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Abstract: The accurate description of micro-/nanopores in deep coal reservoirs plays an important
role in evaluating the reservoir properties and gas production capacity of coalbed methane (CBM).
This work studies nine continuous samples of high–rank coal from the Daning–Jixian area of the
Ordos Basin. Maceral analysis, proximate analysis, field emission scanning electron microscopy (FE-
SEM), low-pressure CO2 adsorption (LPA), low-temperature N2 adsorption (LTA) and high-pressure
methane adsorption (HPMA) experiments were conducted for each sample. The fractal dimension (D)
of the LPA data was calculated by using the micropore fractal model. The characteristics of the deep
coal reservoir pore structure, proximate analysis, relationship between maceral and fractal dimensions,
and gas adsorption capacity of the micropores are discussed. The results showed that the combination
of LPA with nonlocalized density functional theory (NLDFT) models and LTA with NLDFT models
can more accurately determine the pore size distribution of the micropores. The pore volume (PV)
and specific surface area (SSA) of the coals were distributed in the ranges of 0.059~0.086 cm3/g and
204.38~282.42 m2/g, respectively. Although the degree of micropore development varies greatly
among different coal samples, the pore distribution characteristics are basically the same, and the PV
and SSA are the most developed in the pore size range of 0.4–0.7 nm. Ash content (Ad) and mineral
composition are two major factors affecting micropore structure, but they have different impacts
on the fractal dimension. The higher the vitrinite content, moisture content (Mad) and Ad are, the
larger the micropore fractal dimension (D) and the stronger the heterogeneity of the pore structure.
Micropores account for 99% of the total SSA in coal, and most methane can be adsorbed in micropores.
The fractal dimension of micropores can be used to evaluate the pore structure characteristics. The
larger the fractal dimension, the smaller the micro-SSA and micro-PV of the coal sample. Fractal
analysis is helpful to better understand the pore structure and adsorption capacity of CBM reservoirs.

Keywords: coalbed methane; gas adsorption; micropores; pore structure distribution;
eastern Ordos Basin

1. Introduction

Coal, as a strong heterogeneous porous medium, has a complex pore structure and
has been widely studied [1,2]. According to the International Union of Pure and Applied
Chemistry (IUPAC) classification of pores in porous materials, pores can be divided into
micropores (<2 nm), mesopores (2–50 nm) and macropores (>50 nm) [3]. Some researchers
had speculated that most gas in coal may be adsorbed in the micropores [4–6]. CBM mainly
exists on the surfaces of micropores in the adsorbed state and connected pore and fracture
systems as gas migration and transmission channels [7–9]. CBM is produced continuously
through desorption, diffusion and seepage, and the diffusion and seepage that occur in
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micropores are the initial stages of gas desorption and migration. In the development of
CBM, more attention is drawn to the influence of the development scale and connectivity
of larger fractures (macroscopic fractures) on reservoir permeability, but the development
characteristics and connectivity of micropores may restrict and potentially affect CBM
desorption and migration [9–12].

The pore-related characteristics of coal include the porosity, specific surface area (SSA),
pore volume (PV), pore size distribution (PSD) and pore connectivity. The development
scale and distribution characteristics of pore fissure in coal reservoir determine the ad-
sorption and seepage capacity of CBM. The fine characterization of the development scale,
structure and distribution characteristics of pore in coal is the premise of studying the
desorption and migration of CBM at micro scale [3,13,14]. The existing characterization
methods of pore structure in coal mostly apply the characterization techniques of porous
solid materials, which can be roughly divided into three categories: fluid injection, im-
age analysis and nonfluid injection methods. The image analysis method identifies and
analyses pores in coal by using micro-observation techniques, such as scanning electron
microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy
(AFM), which can visualize the shape, size and distribution of pores [13,15–18]. In addition,
quantitative information, such as porosity and PSD, can be further obtained by combining
statistical methods; however, its accuracy depends on sample characteristics, instrument
performance and human factors. The fluid injection method adopts the injection of nonwet-
table fluid (mercury, for example) or gas (usually N2, CO2 and Ar) into the sample under
different pressures and then obtains the PSD, PV and SSA by applying a corresponding
theoretical calculation model via the fluid injection volume [19–23]. This method is easy
to operate and can obtain detailed pore information of coal rock, so it is widely used in
the pore characterization of coal reservoirs. However, the fluid injection method also has
some limitations, and this method is suitable for studying only open pores, not closed
pores. Nonfluid injection methods mainly include nuclear magnetic resonance (NMR),
small angle scattering (SAS) and computed tomography (CT); these methods are advanced
and accurate, but the cost of analysis is high [10,13,24–26].

Among these experimental methods, low-pressure CO2 adsorption (LPA) and low-
temperature N2 adsorption (LTA) are the most basic and widely used [9,27]; however,
the PV and SSA of coal micropores determined by the LTA method and LPA method and
different models may be contradictory and lack accurate verification [9]. For example,
the PV of micropores (micro-PV) and SSA of micropores (micro-SSA) determined by
the LPA method are much higher than those determined by the LTA method. The
SSA and PV calculated by the Dubinin–Astakhov (DA) model are usually smaller than
those calculated by the density functional theory (DFT) model, and the average pore
size calculated by the DA model is slightly larger than that calculated by the DFT
model [19,28–32]. Although many studies have focused on the PV and SSA of pores of
different scales in coal, few studies have investigated the characteristics of pores with
sizes of 0.35~2.0 nm [9,20]. In this paper, nine coal samples from the Daning–Jixian block
on the eastern margin of the Ordos Basin were selected as research objects. Through LPA
and LTA experiments, the micropore structure of deep coal reservoirs in the research
area was analysed, and the fractal dimension of the micropores in the coal samples was
calculated by using LPA data. High-pressure methane adsorption (HPMA) experiments
were carried out to measure the CH4 adsorption capacity of the coal samples. The
specific objectives were (1) to analyse and compare the accuracy of the calculation
results of different models (including the DA, Dubinin—Radushkevich (DR), grand
canonical Monte Carlo (GCMC) and nonlocal density functional theory (NLDFT) models);
(2) to explore the ratios of the PVs and SSAs of micropores and mesopores in deep coal
reservoirs; (3) to discuss the factors influencing micropore fractal dimensions in deep
coal reservoirs; and (4) to determine whether there is a strict correlation between the
micro-SSA, micro-PV and adsorption capacity of deep coal reservoirs.
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2. Geological Setting

The Ordos Basin is one of the main oil-bearing basins in China and has an area of
approximately 37 × 104 km2 [33,34]. According to the tectonic morphology, the basin
can be subdivided into 6 secondary tectonic units [8,33,35]. The study area is located
in the eastern margin of the Ordos Basin, spanning Shanxi and Shaanxi provinces, in
Daning County and Ji County (Figure 1a) [8]. As a part of the Ordos Basin, the study
area experienced a palaeogeographic evolution process in the late Carboniferous–middle
Permian, which was dominated by marine sedimentary surface continental marine
facies, transitional facies and fluvial clastic sedimentary facies, during which several
transgression events occurred. The study area can be divided into the Permian Shanxi
Formation, Taiyuan Formation and Carboniferous Benxi Formation [34,36,37]. The
lithology of the top of the Taiyuan Formation is micritic bioclastic limestone, indicating
that the sedimentary water was clear seawater with normal salinity, corresponding to
a typical shallow marine shelf sedimentary environment. The lower Benxi Formation
was formed in coastal and shallow shelf environments, and mudstone, grey and black
mudstone interbedded with thin sandstone, limestone and black coal were deposited
from bottom to top. The Shanxi Formation is characterized by rapid sedimentary phase
transformation and complex lithologic assemblages, and the Shanxi Formation can be
divided into the lower Shan2 member and the upper Shan1 member (Figure 1b) [33,34].
The main target strata are the No. 5 coal of the Shanxi Formation, No. 8 coal of the
Taiyuan Formation and No. 9 coal of the Benxi Formation, with the main body buried
2000–2400 m deep; the No. 5 coal seam has thicknesses of 1~3 m, and the No. 9 coal seam
has thicknesses of 5~12 m. This seam is the main exploration target layer of deep CBM.
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3. Samples and Experimental Methods

Nine fresh coal samples from recently drilled wells in the Daning–Jixian area on the
eastern margin of the Ordos Basin were selected; the coal-bearing strata, including the
Shanxi Formation and Benxi Formation, were formed in a transitional environment be-
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tween land and sea. All 9 coal samples are black semi-dark coals, including 5 samples
from the Shanxi Formation and 4 samples from the Benxi Formation (Figure 1b). To obtain
the basic physical characteristics of the coal samples, a Leica DM4P photometer micro-
scope was used for observations, and maximum vitrinite reflectance (Ro,max) measurements
(50 points) and maceral analyses (500 points) were carried out randomly under reflected
light with oil immersion, strictly following the national standards GB/T 6948−2008 and
GB/T 8899−2013, respectively. According to national standard GB/T 30732−2014, the
moisture content (Mad), ash content (Ad), volatile matter content (Vdaf) and fixed carbon
content (FCad) of the coal samples were analysed [38].

LPA and LTA experiments were performed using a Quantachrome Instruments Au-tosorb
IQ-MP automatic gas adsorption analyser according to national standards GB/T 21650.2-2008
and GB/T 21650.3-2011. The coal and rock samples were ground with an agate mortar
and screened to 60~80 mesh. The samples were weighed to approximately 2~3 g, and the
test temperatures were 273 K and 77 K. An FEI Helios 650 field emission scanning electron
microscopy (FE-SEM) device was used to image the coal and rock samples and observe their
pore morphology. The implementation standard was China’s petroleum industry standard
SY/T 5162-2014. The HPMA experiments were carried out by Gravimetric Isotherm Rig 3.
According to the national standard GB/T 19560-2008, the test sample size was approximately
80 g of dry sample of size 60–80 mesh, and the maximum pressure and temperature were set
to 25 MPa and 70 ◦C, respectively.

4. Results
4.1. Coal Rock Coal Quality Characteristics

The results show that the maturity increases with increasing coalification degree. The
Ro values of the collected coal and rock samples range from 2.93% to 3.30% (Table 1). The
average Ro values of the Shanxi Formation and Benxi Formation are 3.13% and 3.17%,
respectively, which are considered high-rank coals according to standard ISO 11760:2018.
The macerals are mainly vitrinite (54.0% average), which is considered a medium vitrinite
coal according to standard ISO 11760:2018, followed by inertinite (40.1% average), and
exinite is not visible. The mineral group is relatively low, accounting for 2.2–9.8% of the
coal rocks and are mainly clay minerals, silica, carbonate and iron sulfide (Table 1).

Table 1. Basic characteristics of coal samples.

Samples Strata Coal Seam Depth (m) Ro,max%
Proximate Analysis (%) Macerals (%)

Mad Ad Vdaf FCad Vitrinite Inertinite Minerals

PM-1 Shanxi 5 # 2195.3 2.93 1.1 12.6 7.2 79.1 62.7 27.8 9.5

PM-2 Shanxi 5 # 2195.7 3.13 0.8 10.3 6.8 82.2 52.9 39.5 7.6

PM-3 Shanxi 5 # 2196.5 3.14 0.8 5.8 6.8 86.7 41.8 52.5 5.7

PM-4 Shanxi 5 # 2197 3.30 1.0 6.8 6.5 85.7 62.7 35.1 2.2

PM-5 Benxi 8 # 2274.1 3.15 1.2 12.7 7.0 79.2 52 43.9 4.1

PM-6 Benxi 8 # 2274.4 3.15 0.8 12.6 10.1 76.5 64.3 26.6 9.1

PM-7 Benxi 8 # 2275.7 3.17 0.7 7.3 6.3 85.7 34.1 61.3 4.6

PM-8 Benxi 8 # 2276.4 3.21 1.3 6.4 6.6 85.8 58 38.5 3.5

PM-9 Benxi 8 # 2277.1 3.15 1.1 8.3 7.3 83.3 57.83 35.37 6.8

Note: Ro,max = maximum oil vitrinite reflectance; Mad = moisture content; Ad = ash content; Vdaf = volatile matter
content; FCad = fixed carbon content.

The moisture contents (Mad) of the coal rocks in the Shanxi and Benxi Formations range
from 0.7% to 1.3% (1.0% average). The ash contents (Ad) range from 5.8% to 12.7% (9.2%
average), corresponding to a low–medium ash coal according to standard ISO 11760:2018.
The volatile matter contents (Vdaf) range from 6.3% to 10.1% (7.2% average), which is low.
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The fixed carbon contents (FCad) range from 76.5% to 86.7% (82.7% average), which is very
high (Table 1). When coal is ranked high, FCad is usually negatively correlated with Ad [38].

4.2. Pore Morphology Characteristics

The pore morphology of coal is clearly observable by FE-SEM. According to the
origin and distribution characteristics of the pores, they can be divided into two cate-
gories: (1) organic pores, composed of gaseous pores and shrinkage pores/fractures, and
(2) mineral-related pores, consisting of intraparticle (IntraP) pores within minerals and
interparticle (InterP) pores between matrix particles [39,40]. Figure 2 shows the pore types
of 9 representative coal samples in FE-SEM images. The results show that organic pores
and InterP pores are widely distributed in the coal samples in the study area, with various
shapes, abundant nanopores and a small number of microscale pores/cracks (Figure 2a,b).
The gaseous pores are round, oval and slit-shaped and form a pore network (Figure 2c),
which greatly increases the pore connectivity and results in a good storage capacity. The
pore widths are mainly in the range of approximately 200 nm to 2.0 µm. Wang (2019) and
Li (2019) et al. show that the pore shapes are generally spherical for low rank coal and they
are mainly ellipsoidal for high rank coal [17,40]. High-order coal seams in the study area
are buried deep (>2000 m) and have a high degree of thermal evolution; under the high
pressure conditions of overlying strata, pores are compressed, forming various irregular
forms such as wedges and slits (Figure 2f,h,i). In contrast to the organic matter pores, the
pores in grains generally exist between mineral particles or between minerals and organic
matter and are polygonal and elongated (Figure 2f,g). FE-SEM images show that the clay
minerals are closely bound to the organic matter: most of the internal pores associated with
the organic matter are slit-shaped and form along a clay boundary; these pores are more
than 200 nm wide (Figure 2f). Among them, the clay minerals in PM-6 are vermicular and
stacked, which can produce shrinkage cracks (Figure 2d,f,g). The clay minerals in the PM-9
coal sample are massive and form a large number of polygonal grain pores (Figure 2g–i).

4.3. Quantitative Analyses of Pore Structure
4.3.1. CO2 Adsorption Isotherms

The LPA method to determine the pores in coal generally reveals monolayer adsorption
or micropore filling at the <2 nm scale [41–43]. The CO2 adsorption isotherms of the coal
samples are shown in Figure 3, which show similar characteristics. Their CO2 adsorption
capacity increases steadily with increasing pressure [44]. According to the IUPAC standards,
the CO2 adsorption isotherms of coal and rock samples all have typical type I isotherm
characteristics, indicating that all coal and rock samples have microporous properties.
Sample PM-8 (29.9 cm3/g STP) has the highest adsorption capacity for CO2, indicating
the highest microporosity, while sample PM-1 (21.6 cm3/g STP) has the lowest adsorption
capacity for CO2, indicating the lowest microporosity.

The DA, DR, GCMC and NLDFT models in ASiQwin software were used to cal-
culate the PV and SSA distribution of all coal and rock samples, and the results are
shown in the corresponding Table 2. The SSA and PV of the same coal sample vary
greatly under different models. As the DA and DR models are traditional macroscopic
thermodynamic models, they are based on Polanyi potential theory and Dubinin mi-
cropore filling theory [45,46]. The PVs calculated by the DA model and DR model are
0.078~0.113 cm3/g and 0.065~0.084 cm3/g, respectively. The SSAs obtained by the DR
model are 182.437~236.571 m2/g (Table 2). GCMC and NLDFT are molecular dynamics
models that describe the microscopic theory of fluid adsorption and phase behaviour
in narrow pores at the molecular level [47,48], the properties of adsorbed gas molecules
linked to their adsorption properties in pores of different sizes. The GCMC and NLDFT
models provide a more ac-curate method for pore size analysis. The PVs calculated by
the GCMC model and NLDFT model are 0.056~0.092 cm3/g and 0.062~0.092 cm3/g, re-
spectively, and the calculated SSAs are 187.447~277.147 m2/g and 209.408~291.810 m2/g,
respectively (Table 2).
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Table 2. The PV and SSA of LP-CO2/N2GA calculated by different models.

Model Parameters PM-1 PM-2 PM-3 PM-4 PM-5 PM-6 PM-7 PM-8 PM-9

CO2
adsorption

DR
PV (cm3/g) 0.065 0.071 0.076 0.075 0.075 0.073 0.084 0.079 0.077

SSA (m2/g) 182.437 199.568 214.939 212.133 211.343 204.318 236.571 222.042 216.809

DA PV (cm3/g) 0.078 0.086 0.083 0.090 0.082 0.079 0.113 0.094 0.092

GCMC
PV (cm3/g) 0.056 0.063 0.070 0.068 0.073 0.071 0.092 0.076 0.075

SSA (m2/g) 187.447 205.006 236.368 227.242 238.084 230.864 277.147 250.915 244.416

NLDFT
PV (cm3/g) 0.062 0.066 0.079 0.078 0.077 0.075 0.092 0.081 0.079

SSA (m2/g) 209.408 224.502 266.137 257.523 260.323 252.787 291.810 275.762 267.185

N2
adsorption

BET SSA (m2/g) 0.269 0.302 0.305 0.449 0.515 0.376 0.173 0.291 0.454

BJH
PV (cm3/g) 0.002 0.001 0.001 0.002 0.003 0.002 0.001 0.002 0.001

SSA (m2/g) 0.638 0.557 0.451 0.873 0.835 0.688 0.458 0.558 0.613

NLDFT
PV (cm3/g) 0.001 0.001 0.001 0.002 0.002 0.001 0.001 0.001 0.001

SSA (m2/g) 0.388 0.349 0.337 0.522 0.592 0.449 0.281 0.390 0.414

Total micropore
PV (cm3/g) 0.059 0.063 0.074 0.073 0.072 0.070 0.086 0.076 0.074

SSA (m2/g) 204.380 219.385 258.675 250.065 253.102 245.765 282.415 268.210 259.860

Note: DR = Dubinin—Radushkevich; DA = Dubinin–Astakhov; GCMC = grand canonical Monte Carlo;
NLDFT = Nonlocal density functional theory; BET = Brunauer–Emmett–Teller; BJH = Barrett—Joyner—Halenda;
PV = pore volume; SSA = specific surface area.

Although the PV and SSA measured by the DA, GCMC and NLDFT models are similar,
the PSD is obviously different, the PSD calculated by the GCMC model and NLDFT model
has multiple peaks, and the pore sizes are mainly 0.4–0.7 nm and 0.8–0.9 nm, respectively
(Figure 4). The DA calculation results show a single peak, and the pore sizes are mainly
between 1.5 and 3.5 nm. Because the thermodynamic properties of fluid in micropores
are very different from those in the free state, the critical point, freezing point and triple
point change [9]. However, the DA and DR models do not take into account the changes in
these parameters or the effect of pore shape on gas molecular aggregation, so the results
calculated by these models may be more biased. Blacher et al. (2000) and El-Merraoui
et al. (2000) also analysed and compared the activated carbon micropores of different
models, and the results showed that the NLDFT model was more reliable due to its smaller
fitting error [1,49]. Jie et al. (2018) measured isotherms and calculated the fit-ting error
of isotherms by comparing different models and determined that the fitting error of the
NLDFT model was smaller than that of the GCMC model [50]. Song et al. (2020) showed
that the fitting curves of the DR and DA models deviated greatly from the measured
isotherms, with relative errors of 27.2% and 18.4%, respectively [9]. However, the fitting
curves of the GCMC and NLDFT models are basically consistent, and the relative errors are
0.37% and 0.23%, respectively. These results show that the NLDFT model is more accurate
for analysing the PSD of micropores in coal under LPA.

4.3.2. N2 Adsorption Isotherm

The LTA isotherms of the coal and rock samples are shown in Figure 5, indicating
that the N2 adsorption volumes of all coal and rock samples are within 0.79~1.97 cm3/g.
According to the IUPAC classification, the main form of coal in the study area is type IV [3].
When the relative pressure p/p0 > 0.1, the adsorption curve increases rapidly, indicating
that these samples have a strong adsorption effect on N2. Initially, the adsorption curve
rises slowly with increasing pressure, indicating that the sample is slowly transformed
from monolayer adsorption to multimolecular adsorption. When p/p0 ≈ 1, the capillary
condensation effect leads to a sharp rise in the curve, and the coal sample does not show
adsorption saturation equilibrium, indicating that there are certain large pores in the coal
sample. For desorption branches, when p/p0 ≈ 0.5, the curve is above the adsorption
branch. In addition, when p/p0 ≈ 0.5, the curve shows a rapid decline; after this point, the
desorption branch and the adsorption branch basically coincide.
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The shape of the hysteresis loop can yield important information about the pore
structure. According to adsorption aggregation theory, different relative pressures on the
same pore lead to the formation of an adsorption ring between the adsorption curve and the
desorption curve during the agglomeration and evaporation processes, which are mainly
caused by the complex combination of different pore morphologies [13,44,51]. Pore types
can be divided by shape into cylindrical, ink bottle, parallel plate, slit, etc. Ac-cording
to the IUPAC classification of hysteresis loops, the hysteresis loops of the coal and rock
samples in the study area are mainly classified as the H3 type (Figure 5). The hysteretic
curves of all coal samples are similar to those of the H3 type. When the relative pressure is
low (p/p0 ≈ 0.5), the adsorption and desorption curves basically coincide, indicating that
the pore types are mainly cylindrical, conical and anvil-shaped. When p/p0 is large, there
is a slight hysteresis loop, indicating the existence of open pores.

ASiQwin software was used to calculate the experimental data of LTA. The Brunauer–
Emmett–Teller (BET), Barrett—Joyner—Halenda (BJH) and NLDFT models were used to
calculate the results, as shown in Table 2. The results of the NLDFT model and BJH model
are similar (Figure 6). The BJH model and NLDFT model were used to calculate PVs of
0.001~0.003 cm3/g and 0.001~0.002 cm3/g, respectively. The BET, BJH and NLDFT models
were used to calculate SSAs of 0.173~0.515 m2/g, 0.451~0.873 m2/g and 0.281~0.592 m2/g,
respectively. Groen et al. (2003) and Song et al. (2020) proved experimentally and theo-
retically that the DFT model is more accurate than other models. Considering the fitting
error and convergence of the pore size range [5,9]. Jie et al. (2018) determined that the total
PV and total SSA of pores obtained by the BJH model were generally slightly higher than
those obtained by the NLDFT model [50]. By comparing the fitting errors of the calculated
isotherms and measured isotherms, it is determined that the fitting errors of the NLDFT
model are less than those of the BJH model (Table 3) [52]. Because the anisotropy and
surface roughness of nanopores are considered in the NLDFT model, it is more accurate to
analyse the PSD of nanopores in coal.
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Table 3. Pore analysis results of the BJH and NLDFT models.

Samples

Model

BJH NLDFT

PV (cm3/g) SSA (m2/g) Fitting
Error (%) PV (cm3/g) SSA (m2/g) Fitting

Error (%)

PM-1 0.002 0.638 1.37 0.001 0.388 0.44

PM-2 0.001 0.557 0.84 0.001 0.349 0.16

PM-3 0.001 0.451 0.48 0.001 0.337 0.11

PM-4 0.002 0.873 0.94 0.002 0.522 0.16

PM-5 0.003 0.835 0.62 0.002 0.592 0.15

PM-6 0.002 0.688 0.83 0.001 0.449 0.19

PM-7 0.001 0.458 1.65 0.001 0.281 0.62

PM-8 0.002 0.558 0.92 0.001 0.390 0.34

PM-9 0.001 0.613 0.35 0.001 0.414 0.09
Note: NLDFT = Nonlocal density functional theory; BJH = Barrett—Joyner—Halenda; PV = pore volume;
SSA = specific surface area.

4.4. Pore Fractal Characteristics

Currently, the fractal dimension based on the high-pressure mercury injection method
and gas adsorption method is the most commonly used method to study reservoir het-
erogeneity [42,53,54]. However, due to the limitation of measurement accuracy and the
gas occurrence mechanism, the two methods are most applicable to the range of macro-
and mesopores and cannot accurately characterize the heterogeneity of micropores. Pre-
vious studies have shown that adsorbent molecules in micropores are usually filled with
micropores [55,56]. Jaroniec et al. (1993), via the adsorption test of microporous activated
carbon, determined that the pore size distribution of micropores is the core factor affecting
its heterogeneity [55]. According to the DA equation, the adsorption process of micropores
is the filling of their inner volume rather than the layered adsorption on the pore wall. The
pore packing degree θ was used to characterize the adsorption capacity:

θ =
n

nmax
=
∫ ∞

0
exp[−(Az/β)3]F(z)dz, (1)

where
A = RTLn(p0/p), (2)

and
z = 1/E0. (3)

In the above equations, θ is the packing degree of CO2 molecules in micropores; n
and nmax are, respectively, the amount and maximum amount adsorbed in the micropores,
cm3/g; A is the adsorption potential, kJ/mol; β is a similarity constant, which is related
to the adsorbent, 0.38; F(z) is the normalized distribution function; E0 is the characteristic
energy, kJ/mol; p/p0 is the relative pressure; z is the inverse of E0, mol/kJ; T is the
absolute temperature, K; and R is the universal gas constant, 8.314 J/(mol·K). According to
Jaroniec et al. (1993) [57], the normalized distribution function F(z) of z is represented by a
gamma distribution:

F(z) =
3ρv

Γ
( v

3
) ·zv−1·e−(ρz)3

, (4)

where
Γ(x) =

∫ ∞

0
tx−1e−tdt, (5)

where ρ and v are related parameters of the F(z) distribution function; ρ is the scale
parameter, kJ/mol; and v is the shape parameter. The analytical solution of the integral
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Equation (1) with the gamma distribution (Equation (5)) provides a very simple expression
for the overall adsorption θ:

θ =
n

nmax
=

[
1 +

(
A
βρ

)3
]− V

3

. (6)

According to Stoeckli et al. (2009) [58] research results on the relationship between
adsorption characteristic energy and pore size of micropores, empirical formulas for x and
z can be obtained as follows:

x = 15z + 2852.5z3 + 0.014z−1 − 0.75, (7)

and
J(x) = F(z)

dz
dx

. (8)

The combination of Equations (4), (7) and (8) provides the following expression for
the micropore size distribution J(x):

J(x) =
3ρv

Γ
( v

3
) · zv−1·e−(ρz)3

15 + 8557.5z2 − 0.014z−2 . (9)

According to Jaroniec (1993) [57], the following relationship between the micropore
size distribution function J(x) and the micropore dimension x is proposed:

lnJ(x) = (2 − D)lnx + C. (10)

In summary, the steps to calculate the fractal dimension of micropores by using CO2
adsorption data are as follows: First, the adsorption volume data are obtained by using
CO2 adsorption data and the DR equation; then, the parameters ρ and v are obtained
by nonlinear fitting, z is calculated by using the pore size distribution data, and then
Equation (9) is applied to obtain the pore size distribution function J(x), Finally, lnx and
lnJ(x) are fitted by Equation (10) to obtain the slope of the logarithmic curve, and the
fractal dimension D of micropores is further obtained.

Figure 7 shows the fitting curves of lnx and lnJ(x) of the CO2 adsorption samples.
The linear fitting slope, correlation coefficient (R2) and fractal dimension of each sample
are shown in the Table 4, and R2 is greater than 0.91. The D values of all coal and rock
samples are distributed between 2 and 3, which proves that they conform to fractal theory.
The D values are distributed between 2.4441 and 2.6646, with an average of 2.603, which
is basically the same as the results of Xiong et al. (2020) from their study on the coal
of the Shanxi, Taiyuan and Benxi Formations in the eastern Ordos Basin (D value is
2.63–2.80, with an average value of 2.75) and the results of Li et al. (2019) from their study
on lean coal and anthracite in the Qinshui Basin (D values are 2.38–2.63 and 2.31–2.68,
respectively) [44,54,59].

4.5. Methane Adsorption Characteristics

Numerous HPMA studies on coal have shown that the Langmuir equation is the most
straightforward and widely accepted model to describe the relationship between the gas
pressure and the amount of CH4 adsorbed on coal [60–63]. According to Langmuir theory,
the outer surface of the coal sample is uniform in terms of energy, CH4 molecules are
absorbed only on the outer surface of the coal sample in the form of a monolayer covering,
and the adsorption amount of CH4 depends on the SSA of the outer surface [64,65]. The
results show that the Langmuir volume (VL) and Langmuir pressure (PL) ranges of the
seven selected coal samples are 24.46~32.83 m3/t and 2.91~3.46 MPa, respectively (Figure 8).
Among them, the VL and PL of PM-7 are the largest, and the corresponding SSA and PV
of PM-7 are large, indicating that the micropores are well developed and provide a large
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amount of SSA. The VL and PL of PM-1 are the smallest, and the corresponding micro-
SSA and micro-PV are small. Previous studies have shown that the adsorbent–adsorptive
interaction in micropores is enhanced; thus, CH4 molecules are adsorbed only in the
microporous structure in the form of micropore filling, and the adsorption capacity of CH4
is limited by the micro-PV [35,38].
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Table 4. Fractal dimension of the CO2 adsorption data of coal samples.

Samples Fitting Equation Slope Fractal Dimension Degree of Fitting

PM-1 lnJ(x) = −0.6417lnx − 1.113 −0.6417 2.6417 0.9659

PM-2 lnJ(x) = −0.6203lnx − 1.1126 −0.6203 2.6203 0.9643

PM-3 lnJ(x) = −5115lnx − 0.9715 −0.5115 2.5115 0.984

PM-4 lnJ(x) = −0.6485lnx − 1.0866 −0.6485 2.6485 0.9676

PM-5 lnJ(x) = −0.6646lnx − 1.0911 −0.6646 2.6646 0.9858

PM-6 lnJ(x) = −0.6530lnx − 1.0800 −0.653 2.653 0.9858

PM-7 lnJ(x) = −0.4441lnx − 0.6732 −0.4441 2.4441 0.9946

PM-8 lnJ(x) = −0.6231lnx − 1.0348 −0.6231 2.6231 0.9862

PM-9 lnJ(x) = −0.6195lnx − 1.0486 −0.6195 2.6195 0.9856
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5. Discussion
5.1. Development and Pore Size Distribution of Micropores

LPA data can be calculated based on the NLDFT model to obtain the SSA, PV, PSD
and other relevant information of the effective pore size range of 0.3~1.5 nm. LTA data can
be calculated based on the NLDFT model to obtain the SSA, PV, PSD and other relevant
information of the effective pore size measurement range of 1.06~77.7 nm. The overlap of
the two models is 1.06~1.50 nm. Since the results of the two experiments are different in the
overlap range [9], the arithmetic mean of the two models is used in this paper to determine
the PV, SSA and PSD in the range of 1.06~1.50 nm. The PV, SSA and PSD of micropores were
calculated by LTA and LPA (Figure 9a,b). The micro-PV and micro-SSA values of the coal
samples range from 0.059 to 0.086 cm3/g and from 204.380 to 282.415 m2/g, respectively.
These results show that the coal samples in the study area are extremely well developed,
and the micro-PV in coal is several hundred times higher than that of marine shale in the
Sichuan Basin and transitional facies in the Ordos Basin [44,54,63] but close to that of coal
in eastern Yunnan [13].
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Although the size range of micropores is very small, the PSD shows a certain regular-
ity [9,20]. As shown in Figure 9a,b, the PSD has multiple peaks, which are mainly in the
ranges of 0.3–0.4 nm, 0.4–0.7 nm and 0.7–2.0 nm. Among them, the degree of development
of nanopores in the coal samples is similar. The PV and SSA of 0.4–0.7 nm are the most
developed, accounting for more than 60% of the PV and SSA (Table 5 and Figure 10). The
PV and SSA in the pore size range of 0.7–2.0 nm follow, and the PV and SSA in the pore
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size range of 0.3–0.4 nm are the least developed. The PSD of coal rock is similar to that of
activated carbon and shale at pore sizes < 1.0 nm, but the PV and SSA of coal rock at pore
sizes of 1.0–2.0 nm are significantly lower than those of activated carbon and higher than
those of shale [9,56,66].

Table 5. PV and SSA results of different sizes of micropores.

Samples
PV (cm3/g) SSA (m2/g)

<0.4 nm 0.4–0.7 nm 0.7–2.0 nm <0.4 nm 0.4–0.7 nm 0.7–2.0 nm

PM-1 0.0047 0.039 0.0153 26.66 145.66 32.06

PM-2 0.0053 0.0416 0.0161 30.93 154.63 33.83

PM-3 0.0083 0.0449 0.021 48.15 167.48 43.05

PM-4 0.0073 0.044 0.0213 42.48 163.59 44

PM-5 0.0085 0.0435 0.0204 48.86 162.25 41.99

PM-6 0.0082 0.0414 0.0207 47.48 155.15 43.14

PM-7 0.0068 0.0482 0.0308 38.6 178.78 65.05

PM-8 0.0088 0.0465 0.0211 51.19 173.51 43.51

PM-9 0.0084 0.0443 0.0216 48.94 165.89 45.03
Note: PV = pore volume; SSA = specific surface area.
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5.2. Proportion of Micropores in Total Pores

Micropores are widely distributed and abundant in coal and are usually the main space
for gas adsorption and initial gas migration in coal seams. The qualitative and quantitative
description of micropore development characteristics can play a very important role in
determining the scale and form of gas migration in coal, so it is necessary to further analyse
and study the development scale, pore morphology and pore structure of coal micropores.

To explore the contribution degree of micropores to the total PV and total SSA of pores
in coal, the above established quantitative characterization method of pores in coal was
used to calculate the total PV and total SSA of pores in the pore size range of 0.3–100 nm.
The results are shown in Figure 11 and Table 6, and the proportions of nano-PVs and
SSAs are different for different pore size ranges. The micro-PVs contribute 97.25%~99.03%,
with an average of 98.18%. The meso-PV contributes 0.92%~2.31%, with an average of
1.60%. The macro-PV contributes 0.05%~0.44%, with an average of 0.21%. These results
indicate that the contribution of PV in coal mainly originates from micropores, while the
contribution of mesopores and macropores is relatively small. The micro-SSA contributes
99.79%~99.90%, with an average of 99.84%. The meso-SSA contributes 0.10%~0.21%, with
an average of 0.16%. These results indicate that the contribution of SSA in coal mainly
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originates from the micropores, followed by the mesopores, and the contribution of the
macropores can be ignored. As shown in Figure 10a,b, the distribution trend of PV and SSA
of the same coal sample has a good consistency, and the pore SSA of the pore segment with
PV development also develops. In coal sample, both PV and SSA are mainly contributed by
micropores. These results indicate that the large number of micropores with large surface
are the main adsorption and occurrence sites of CBM, as well as the effective channels for
initial migration and diffusion of CBM after desorption, so it is necessary to further study
and analyze their development and structural characteristics.
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Table 6. The PV, SSA and proportions of micro, meso-, and macropores in different coals.

Samples
PV (cm3/g) SSA (m2/g) PV Proportion (%) SSA Proportion (%)

Micro Meso Macro Micro Meso Macro Micro Meso Macro Micro Meso Macro

PM-1 0.0591 0.0011 0.0002 204.38 0.38 0.01 97.89 1.81 0.31 99.81 0.18 0.01

PM-2 0.063 0.0009 0.0001 219.39 0.34 0.01 98.35 1.48 0.17 99.83 0.16 0.01

PM-3 0.0742 0.001 0.0002 258.68 0.33 0.01 98.47 1.3 0.23 99.86 0.13 0.01

PM-4 0.0726 0.0014 0.0001 250.07 0.52 0.01 97.95 1.92 0.12 99.78 0.21 0.01

PM-5 0.0724 0.0017 0.0003 253.1 0.46 0.02 97.25 2.31 0.44 99.81 0.18 0.01

PM-6 0.0703 0.0013 0.0001 245.77 0.44 0.01 98.06 1.78 0.16 99.81 0.18 0.01

PM-7 0.0858 0.0008 0.0001 282.42 0.28 0.01 99.03 0.92 0.05 99.89 0.1 0.01

PM-8 0.0765 0.0011 0.0002 268.21 0.38 0.01 98.28 1.43 0.29 99.85 0.14 0.01

PM-9 0.0743 0.0011 0.0001 259.86 0.41 0.01 98.36 1.48 0.16 99.83 0.16 0.01

Note: PV = pore volume; SSA = specific surface area; Micro = micropores; Meso = mesopores; Macro = macropores.

5.3. Pore Structural Parameters and Fractal Dimensions

Previous studies on the factors influencing the pore structure of coal rock suggest
that coal rank and coal composition (moisture, ash, vitrinite and mineral composition) are
the main factors controlling PV and SSA [9,10,13,20]. As shown in Figure 12a, there is no
significant correlation between the micro-PV and micro-SSA results of coal samples and
vitrinite content. This finding differs from those of previous studies [10,18]; this difference
may be due to the small number of samples and narrow reflectivity range between samples.
The micro-PV and micro-SSA are negatively correlated with the mineral content in coal
samples. There are two main aspects: on the one hand, the minerals can form pores; on the
other hand, minerals can fill some of the existing pores, resulting in a decrease in the PV
and SSA (Figure 12d), which is consistent with the results of previous studies [11,54]. The
relationships between the micro-PV and micro-SSA and proximate analysis parameters
(Mad and Ad) are shown in Figure 12c,d, and there is no obvious relationship between the
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micro-PV or micro-SSA and Mad. Due to the relatively low water content of coal and rock
in the study area, there is no correlation between the micro-PV or micro-SSA and Mad. The
micro-PV and micro-SSA show linear negative correlations with Ad. As Ad is a derivative
of the minerals in coal, it is formed by complex reactions, such as de-composition and
combination reactions [13]. The negative correlations of PV, SSA and Ad are consistent with
that of mineral content, that is, the development of pores in these samples is controlled by
both the organic matter and mineral content; and minerals can increase the value of Ad.
When the minerals in coal fill in some of the pores, this leads to decreases in PV and SSA.
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5.4. Influence on the Fractal Dimensions

To investigate the influence of the maceral composition and proximate analysis pa-
rameters on deep coal micropores fractal dimensions, the related plots are illustrated in
Figure 13. The D value increases with increasing vitrinite content (Figure 13a), indicating
that vitrinite has a positive effect on the fractal dimension. This result is consistent with the
views of Clarkson and Bustin (2008) and Fu et al. (2017) [66–69]. The higher the content of
vitrinite in the coal samples, the more micropores tend to develop. As the mineral compo-
nent content increases, the D value shows no obvious trend of change (Figure 13b). Due to
the relatively low mineral content of coal samples in the study area, there is no obvious
correlation between the fractal dimension of micropores and mineral components. There
is a weak positive correlation between the D value and Mad (Figure 13c), which may be
because a higher Mad of the coal sample indicates that the water molecules in the gas–liquid
phase form tension on the pore surface of the coal, thus exerting a great influence on the
fractal dimension [51,70]. The positive correlation between D and Ad is weak (Figure 13d);
as Ad increases, the coal pore structure becomes complicated. Yao et al. (2012) believed that
ash in coal would fill the pores, resulting in the enhancement of the heterogeneity of the
coal pore structure and an increase in the fractal dimension [24]. In conclusion, due to the
relatively low mineral content, its influence on the fractal dimension of pores is limited. The
influences of Ad and Mad on the fractal dimension of coal pores are not obvious, indicating
that the factors controlling the fractal dimension of deep coal pores are more complex and
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may be affected by many factors. The factors controlling the pore fractal dimension of deep
coal rocks need to be studied in more detail in the future.
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This study shows that the pores of coal are mainly micropores, the micro-PV and micro-
SSA contribute more than 90% of the total pores, and the mesopores and macropores are
rarely or almost undeveloped [22,71]. Mesopores and macropores are mainly developed in
shale pores, occupying approximately 90% of the total PV and 60% of the total SSA [10,72].
Figure 14 shows the relationship between the fractal dimension (D) and pore structure
parameters. D has a negative linear correlation with the micro-SSA and micro-PV, but
the correlation is poor, which may be caused by the high heterogeneity of coal and rock
samples. This result is consistent with coal sample data obtained by Xiong et al. (2020).
The fractal dimension of micropores decreases with the increase in the micro-SSA and
micro-PV, indicating that the smaller the storage space and SSA of pores, the stronger the
homogeneity of coal and rock, and the more complex the pore structure.
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5.5. Adsorption Capacity of Micropores

CBM is mainly retained on the inner surfaces of coal micropores in the adsorbed
state, so the SSA of coal is of great significance to its adsorption capacity and enrichment
characteristics [7,20]. According to the basic physical adsorption theory of solid surfaces,
the adsorption capacity of an object is proportional to the SSA [9]. Zhong et al. (2002)
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conducted LTA and methane adsorption experiments on coal samples and determined that
the adsorption capacity of coal to CH4 was positively correlated with the total PV, total
SSA and micro-SSA [73]. Sang et al. (2003) determined that the SSA of coal was negatively
correlated with the adsorption capacity [74]. Chen et al. (2017) discovered a strong linear
positive correlation between CO2-SSA and VL [20]. Regarding the cause of the difference,
previous researchers have used different determination and precision methods of the SSA
of coal [9,20]. Figure 15 shows scatter diagrams of the correlations between the VL and the
micro-PV and micro-SSA. VL has an obvious positive linear correlation with micro-PV and
micro-SSA (Figure 15b). This correlation shows that micropores have an obvious influence
on the adsorption gas of coal and rock.
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Table 6 shows that the contribution of the micro-SSA to the total SSA reaches
99%, indicating that methane is mainly absorbed in the micropores of a coal reservoir
and that the gas adsorption capacity of a coal reservoir depends on the total PV and
distribution frequency of pores in this part [20]. In addition, it is known that LPA absorbs
carbon dioxide with a smaller molecular diameter than N2 as the adsorbent, not only
to avoid the disadvantage of carbon dioxide not being completely adsorbed when the
micropore size is close to the molecular size of nitrogen, but also quickly reach adsorption
equilibrium [20,75]; therefore, the SSA and PV of micropore can be accurately measured.
This study shows that the combination of LPA and LTA can more accurately reveal the
pore structure and adsorption capacity of coal reservoirs than either method, especially
for micropores <2 nm in size.

6. Conclusions

This paper uses deep coal samples of the Daning–Jixian block from the eastern margin
of the Ordos Basin as the research object. Using LPA and LTA experiments, FE-SEM and
other pore structure analysis methods, a research method for the precise determination and
quantitative characterization of micropores in coal is proposed. Considering fractal theory,
the factors affecting the fractal dimension of micropores are discussed from the perspective
of the physical properties of coal samples. HPMA experiments are carried out to explore
the gas adsorption capacity of micropores. The following conclusions are drawn:

(1) The LPA method based on the NLDFT model is the best method to measure and
calculate the PV, SSA and PSD corresponding to the pore size range from 0.3~1.5 nm,
as validated by comparing the results of the LPA and LTA experiments and different
calculation models. Combining the LPA method with the LTA method based on the
NLDFT model, all micropores smaller than 2.0 nm can be measured.

(2) The pores developed in deep coal rocks are mainly organic pores, InterP pores and
microfractures, and the pore size distribution patterns of different coal samples have
multiple peaks, among which micropores are the main contributors to the total PV and
total SSA, with the micro-PV ranging from 0.059 to 0.086 cm3/g and the micro-SSA
ranging from 204.380 to 282.415 m2/g.
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(3) Different coal samples in the study area have great differences in the degree of microp-
ore development, but the pore distribution characteristics are basically the same. The
PV and SSA of the 0.4–0.7 nm pore size range are the most developed, accounting for
more than 60%. Micropore structure development is mainly affected by the maceral
and mineral components. With increasing mineral content and Ad, micro-PV and
micro-SSA decrease rapidly.

(4) The micropore fractal dimension (D) is calculated based on LPA data. The D values
range from 2.4441 to 2.6646, with an average of 2.603. The relationship between the D
value and mineral content is not obvious, but D is positively correlated with vitrinite
content, Mad and Ad.

(5) The contribution rate of micro-SSA to total SSA of coal samples in the study area reaches
99%, and VL is linearly positively correlated with micro-SSA, which shows that the
adsorption capacity of coal reservoir depends on the development degree of micro-SSA.
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