N41◦10′11′′,
E80◦03′36′′

N41◦10′10′′,
E80◦03′39′′

SiO2 48.01 47.26 47.38 48.1 47.81
TiO2 2.775 2.801 2.803 2.761 2.811

Al2O3 14.02 13.87 13.95 14.05 13.93
TFe2O3 14.3 14.53 14.54 14.29 14.57
MnO 0.242 0.233 0.233 0.237 0.234
MgO 4.78 4.88 4.89 4.76 4.85
CaO 7.8 8.23 8.08 7.63 7.83

Na2O 3.53 3.84 3.45 3.56 3.49
K2O 1.55 1.32 1.66 1.67 1.53
P2O5 0.943 0.946 0.902 0.95 0.925
LOI 1.53 1.74 1.87 1.82 1.85
Mg# 39.84 39.85 39.99 39.76 39.74
Total 99.72 99.92 100.01 100.03 100.03

Sc 29.5 29.6 32.5 32 32.3
V 366 366 224 214 231
Cr 22 22.6 22.1 20.8 23
Co 57.3 55 48 46.8 45
Ni 21.6 22.4 22.6 20.9 21.7
Cu 41.1 41.6 38 36.2 37.6
Zn 155 151 129 131 128
Ga 21.6 21.3 20.5 20.3 20.7
Rb 45.6 33.2 28.4 28.6 26.9
Sr 489 548 447 355 377
Y 38.4 37.2 37.4 38.3 38.3
Zr 160 144 146 152 156
Nb 5.9 5.58 5.48 5.7 5.86
Cs 0.447 0.373 0.398 0.401 0.422
Ba 1691 1864 1736 1708 1709
La 33.6 32 28.1 29.2 28.6
Ce 72.6 68.9 59.7 64.1 54
Pr 9.35 8.95 8.22 8.56 8.6
Nd 44.7 42.9 38 40 38.9
Sm 10 9.68 8.56 8.98 8.77
Eu 3.96 3.89 3.67 3.84 3.82
Gd 9.32 9.07 8.85 9.18 8.99
Tb 1.37 1.35 1.22 1.28 1.29
Dy 8.47 8.25 7.41 7.64 7.71
Ho 1.68 1.63 1.47 1.54 1.51
Er 4.43 4.23 3.78 3.95 3.96
Tm 0.617 0.592 0.527 0.548 0.552
Yb 3.79 3.68 3.25 3.35 3.38
Lu 0.565 0.543 0.472 0.489 0.489
Hf 4.85 4.5 3.65 3.92 3.95
Ta 0.461 0.431 0.349 0.371 0.37
Pb 6.49 5.98 4.34 4.13 4.2
Th 2.35 2.15 1.54 1.64 1.68
U 0.44 0.394 0.335 0.377 0.377

Eu/Eu* 1.24 1.25 1.28 1.28 1.31
Notes: Total iron as TFe2O3; TFeO = TFe2O3 × 0.8998; Mg# = MgO/(MgO + TFeO) × 100 in atomic ratio;
REE—rare earth elements; LOI = loss on ignition; Eu/Eu* = 2 × EuN/(SmN + GdN), subscript "N" denotes
normalization to chondrites (Sun and McDonough,1989 [46]).

A large amount of subhedral pyrite grain was found in our diabase samples (Figure 4).
Pyrite occurs as an interstitial phase in plagioclase and clinopyroxene (Figure 4), and it is
irregular in shape and porous (100–300 µm), suggesting a hydrothermal origin.
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4.1. Whole-rock Major and Trace Elements 

Figure 4. Photomicrographs showing the sulfide phases in the diabase dykes of the Aksu area.
(a,b) Pyrite grains are generally intergrown with magnetite and silicates in plagioclase and clinopy-
roxene; (c,d) subhedral pyrite grains enveloped by magnetite rims; (e,f) pyrrhotite, pyrite, and
magnetite within plagioclase of the diabase dykes. Abbreviations: Pl = plagioclase, Cpx = clinopyrox-
ene, Py= pyrite, Po = pyrrhotite, Mt = magnetite.

Pyrite grains are generally intergrown with magnetite and silicate minerals, and a few
of them contain magnetite rims (Figure 4c,d), suggesting dissolution of sulfide melt by
a volatile phase. The textural relations among pyrrhotite, pyrite, and magnetite suggest
a significant associated transfer of sulfur and chalcophile metals such as Cu and Au to
hydrothermal fluids (Figure 4e,f) [47].
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4. Analytical Methods
4.1. Whole-Rock Major and Trace Elements

Five fresh Neoproterozoic diabase samples lacking signs of alteration or wall-rock
assimilation were crushed in an agate mill to a powder of 200 mesh size, and they were
selected for whole-rock major and trace element analyses at the Institute of Geochemistry,
Chinese Academy of Sciences (IGCAS). Before the analyses, all samples were inspected
using a general magnifier to select only fresh surface devoid of any weathering (alteration).
Major elements were determined by X-ray fluorescence spectrometry (ARL Perform’ X4200)
methods. Analytical uncertainties were <5% for major elements. Trace elements were
analyzed using inductively coupled plasma mass spectrometry (ICP-MS) (Plasmaquant
MS elite), with analytical uncertainties below 10%. The analytical protocol was similar to
that described in [48].

4.2. Whole-Rock PGE Elements

Four samples of Neoproterozoic diabase were analyzed for their platinum group
element (PGE; Pt, Pd, Ru, Rb, Rh, and Ir) geochemistry at the IGCAS. The PGE elements
were determined by the isotopic dilution method coupled with ICP-MS (Plasma Quant
®MS) analysis. Pt, Pd, Ru, and Ir were determined by isotopic dilution, and 194Pt was
used as an internal standard for calculating the abundance of the single isotope element
Rh. Detailed analytical procedures are described in [49]. The total procedural blanks were
lower than 0.0101 ng/g for Pd, 0.0132 ng/g for Ru, 0.0012 ng/g for Os, 0.0053 ng/g for Ir,
0.0019 ng/g for Pt, and 0.0021 ng/g for Rh. Reference standards of TDB-1 (diabase) were
used to monitor the accuracy, which was above 90%.

4.3. In Situ LA-ICP-MS of Elements

In situ trace element concentrations of pyrite from the diabase samples were deter-
mined using LA-ICP-MS (Coherent, Germany) at the IGCAS. The analytical instrumenta-
tion was a Coherent Compex-Pro 193 nm ArF (Coherent, Germany) excimer laser ablation
system attached to an Agilent 7700x ICP-MS (Agilent, USA). The operating condition and
analytical procedure applied to sulfide were described in [50]. Spot ablation was carried
out using a size of 26 µm at 3 J/cm2 and a 5 Hz repetition rate. Each analysis comprised a
background acquisition of 30 s (gas blank) and a 60 s analysis of the sample. The integrated
count data to concentrations for lithophile elements were calibrated and converted by GSD-
1G. Sulfide reference material MASS-1 was analyzed as an unknown sample to check the
analytical accuracy [51]. The background and analysis signals comprised off-line selection
and integration by Excel-based software IC-PMS DataCal (version 6.37), along with time-
drift correction and quantitative calibration for trace element analysis [52]. Concentration
data and detection limit calculations were performed following the protocol in [53].

5. Results
5.1. Whole-Rock Major and Trace Elements

Whole-rock major and trace element compositions of the diabase samples are listed
in Table 1. The Aksu diabase samples possess low loss on ignition (LOI) values rang-
ing from 1.53 to 1.87 wt%. The samples have low SiO2 (47.26–48.1 wt%) and K2O +
Na2O (5.02–5.23 wt%) values, mostly plot within the alkaline series field of a TAS dia-
gram (Figure 5a), and exhibit sub-alkaline characteristics on a Nb/Y vs. Zr/TiO2 plot
(Figure 5b). The Aksu Neoproterozoic diabase samples exhibit high (La/Yb)N (2.01–6.03)
ratios, and they display enrichment of LREE with flat HREE (Figure 6a). In primitive
mantle-normalized diagrams, the diabase samples are enriched in large-ion lithophile
elements (LILE) such as Rb, Ba, and Th, and depleted in HFSEs, with remarkable negative
Nb and Ta anomalies (Figure 6b).
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Figure 5. Rock classification diagrams. (a) Total alkali versus silica (TAS) diagram (from [54]).
(b) Nb/Y versus Zr/Ti diagram (modified from [55]). (c) SiO2 versus FeOT/MgO plot [56]. (d) K2O
versus silica diagram [57]. Data sources: Neoproterozoic gabbro [27,45]. Data can be found in
Supplementary Table S1.
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Figure 6. Chondrite-normalized REE patterns (a) and primitive mantle-normalized multiple-trace-
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and 290 Ma ocean island-arc basalt (OIB)-like diabase in the Aksu area are from [38]. Literature data
are compiled in Supplementary Table S2.



Minerals 2023, 13, 326 10 of 20

5.2. Whole-Rock PGE Contents

Whole-rock platinum group element (PGEs) results are listed in Table 2. The Aksu
Neoproterozoic diabase exhibits low PGE contents (ΣPGEs= 0.36–0.65 ppb), with Pt at
0.02–0.23 ppb, Pd at 0.04–0.44 ppb, Ir at 0.02–0.12 ppb, Ru at 0.21–1.41 ppb, and Rh at
0.24–1.45 ppb. The primitive mantle-normalized PGE patterns are roughly horizontal for
the Aksu diabase, with an anomalous trough at Pt and peaks at Rh and Pd (Figure 7a).
They are markedly contrasted with PGE patterns of regional mafic dykes (Zhengyuan and
Yilgarn Craton lamprophyres), Victoria gabbro (Figure 7b [58–60]), and felsic intrusions
(Tuwu porphyry Cu deposits, Figure 7b, [61]). In addition, the sloped patterns of diabase
are different from those of orogenic Au deposit (Figure 7a) [5] and porphyry Cu–Au (PGE)
deposit (Figure 7b) [62].

Table 2. PGE, Cu, Ni, and S concentrations in the Aksu diabase dykes, Chinese South Tianshan.

Sample
No.

Pt
(ppb)

Pd
(ppb)

Ir
(ppb)

Ru
(ppb)

Rh
(ppb)

ΣPGE
(ppb)

Au
(ppb)

Cu
(ppm)

S
(ppm) Ru/Ir Ru/Pt Pd/Ir Pd/Pt

AKSQ-15 0.064 0.182 0.008 0.097 0.011 0.362 <1 41.1 2446 12.30 1.52 22.75 2.85
AKSQ-16 0.071 0.373 0.008 0.091 0.014 0.5573 <1 41.6 2735 10.95 1.28 46.62 5.27
AKSQ-18 0.020 0.275 0.015 0.142 0.090 0.5425 <1 38 2560 9.23 7.11 18.33 13.75
AKSQ-22 nd 0.243 0.008 0.132 0.011 0.3942 <1 36.2 2022 15.92 13.21 30.37 24.26
AKSQ-23 0.313 0.219 0.007 0.104 0.010 0.6529 <1 37.6 1955 15.46 0.33 31.29 0.70

TDB-1,
obtained 4.672 22.059 0.044 0.411 0.661 — — — — — — — —
Primitive
mantle * 7.1 3.9 3.2 5.0 0.9 — — — — — — — —

* Primitive mantle values are from [46]. “nd” means the content is below the minimum detection limit.

Minerals 2023, 13, x FOR PEER REVIEW 11 of 23 
 

 

Figure 6. Chondrite-normalized REE patterns (a) and primitive mantle-normalized multiple-trace-
element diagrams (b) for Aksu Neoproterozoic diabase dykes. Data sources: N-MORB; E-MORB; 
OIB values are from [27,45]; and 287 Ma sub-continental lithospheric mantle (SCLM)-like diabase 
and 290 Ma ocean island-arc basalt (OIB)-like diabase in the Aksu area are from [38]. Literature data 
are compiled in Supplementary Table S2. 

5.2. Whole-rock PGE Contents 
Whole-rock platinum group element (PGEs) results are listed in Table 2. The Aksu 

Neoproterozoic diabase exhibits low PGE contents (ΣPGEs= 0.36–0.65 ppb), with Pt at 
0.02–0.23 ppb, Pd at 0.04–0.44 ppb, Ir at 0.02–0.12 ppb, Ru at 0.21–1.41 ppb, and Rh at 0.24–
1.45 ppb. The primitive mantle-normalized PGE patterns are roughly horizontal for the 
Aksu diabase, with an anomalous trough at Pt and peaks at Rh and Pd (Figure 7a). They 
are markedly contrasted with PGE patterns of regional mafic dykes (Zhengyuan and Yil-
garn Craton lamprophyres), Victoria gabbro (Figure 7b [58–60]), and felsic intrusions 
(Tuwu porphyry Cu deposits, Figure 7b, [61]). In addition, the sloped patterns of diabase 
are different from those of orogenic Au deposit (Figure 7a) [5] and porphyry Cu–Au (PGE) 
deposit (Figure 7b) [62]. 

Table 2. PGE, Cu, Ni, and S concentrations in the Aksu diabase dykes, Chinese South Tianshan. 

Sample No. Pt (ppb) Pd 
(ppb) 

Ir (ppb) Ru 
(ppb) 

Rh 
(ppb) 

ΣPGE 
(ppb) 

Au 
(ppb) 

Cu 
(ppm) 

S 
(ppm) 

Ru/Ir Ru/Pt Pd/Ir Pd/Pt 

AKSQ-15 0.064 0.182 0.008 0.097 0.011 0.362 <1 41.1 2446 12.30 1.52  22.75 2.85  
AKSQ-16 0.071 0.373 0.008 0.091 0.014 0.5573 <1 41.6 2735 10.95 1.28  46.62 5.27  
AKSQ-18 0.020 0.275 0.015 0.142 0.090 0.5425 <1 38 2560 9.23  7.11  18.33 13.75 
AKSQ-22 nd 0.243 0.008 0.132 0.011 0.3942 <1 36.2 2022 15.92 13.21 30.37 24.26 
AKSQ-23 0.313 0.219 0.007 0.104 0.010 0.6529 <1 37.6 1955 15.46 0.33  31.29 0.70  

TDB-1, 
obtained 4.672 22.059 0.044 0.411 0.661 — — — — — — — — 

Primitive 
mantle * 

7.1 3.9 3.2 5.0 0.9 — — — — — — — — 

* Primitive mantle values are from [46]. “nd” means the content is below the minimum detection 
limit. 

 
Figure 7. Primitive mantle-normalized PGE and Au contents for the Aksu Neoproterozoic diabase 
dykes. Data sources: Danba gold deposit [3], Porphyry Cu–Au deposits [62], Zhengyuan lampro-
phyres [59], Victoria gabbro [58], Yilgarn Craton lamprophyres [60], and Tuwu felsic intrusions [61]. 
Literature data are compiled in Supplementary Table S2. 

Figure 7. Primitive mantle-normalized PGE and Au contents for the Aksu Neoproterozoic diabase
dykes. Data sources: Danba gold deposit [3], Porphyry Cu–Au deposits [62], Zhengyuan lampro-
phyres [59], Victoria gabbro [58], Yilgarn Craton lamprophyres [60], and Tuwu felsic intrusions [61].
Literature data are compiled in Supplementary Table S2.
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5.3. In Situ LA-ICP-MS of Elements

In situ LA-ICP-MS element compositions are listed in Supplementary Table S3. Only
12 of the 28 spot analyses revealed detectable gold. The gold content in pyrite varied
from below the detection limit to 0.34 ppm with a mean of 0.04 ppm, while arsenic varied
from 12.54 to 603 ppm (mean=244 ppm). The Au/Ag ratios of pyrite from the Aksu
Neoproterozoic diabase were between 0.01 and 0.1 (Figure 8) Moreover, these pyrite grains
were rich in a host of elements such as As, Bi, Co, Mn, Ni, Sb, Pb, and Ti (Figure 9).
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6. Discussion
6.1. Metasomatized SCLM Source for the Aksu Diabase

The Aksu diabase dykes show low LOI values (1.53–1.87 wt%), suggesting that these
dykes were largely unaffected by post-magmatic alteration. The Aksu diabase dykes have
limited variation in Th contents (1.54–2.35 ppm) and show no correlation between Nb/La
and Nb/Th ratios (Figure 10a), suggesting that crustal contamination had limited effect on
their composition during magma ascension. In addition, these diabase samples have higher
Ba (1708–1864 ppm) and Sr (355–548 ppm) contents than the average continental crust
(Ba = 390 ppm, Sr = 325 ppm; [72]), further suggesting that the potential influence of crustal
contamination can be excluded. This is also supported by the low radiogenic Pb isotopic
compositions of these diabase dykes (206Pb/204Pb: 16.54 ~ 16.92, 207Pb/204Pb: 15.32 ~ 15.40,
208Pb/204Pb: 37.18 ~ 37.37) [73], which are lower than the mantle mean values of 17.51,
15.43, and 37.63, respectively [74]. The diabase samples show relatively low Mg# (39–40), Ni
(20.9–22.6 ppm), and Cr (20–23 ppm) contents, lower than primary mantle-derived magmas
(Figure 7a). Such compositional variations indicate that their parental magmas might have
been influenced by fractionation crystallization. The Aksu Neoproterozoic diabase dykes
exhibit positive Eu anomalies (Eu/Eu* = 1.28–1.31), indicating plagioclase fractionation
(Figure 6). This conclusion is consistent with the petrological observation that the main
components of diabase samples are clinopyroxene and plagioclase (Figure 3f). Moreover,
these diabase dykes show high concentrations of fluid-mobile trace elements such as LILE
and LREE, and distinctly negative Nb, Ta, Zr, Hf, and Ti anomalies, consistent with deriva-
tion from metasomatic SCLM sources. In addition, the similar elemental patterns of the
Early Permian (287 Ma) diabase in Keping are interpreted to be derived from a metasomatic
SCLM (Figure 6) [38]. This interpretation agrees with the radiogenic 87Sr/86Sr(i) from 0.7050
to 0.7074, 143Nd/144Nd ratios of 0.511933–0.512346, and initial εNd(t) values ranging from
−6.4 to 1.5 of these diabase dykes [27,45], indicating that their parental magma may have
been derived from subduction-related metasomatized SCLM [75,76]. Moreover, the diabase
samples have relatively high Th/Yb ratios and low Nb/U ratios (Figure 10c,e,f), indicating
that the SCLM was metasomatized by slab-derived fluids [76,77]. The high Th/Yb ratios
and low Nb/U ratios are similar to mafic dyke samples from the SCLM of Jiaodong District,
which experienced fluid-related metasomatism. Collectively, post-magmatic alteration,
crustal contamination, and partial crystallization processes can be surmised to have had
little effect on the composition of the studied diabase sample, the magma evolution of
which involved subduction-related fluid metasomatism and limited contamination of the
continental crust.
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(a) Nb/La versus Nb/Th diagram, showing an uncontaminated trend. (b) Elevated Th/Yb at a given
Nb/Yb indicates the involvement of subducted components (modified from [78]). (c) Nb/U versus
Nb diagram outlines the subduction-related fluid metasomatism from the mantle component [79].
(d) Ba versus Nb/Y plot showing the modification by subduction slab fluids (from [80]). Data
sources: Neoproterozoic gabbro [27,45], Early Permian diabase (OIBs and SCLM) [38], Jiaodong mafic
dyke [81], and Global MORB [82,83]. Literature data are compiled in Supplementary Table S1.

6.2. Mantle Source Evolution

The PGEs and Cu have distinctly different partition coefficients between sulfide and
silicate melt, e.g., DPGE (105–106) > DCu (500–1500) [84]. Thus, sulfide saturation will
increase Cu/Pd ratios so they are higher than in primitive mantle (~7000) [85]. The Cu/Pd
ratios of the studied diabase dykes are significantly higher than those of the primitive
mantle (Figure 8a,b), indicating that the diabase dyke rocks may have crystallized from
S-saturated melts. In contrast, evolving magma under S-undersaturated melts may lead
to elevated Pd/Ir ratios [86]. The Aksu Neoproterozoic diabase dykes have an extremely
narrow range of Pd/Ir ratios (Figure 11b), which can be easily distinguished from the
S-undersaturated basalt from the Deccan Traps [87]. This evidence further suggests that the
parent magma of the diabase dykes is likely to have been S-saturated. Meanwhile, when the
magma reaches sulfide saturation, the content of Cu in the magma will decrease, whereas
the content of Zr will increase. In the Cu versus Zr diagram, the negative correlation
between the Cu and Zr contents of these diabase dykes (Figure 11c) suggests the significant
sulfide saturation of diabase dykes during magma evolution. In addition, these diabase
dykes share a similar evolution trend to the sulfide-saturated Tarim basalt, Jiaodong
lamprophyres, and MORBs (Figure 11c) [5,81,88]. This evolution trend may reflect sulfide
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saturation of the mafic dykes during magma evolution. S-saturated magmas may lead
to low Cu/Zr ratios of below 1 [89]. The Cu/Zr ratios of our diabase dykes are <0.5
(Figure 11d), analogous to those of sulfide-saturated Tarim basalt, Jiaodong lamprophyres,
and MORBs [81,82,88]. In comparison, the Deccan Trap basalts show high Cu/Zr ratios
and show positive correlation between Cu and Zr contents, meaning they are interpreted
to be mainly crystallized from S-unsaturated melts (Figure 11c,d) [89]. These results further
indicate that the parental melts of the diabase dykes could have been sulfide saturated.
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The S-saturation of magma can be caused by several different processes, such as
crustal contamination, magma mixing, and low-degree partial melting. Theoretically,
crustal contamination or magma mixing can cause the segregation of an immiscible sulfide
melt [81]. The Ni/MgO and Cu/Zr ratios are also a good indicator to determine whether
the parental magmas of mafic rocks met segregating magmatic sulfides during their ascent
in the crust [87]. This is because Ni and Cu are partitioned into segregating magmatic
sulfides, resulting in depletion of Ni and Cu in the parental magma [87]. However, the
Ni/MgO ratios of the analyzed diabase dykes do not correlate with Cu/Zr ratios (Figure 8e),
indicating that no segregation magmatic sulfides occurred during their melt evolution.
This result is consistent with the absence of magmatic sulfides in these diabase dykes
(Figure 3f). In addition, the variations in Pd/Zr and Cu/Pd ratios are sensitive to sulfide
segregation because the partition coefficients of PGE in magmatic sulfides are two orders
of magnitude larger than those of Cu and Ni [90]. The limited variation of Pd/Zr and
Cu/Pd ratios in the studied diabase dykes (Figure 11f) further implies that the influence of
crustal contamination and magma mixing on S-saturation and sulfide segregation could
be excluded. This is consistent with the above results demonstrating that the diabase
melt did not experience significant crustal contamination. It also conforms to the fact
that the major element data of the studied diabase dykes did not abruptly increase or
decrease, indicating that no magma mixing occurred. In addition, the SCLM-derived
Jiaodong lamprophyres also show little change in Pd/Zr and Cu/Pd ratios (Figure 11f),
which were explained initially as S-saturated, with no sulfide segregation caused by crustal
contamination [81]. The variation in Pd/Zr and Th/Nb ratios of the Tarim basalt and
East Pacific MORB (Figure 11f) were explained as S-saturated, with sulfide segregation
accompanying magma mixing [83,88]. Therefore, the crustal contamination and magma
mixing did not trigger sulfur saturation and sulfide segregation for the diabase magma in
the crust. Low-degree partial melts are usually S-saturated as they leave the mantle, and
they produce chalcophile-depleted melt [91]. The PGE patterns of the Aksu Neoproterozoic
diabase dykes are markedly different from the Au–sulfide ores from the porphyry Cu–Au
and orogenic Au deposit (Figure 7a) and the high-degree partial-melting felsic intrusions of
the Tuwu Cu–Au deposit (Figure 7b). This result implies their derivation from low-degree
melting of the SCLM source. Moreover, the Au, Pd, and Pt contents of these diabase
dykes are lower than the SCLM-derived low-degree partial melting mafic dykes of Yilgarn
Craton and Victoria gold province [58,60], which further indicates that the chalcophile
elements are locked in the residue phase by low-degree partial melting of a metasomatized
SCLM. Furthermore, the diabase dykes have low PGEs and are strongly depleted in Au
contents (Figure 7a,b), indicating that their magmas were produced from S-saturated melts
derived from low-degree partial melting of the SCLM. In this scenario, the formation of the
Aksu diabase dykes will have left residual sulfide and chalcophile elements (PGEs, Au) in
the SCLM source region, leading to elevated sulfide and Au contents in the SCLM, thus
increasing the fertility of the SCLM beneath South Tianshan.

6.3. Contribution of Metasomatic SCLM on Regional Gold Metallogeny

Metasomatic processes can result in enrichment of Au of the SCLM, as evidenced by
native Au nanoparticles (Patagonia [6]; Beiya [92]) and the high gold contents in mantle
xenoliths elsewhere [82]. Neither metasomatized SCLM nor mantle-derived magmas
have Au contents remarkably higher than that of global mantle peridotite (1.2 ppb) or
normal mafic magmas such as MORBs (1–4 ppb) [82]. Although detailed inspection of
the pyrite grains did not reveal native Au nanoparticles (Figure 3), the relatively high Au
concentrations (up to 0.34 ppm) obtained by LA-ICP MS analyses indicate a discernible
Au addition to their source. It should be noted that these pyrites contain significant
amounts of Ag (up to 17.5 ppm, Supplementary Table S3). The Au/Ag ratios of pyrite
from the analyzed diabase dykes are between 0.01 and 0.08, while the Au/Ag ratios of the
Patagonian mantle sulfides vary from 0.02 to 0.96 (Figure 8) [6]. Thus, the Au/Ag ratios
of the pyrite and the mantle sulfides are of a similar magnitude. Such similar metal ratios
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indicate that the metasomatized SCLM may exert important control on the formation of
the pyrite and gold contents in these diabase dykes. Furthermore, the Au/Ag ratios of
the pyrite in the analyzed diabase dykes are similar to those of gold-bearing sulfides of
the Awanda gold deposit (Figure 8; Au/Ag~0.01–4.59, our unpublished data). Similar
Au/Ag ratios of gold-bearing sulfides are also observed in the lode gold deposit in the
Jiaodong gold province (Figure 8; Supplementary Table S4). This similarity suggests that
metasomatized SCLM may have contributed additional Au to the formation of the lode
gold deposits in the region.

Moreover, pyrite of the Aksu diabase dykes is enriched in a host of trace elements
such as Ti, Co, Ge, As, Ag, Pb, and low Au contents (0.01–0.34 ppm) while depleted in other
metals such as V, Mn, Ga Ti, Mo, and Bi (Figure 9). In addition, their distribution pattern
is comparable to those from the gold-bearing sulfides of the Sawayaerdun gold deposit
(Figure 9), indicating that the metasomatized SCLM may have contributed ore metals into
the ore-forming fluid of the Sawayaerdun gold deposit.

7. Conclusions

The evolution of the SCLM-sourced Aksu Neoproterozoic diabase magma involved
subduction-related fluid metasomatism with limited crustal contamination. Diabase
magma might have been derived from low-degree partial melting an under S-saturated
condition, leaving PGEs and Au in the residual source region. Metasomatized SCLM may
have contributed additional ore metals to the lode gold deposits in Chinese South Tianshan.
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Compilation of PGE, Cu, Ni, and S concentrations in ore and ore-related rocks from porphyry Cu–Au
deposits and lode gold provinces worldwide; Table S3: In situ trace elements of pyrites from the
Aksu Neoproterozoic diabase dykes and lode gold deposits in Chinese South Tianshan (data in ppm);
Table S4: Compilation of in situ Au and Ag contents of pyrite from Patagonian mantle xenoliths and
Jiaodong gold provinces (data in ppm).
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