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Abstract: The fate of chemical pollutants in the environment is determined by various factors
including the type and strength of their interactions with reactive surfaces in soils and sediments. In
the present work the interactions of hexachlorobenzene (HCB) with the surface of a common clay
mineral belonging to the smectite group montmorillonite (MNT) is studied by means of the density
functional theory method. The MNT net surface charge, induced by isomorphic substitutions, is
systematically varied and compensated by Ca2+ cations. Based on the calculated electron densities,
conclusions are drawn revealing the nature of their mutual interactions, the related stability of
such surface complexes as well as possible molecular arrangements. It becomes apparent that the
dominant contribution to the stability of HCB-MNT complexes arises from the cation-π interactions
between the HCB molecule and the nearest compensating Ca2+ cation and thus besides the MNT
net surface charge the type and size of the compensating cations are expected to play a crucial role
in understanding the HCB adsorption on MNT. This systematic study aims to contribute to a better
mechanistic understanding of the interactions between hydrophobic organic compounds and reactive
mineral surfaces.

Keywords: hydrophobic organic compounds; hexachlorobenzene; adsorption; smectite; montmo-
rillonite; density functional theory

1. Introduction

The development of modern societies is inevitably linked to the use of synthetic chemi-
cals, many of which can cause undesired and often unpredicted impacts to the environment
and biota. Particularly problematic are hydrophobic organic chemicals (HOCs) belong-
ing to the class of persistent organic pollutants. The chlorinated aromatic hydrocarbon
hexachlorobenzene (HCB) has been extensively used in agriculture as fungicide to control
wheat bunt and smut fungi on other grains, as chemical intermediate in dye manufacture or
additive for pyrotechnic compositions, synthetic rubber and polyvinyl chloride [1]. During
its commercial production period (from 1930s until 1970s) a relatively large amount of HCB
has been released into the environment. Its animal and possibly human carcinogenicity in
combination with its environmental persistence pose a serious problem to the society [2].

Owing to its low solubility in aqueous environment and significant hydrophobic
character [3], a considerable amount of HCB can be nowadays found in soils and sediments
bound either to soil organic matter (SOM) or attached on mineral surfaces [1,4]. While the
adsorption of HCB or other HOCs to SOM attracted significant attention [5–10], its interac-
tion with mineral surfaces is still poorly understood. In our recent work the adsorption
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of HCB to phyllosicate minerals is studied both, experimentally and computationally [11].
Mineral fractions quantitatively dominate the composition of soils and sediments, hence
the fate and transport of HOCs are closely linked to their interactions with mineral surfaces.

Montmorillonite (MNT) is one of the most abundant 2:1 smectite-type layered phyl-
losilicates with a single layer composed of two silica tetrahedral sheets sandwiching a
single alumina octahedral sheet. Isomorphic substitutions of Al or Si involving atoms of
lower oxidation state naturally occur in either the tetrahedral and/or the octahedral sheet,
causing a significant charge imbalance, and thus inducing a permanent negative net charge
at the external surfaces. This excess negative charge is naturally balanced with inorganic
cations, that are often hydrated and reside in the interlayer space [12–14]. The typical
characteristics of MNT are structural expandability upon increasing hydration (swelling),
high cation-exchange capacity (CEC, ranging between 60 and 100 mmol per 100 g of MNT),
large surface area (typically about 80 m2/g) and particularly fine particle size [15].

The application of computer modeling has proven to be a successful tool in explaining
interactions of mineral surfaces with various hydrophobic moieties at the molecular level.
For example, the formation of environmentally persistent free radicals as a result of an
activation reaction of pentachlorophenol adsorbed on Fe3+-modified MNT surface has been
studied using density functional theory (DFT) [16]. Depending on the conformation, either
non-bonded interactions between complementary partial charges or cation-π interactions
play a crucial role in stabilizing the resulting complex. Similarly, the interactions of a set of
polycyclic aromatic hydrocarbon molecules on MNT modified with transition metal cations
was modeled by employing the DFT method [17]. In principle, the level of details provided
by ab initio methods allows for the prediction of a variety of experimentally measurable
quantities, such as dipole moments, vibrational modes and thermodynamic properties as
in the case of the theoretical study of sulfur-containing aromatic hydrocarbons adsorbed
on pyrophyllite [18]. The exchangeable cations are expected to play a significant role in the
adsorption process of polyaromatic hydrocarbons on mineral surfaces [19–21].

The aim of the present article is to study HCB-MNT interactions by employing a
geometry optimization machinery within the DFT framework in vacuo (not involving
solvent effect) through the analysis of the resulting interaction energies, charge density and
geometry characteristics of HCB-MNT complexes by systematically varying the MNT net
surface charge.

2. Methodology
2.1. Structural Models

The initial geometry of the MNT unit cell was taken from Viani et al. [22]. Using a
home-made script, first a slab composed of 4× 2× 1 unit cells with the dimensions of
20.72× 17.96× 50 Å

3
is constructed, exclusive of exchangeable cations. Next, isomorphic

substitutions are introduced involving atoms of lower oxidation state in either the tetra-
hedral (e.g., AlIII replacing SiIV) and/or the octahedral (e.g., MgII or FeII replacing AlIII)
sheet by obeying the Löwenstein’s substitution rule (i.e., the substitution sites cannot be
adjacent to each other) [23], leading to a significant charge imbalance, and thus inducing a
permanent negative charge at the external surfaces. Considering the size of the slab here,
a single isomorphic substitution changes the MNT net surface charge by −0.125 |e|. For
each MNT net surface charge value q, several permutations of the isomorphic substitutions
are created randomly. Further, the MNT net surface charge q is balanced by the addition
of divalent calcium compensating cations (Ca2+, CCC) distributed evenly with respect to
both surfaces (in the case of odd number of isomorphic substitutions, the MNT net charge
balance is achieved with the aid of a single monovalent Na+ cation or F− anion). Finally, a
single HCB molecule is positioned in the vicinity of a selected CCC.

Due to the computational costs required here, it is impossible to sample the initial
positions (in terms of translation and rotation with respect to arbitrary reference vector)
of the planar and relatively rigid HCB molecule thoroughly. The initial positioning of the
HCB molecule is therefore limited to the following three cases: (i) top-parallel, i.e., centered
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above the CCC and parallel to the slab surface, (ii) tilted, i.e., positioned next to the CCC
and rotated by 45◦ with respect to the slab surface and (iii) side-parallel, i.e., positioned
aside of the CCC and parallel to the slab surface (cf. Figure 1). The geometry of these
models is then optimized by the methodology described in the following section.

(a) (b) (c)
Figure 1. Initial configurations prior to geometry optimization, (a) top-parallel, (b) tilted and
(c) side-parallel.

2.2. Computational Details

All electronic structure calculations were performed using the Vienna ab initio simu-
lation package (VASP) [24–27]. To boost the geometry optimization procedure, the Gad-
get package was used [28]. The Kohn-Sham equations were solved variationally in a
plane wave basis set with an energy cut-off of 400 eV. The generalized gradient ap-
proximation (GGA) [29] was used for the description of electron exchange-correlation
terms using Perdew-Burke-Ernzerhof (PBE) functional [30]. Based on several benchmark
studies [31–33] that compared the performance of various dispersion correction schemes in
predicting non-bonding interactions, in our work we used D3 dispersion correction to the
PBE functional [34] with the Becke-Johnson damping [35–37]. The cited benchmark works
showed that the PBE-D3 method is able to predict nonbonding interactions such as cation-π
or hydroxyl group-π with an acceptable accuracy. Electronic structure of the atoms was
expressed by pseudo-potentials using the projector-augmented wave method [38,39]. A
single Γ-point sampling was used for the integration over the Brillouin zone. The geometry
optimisation was considered completed when the maximum force acting on a single atom

was less than 0.01 eV Å
−1

for atomic positions and the electronic steps were considered
converged if the difference in the energy was lower than 10−6 eV. For simulation inputs
involving FeII atoms, a spin-polarized DFT approach was used [40,41].

2.3. Processing of the Results

Each geometry-optimized configuration was processed using a series of home-made
scripts to calculate the hereinafter listed characteristics.

The interaction energy Eint is defined as the difference between the potential energy of
the entire system EMNT+HCB and the sum of the potential energies of its constituents, i.e.,
the potential energies of MNT, EMNT (including the CCC), and the HCB molecule, EHCB,
and is calculated by employing the formula Eint = EMNT+HCB − [EMNT + EHCB].

To measure the change in the HCB molecular shape, the following quantity is calcu-
lated, referred to as the molecular shape distortion parameter δ, defined by the formula
δ = ∑i[γi − γi,eq]

2, where γi and γi,eq denote the values of i-th dihedral and equilibrium
dihedral angle, respectively. The planar HCB molecule includes 64 dihedral angles in total,
with the equilibrium values γi,eq of either 0 or 180◦.

The HCB-MNT plane-plane normal angle α is defined as the angle between two vectors
normal to the planes of (i) MNT basal oxygens and (ii) HCB constituent atoms.

Further, a variety of Euclidean distances di between the HCB molecule (represented
by its center of mass), the MNT surface (represented by a plane fitted to its basal oxygen
atoms) and the nearest CCC is extracted from the atomic positions.

Finally, both the electron localization function (ELF) and the charge density (CHD)
are directly obtained from single point energy calculations in VASP and the charge den-
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sity difference is processed using the software VESTA [42] according to the formula
ρ(r) = ρMNT+HCB(r)− [ρMNT(r) + ρHCB(r)], where the symbol ρ stands for charge density
at a spatial position r.

3. Results and Discussion

As expected and previously shown in other works [11], after geometry optimization
the compensating cations reside in the center of the ditrigonal cavity of the MNT’s silicate
sheet [11,20,43–45]. In general, the exact position of the compensating cations with respect
to the z-axis (direction perpendicular to the layer surface) is determined by the size of
the corresponding compensating cation in terms of its radius, its charge as well as the
net charge of the surface and the thickness of the hydration shell [11,43–46]. Since the
compensating cations here are the Ca2+ cations and, moreover, in this approximation are
not hydrated, the distance between CCC and the basal oxygen atoms adopts values in a
range between 0.3 and 1 Å as represented by the bottom line in Figure 2 (dCa2+−O versus q).
Very similar values were reported in previous works [11]. Figure 2 further demonstrates the
importance of the MNT net surface charge. As the MNT net surface charge q increases, the
CCC tends to be more attracted towards the surface resulting in the decrease of CCC-MNT
distance by ≈60%.

0.1

1

10

0 0.25 0.5 0.75

dCa2+−O

dHCB−O

d
i

(Å
)

−q ( |e| )

Figure 2. Euclidean distances di from the MNT basal oxygen atoms versus the MNT net surface
charge q of the nearest CCC (with respect to the HCB molecule, dCa2+−O) and the center of mass
of the HCB molecule (dHCB−O). The grey shaded areas and the dashed red lines correspond to the
standard deviation of the collected data and the mean values, respectively.

The HCB molecule is attached to the nearest CCC by coordinating its aromatic ring to it
and it has been speculated that this is mainly due to relatively strong cation-π interactions,
typical for aromatic molecules, which are in contact with positively charged moieties [20].
By comparing both lines in Figure 2 (dHCB−O and dCa2+−O versus q), it becomes apparent
that with the increasing MNT net surface charge, the distance between CCC and the MNT
basal oxygen atoms decreases while the position of the HCB with respect to the MNT basal
oxygen atoms remains almost unchanged. This can be explained by the above mentioned
stronger attraction between CCC and MNT surface due to higher MNT net surface charge
which very likely weakens the binding between the HCB and CCC but it does not affect
the HCB position with respect to the MNT surface.

Figure 3 shows how both, the MNT net surface charge through the strength of the
CCC-HCB interaction affects the planarity and rigidness of the HCB molecule. Keeping
in mind that with increasing net layer charge the CCC-HCB interaction weakens and,
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therefore, the overall shape distortion of the HCB molecule becomes smaller. On the other
hand, lower values of the MNT net surface charge cause a significant shape distortion, as
the distance between CCC and HCB becomes smaller (cf. Figure 2). It is important to note
that the shape distortion involves only the orientation of the C-Cl bonds and cause greater
polarization of the π molecular orbitals.

1

10

102

103

104

0 0.25 0.5 0.75

δ
(d
eg

2
)

−q ( |e| )

Figure 3. Molecular shape distortion parameter δ of HCB versus the MNT net surface charge q. The
grey shaded area and the dashed red line correspond to the standard deviation of the collected data
and the mean values, respectively.

As shown in Figure 4, the HCB-MNT plane-plane normal angles α extracted after
geometry optimization procedure adopt values that never exceed 10◦, suggesting that the
overall orientation of the HCB molecular plane with respect to the MNT surface is parallel.
Further, the relatively wide spread of the α values indicates that numerous similarly
appearing minima exist on the potential energy surface and their complete exploration and
categorization represents a challenging task [47].

0.01

0.1
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10

0 0.25 0.5 0.75
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−q (e)

Figure 4. HCB-MNT plane-plane normal angles α versus the MNT net surface charge q.

Figure 5 shows the recorded distances between the nearest positioned CCC with
respect to the HCB molecule, dHCB−Ca2+ . Two separate lines are clearly visible as a conse-
quence of possibly two types of the molecular arrangement – first, in which the nearest



Minerals 2023, 13, 280 6 of 10

CCC lies close to the center of mass of the HCB molecule centered towards its hexagonal
ring (bottom line) and second, in which the nearest CCC is positioned at least partly aside
the HCB molecule (top line). Very similar separation of the recorded data is displayed
in Figure 4.

2

3
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0 0.25 0.5 0.75

d
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−q ( |e| )

Figure 5. Euclidean distance between HCB and nearest CCC dHCB−Ca2+ versus the MNT net surface
charge q.

All these previous observations are summarized in the interaction energy dependence
on the MNT net surface charge shown in Figure 6. The interaction energy Eint appears
to be invariant to the MNT net layer charge q. The actual values are strongly scattered,
and no clear trend can be spotted from the mean values estimates and their standard
deviations that are used here to outline the data. As already mentioned, this might be
a consequence of the existence of a large number of similarly appearing minima on the
potential energy surface.
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Figure 6. Interaction energies Eint versus MNT net surface charge q. The grey shaded area and the
dashed red line correspond to the standard deviation of the collected data and the mean values,
respectively.

As already mentioned, the scattered data in Figure 6 demonstrate that a large variety of
relatively similar minima on the potential energy landscape exist. These are a consequence
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of several factors, including the variations in the CCC positions with respect to the HCB
molecule as well as the actual position of the nearest isomorphic substitutions. All these
effects may play a significant role in the stability of the resulting HCB-MNT complex.

The electron localization function (ELF) displayed in Figure 7 demonstrates that the
interactions between HCB and CCC as well as between CCC and MNT are a typical
dispersion interactions [48]. Further, the electron clouds of the interacting bodies are at
least partially polarized. This fact is more visible in Figure 8 in which the charge density
difference is shown for two limiting cases. Lower values of the MNT net layer charge cause
that electrons are depleted from (or accumulated to) greater volumes of the interacting
bodies. This fact together with the greater change in the HCB molecular shape results
(cf. Figure 3) in a greater polarization of the π molecular orbitals, again pointing towards
the importance of cation-π interactions.

When it comes to the role of the MNT surface, the CHD plots in Figure 8 indicate that
the interactions between the MNT with CCC and HCB involve exclusively the free electron
pairs of the MNT’s basal oxygen atoms.

It is important to note that the present results were obtained in vacuo, i.e., without the
presence of solvent. The addition of solvent effects represents the next step in our research.

HCB

CCC

Basal
oxygen
atoms

1

0

Figure 7. Electron localization function (ELF). The MNT-HCB complex is sliced through the center of
the CCC. The color scheme represents the probability p of finding an electron at given spatial location.
Snapshot corresponds to the MNT net surface charge of −0.5 |e|.
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depletion

accumulation

Figure 8. Charge density difference (CHD) for two limiting values of the MNT net surface layer
charge q, i.e., −0.125 and −0.75 |e|, respectively.

4. Conclusions

We investigated the adsorption of HCB to MNT surface by systematically varying
the MNT net surface charge. It is evidenced that the adsorbed HCB molecule is always
positioned at a constant distance from the MNT surface in a parallel orientation, regardless
the actual value of the MNT net surface charge. On the other hand, the change in HCB
molecular shape as well as the z-position of the CCC is found to depend on the MNT net
surface charge. The calculated interaction energies demonstrate the existence of a large
number of similarly appearing potential energy minima. It can be concluded that the
dominant mechanism behind the HCB adsorption on MNT surface arises from cation-π
interactions, therefore the type, valency, size and possible hydration of the CCC may have
a strong impact on the stability of the HCB-MNT complexes.
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20. Pašalić, H.; Aquino, A.J.A.; Tunega, D.; Haberhauer, G.; Gerzabek, M.H.; Lischka, H. Cation-π interactions in competition with
cation microhydration: A theoretical study of alkali metal cation–pyrene complexes. J. Mol. Model. 2017, 23, 131. [CrossRef]

21. Qu, X.; Zhang, Y.; Li, H.; Zheng, S.; Zhu, D. Probing the Specific Sorption Sites on Montmorillonite Using Nitroaromatic
Compounds and Hexafluorobenzene. Environ. Sci. Technol. 2011, 45, 2209–2216. [CrossRef]

22. Viani, A.; Gualtieri, A.F.; Artioli, G. The Nature of Dsorder in Montmorillonite by Simulation of X-ray Powder Patterns. Am.
Mineral. 2002, 87, 966–975. [CrossRef]

23. Loewenstein, W. The Distribution of Aluminum in the Tetrahedra of Silicates and Aluminates. Am. Mineral. 1954, 39, 92–96.
24. Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [CrossRef] [PubMed]
25. Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in

germanium. Phys. Rev. B 1994, 49, 14251–14269. [CrossRef]
26. Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave

basis set. Comput. Mater. Sci. 1996, 6, 15–50. [CrossRef]
27. Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys.

Rev. B 1996, 54, 11169. [CrossRef] [PubMed]
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