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Abstract: Strong acid mine drainage (AMD) processes in the flooded, formerly open pits in the
Lusatia area present an enormous environmental challenge for the rehabilitation of the post-mining
landscape. Extensive and costly monitoring is required for optimal AMD management and remedia-
tion planning and control. Because of the large size of the area and the dimension of the problem,
the regular sampling can only provide limited point data, which needs to be extrapolated to the
entire area. Consequently, the search for effective approaches for extrapolating the point data to
the area of all water bodies is essential for rehabilitation success monitoring and for understanding
the dependencies between AMD and environmental factors such as land use, weather conditions,
geology, and hydrogeology. The main aim of this study was to investigate the suitability of Sentinel-2
multispectral imagery and artificial neural networks (ANNs) for the quantitative mapping of acid
mine drainage (AMD) constituents, such as dissolved iron, pH value, and sulfate in large water
bodies, for an area of approximately 7220 km2 (the area of the pit lakes is about 185 km2). Correlations
between different chemical water parameters were also investigated. An extensive water monitoring
dataset was used to train artificial neural networks for the identification of dependencies between
the multispectral remote sensing data and the water quality ground measurements. Respective
relationships have been identified, especially for dissolved iron and pH. These trained ANNs have
been used to produce water quality maps with high spatial (10 × 10 m) and temporal (any cloud-free
period) resolution, which show the wide variability of water quality in the different parts of the
mining region. Concrete sources of AMD can be identified using the water quality maps of single
lakes, and the success of sanitation measures such as liming was visualized. The approach opens
many doors for the optimization of both the monitoring program and sanitation technology.

Keywords: acid mine drainage; Lusatia; artificial neural networks; remote sensing; multispectral
imagery

1. Introduction

In the Lusatia area, lignite has been mined in large open cast pits for decades. In
2018, the annual lignite production was about 60 million metric tons [1], and it is mainly
used for the production of electric energy (8000 MW of installed power). The mining and
postmining landscapes cover approx. 7000 km2, including numerous flooded former pits,
remaining lakes, as well as active and inactive pits and channels used to release pumped
out water to surface water bodies [2,3].

The two satellite images from 1985 and 2020 clearly show the dimensions of the lignite
mining in Lusatia: in 1985, most of the pits are still dewatered, whereas the 2020 image
shows the post-mining landscape with water-filled former pits and a few still active mines
(Figure 1). The sulfidic sulfur contained in the lignite and in the host rocks (0.8–2.8%) [4]
together with the dewatering caused groundwater movement, and the resulting big aerated
zone led to strong acid mine drainage processes [5–8]. As a result, the water quality is poor
and is marked by low pH values (up to 2) as well as high Fe3+ and SO4

2− concentrations.
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Most of the pit lakes do not meet the water quality standards as prescribed for example by
the EU Water Framework Directive for artificial and heavily modified water bodies [9].

Figure 1. False-color images over the Lusatia region: (a) on the top, acquired in June 1985 by the
Thematic Mapper (TM) on Landsat 5 (bands 4-3-2); (b) on the bottom, acquired in August 2020 by
the Operational Land Imager (OLI) on Landsat 8 (bands 5-4-3). The false-color images were created
using the Google Earth Engine platform.

Presently, the rehabilitation of the post-mining landscape is carried out by the Lausitzer
und Mitteldeutsche Bergbau-Verwaltungsgesellschaft (LMBV). The LMBV undertakes
big efforts to stabilize slopes and improve the water quality of the acid lake waters by
continuously monitoring the groundwater and surface water quality at discrete sampling
locations and by executing mitigation measures to neutralize acid mine drainage.

The identification and quantification of AMD in open pit lakes is of crucial importance
for enacting prevention and mitigation measures in due time. In this context, remote
sensing techniques offer the big advantage of continuous monitoring of the water quality
over all of the water bodies. Together with the classical water monitoring at discrete
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sampling points, they allow for a very dense (both in space and time) observation of the
AMD processes and their spatial and timely development, as well as allow for the success
of rehabilitation measures.

In the present study, we have investigated the suitability of Sentinel-2 multispectral
imagery and artificial neural networks (ANN) for the quantitative mapping of acid mine
drainage (AMD) constituents in large water bodies. The Lusatia region offers a very
suitable area for this case study due to the large variety of pit lakes and complexity of rock
composition, groundwater movement, land cover, weather conditions, waste pile stability,
and other AMD process-influencing parameters.

2. Used Data
2.1. Water Sampling Data

In this study, an extensive water monitoring dataset provided by the LMBV has been
used as calibration data to train artificial neural networks. Between 2015 and 2020, the
LMBV has allocated and analyzed over 9784 water samples at 199 surface water monitor-
ing points (see Figure 2), whereas low pH values (2–4), high iron concentrations (up to
905 mg/L), and high sulfate concentrations (up to 3690 mg/L) have been recorded [10].

Figure 2. Location of the water monitoring points in the Lusatian post-mining water bodies.

Water samples were collected from the pit lakes during the circulation phase as well
as during the stagnation phase from all three stratification zones: epilimnion, metalimnion,
and hypolimnion.

The following water quality parameters, divided into three groups according to [11],
have been analyzed:

1. Physical parameter: Electrical conductivity (µS/cm);
2. Chemical parameters: pH value, total Al (mg/L), Fe2+ (mg/L), Fe3+ (mg/L), total

Fe (mg/L), total Mn (mg/L), SO4
2− (mg/L);

3. Biological parameter: Chl-a (µg/L).

In situ spectral reflectance measurements were not carried out.

2.2. Remote Sensing Data: Sentinel-2 Satellite Multispectral Imagery

Remote sensing is a powerful and cost-effective technique to collect frequent ground
information for large areas in a short time. In this study, we elaborate the suitability of
time-series Sentinel-2 multispectral imagery for the quantitative assessment of AMD in
open pit lakes. The large-scale pit lakes encourage the use of free-of-charge, medium
resolution multispectral imagery. Visible to shortwave infrared remote sensing has been
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widely used to monitor AMD mineralogy at mine sites. However, only a few studies have
examined the spectral signatures of open pit water bodies from a remote platform [12–14].

The advantages of Sentinel-2 imagery compared with other free-of-charge optical
remote sensing multispectral satellite data are summarized in the following:

1. Low-to-medium spatial resolution (4 × 10 m bands, 6 × 20 m bands, 3 × 60 m bands);
2. High temporal resolution (about 5 days on the Equator and 2–3 days over the Lusatia

area) starting from 2015;
3. Channels in the visible (400–700 nm), near-infrared (NIR, 700–1100 nm), and short

infrared (SWIR, 1100–2500 nm) parts of the electromagnetic spectrum (Figure 3).

Figure 3. Characteristics of the multispectral instrument (MSI) on board Sentinel-2. Source: [15].

3. Methods
3.1. Water Sampling Data Processing

In this study, the focus is on samples collected in the epilimnion (depth of 0–15 m),
which is the uppermost layer in a stratified lake (Figure 4).

Figure 4. Lake stratification zones.
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Samples collected closer than 10 m to the lake banks were excluded in order to avoid
any influence of various optically active constituents (soil, vegetation, etc.) in the surface
reflectance signal. Additionally, samples collected before 4 July 2015 were excluded due to
the lack of Sentinel-2 satellite imagery. The water sampling data were used as calibration
data to train and validate the supervised machine learning algorithms. In this study, we
focus on three typical indicators of AMD:

1. Optically active constituent: iron concentrations (Fe3+);
2. Optically non-active constituents: pH, sulfate content (SO4

2−)

The statistics of the water quality measurements for these indicators in the study area
revealed dissolved iron concentrations (Fe3+) from 0 to 905 mg/L, pH values ranging from
2 to 11, and sulfate concentrations ranging from 0 to 3690 mg/L.

The optically non-active parameters pH value and SO4
2− cannot be directly detected

from the optical remote sensing data. Instead, this study investigated whether and how
they can be modelled through patterns of optically active constituents.

Water bodies with high dissolved iron concentrations are marked by low pH values (<=4)
(Figure 5). This dependency disappears if the Fe3+ concentrations are less than 0.3 mg/L.

Figure 5. Plot of dependencies between Log (Fe3+) and pH.

Figure 6 illustrates this dependency with an example of the measured Fe3+ and pH
values for a selected area surrounding the Seewald See.

From 2015 until 2020, considerable changes in the water quality were observed at
several places. For instance, at “Grüner See” (Figure 7) in July 2018, the pit water was
characterized by low pH values (2.68) and high concentrations of sulfate and dissolved
iron. In spring 2020, the pH value increased to 3.58 and the concentration of dissolved
iron drastically sunk to 2.71 mg/L. The reason for this change is the water treatment with
hydrated lime via a stationary system [16]:

CaCO3 (s) + H2SO4 (aq)→ CaSO4 (s) + H2O (l) + CO2 (g). (1)

The sulfate content remained high because of the equilibrium with gypsum.
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Figure 6. Measurements of (a) pH values and (b) Fe3+ concentrations for the selected samples of the
study area, collected in September 2019. Background image is a Sentinel-2 RGB-composite of the
visible bands acquired during 5–15 September 2019.

Figure 7. Measurements of pH value, Fe3+, and SO4
2− in the “Grüner See”, collected (a) in July 2018

with AMD and (b) in July 2020 after treatment of acid mine water with hydrated lime. Background
images are natural color Sentinel-2 RGB-composites acquired during (a) 20 July–10 October 2018 and
(b) 25 July–5 August 2020.

3.2. Sentinel-2 Data Acquistion and Processing

The spatial resolution of this study is set to 10 m to benefit from the medium spatial
resolution of Sentinel-2 imagery.

The Sentinel-2 products are available as:

• Level-1C Top-Of-Atmosphere (TOA) starting from 2015;
• Level-2A Bottom-Of-Atmosphere (BOA) surface reflectance products starting from

early 2018.

The atmospherically corrected BOA products were derived from the associated L1C
products by applying the Sen2Cor processor in the Sentinel-2 toolbox. It is important
to highlight that the Sen2cor processor was not designed for water bodies [17]. For this
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study, there were no in situ measured reflectance data collected and it was therefore not
possible to directly validate the performance of the Sen2cor processor. Some examples
in the literature (such as [18–20]) suggest that the TOA imagery for inland water quality
analyses provided better results than the BOA atmospherically corrected imagery. In this
study, both Sentinel-2 Level-1C TOA products and Level-2A BOA products were used, and
their suitability for water quality analyses was compared.

Sentinel-2 products acquired during similar time intervals as the sampling data were
first identified in the Copernicus Open Access Hub and then downloaded from the Earth
Engine Data Catalog. The acquisitions of the Sentinel-2 satellites were selected by applying
a temporal filter of ±5–10 days to the sampling date in order to ensure that the measured
water quality parameters correspond to the recorded surface reflectance information of the
selected satellite images. Optical analyses require the use of 100% cloud- and shadow-free
satellite images; however, cloud- and shadow-free singular scenes are barely available
in the study area. To overcome this issue, single satellite scenes were stacked in periods
of 10–20 days using the widely temporal aggregation method of median values derived
from time-series images [21]. Cloud and shadow areas are masked before the stacking
process. This technology is implemented in Google Earth Engine’s cloud-based computing
platform [22], and the available scripts were customized for the purposes of this research.

Overall, 29 Sentinel-2 cloud- and shadow-free color-balanced mosaics were designed
corresponding to the date of sampling. The individual images were rearranged in a single
mosaic (Figure 8).

Figure 8. Single mosaic composed of 29 Sentinel-2 cloud- and shadow-free mosaics false-color images
over the Lusatia region (bands 8-4-3).

The corresponding samples for each Sentinel-2 acquisition were also rearranged in a
mosaic with the same principle. Table 1 provides the statistics of the sampling data.

Table 1. Statistics of the water quality measurements.

Parameter No. of Samples Min Max Mean Median Std

Fe3+ (mg/L) 210 0.05 337 13.69 0.83 46.89

SO4
2− (mg/L) 155 58.3 3120 1278.46 1290.00 709.67

pH 210 2.40 8.76 6.24 6.84 1.67
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The water area was extracted using the modified normalized difference water index
(mNDWI) proposed by [23]. The mNDWI discriminates the water surface from other land
use classes and allows for a very efficient automatic extraction of water bodies (Figure 9). In
this study, a threshold of 0.4 was empirically determined. The extracted water bodies and
available samples were validated through an extensive quality control review of false-color
Sentinel-2 imagery.

Figure 9. (a) False-color image over the Lusatia region (bands 8-4-3) acquired in August 2020; (b) The
mNDWI map.

Previous studies have presented many well-established algorithms to differentiate
ferric iron-bearing minerals from remotely sensed imagery, such as, e.g.,

1. Ferric oxides (Fe3+) index [24]

SWIR1/NIR2; (2)

2. Ferric iron (Fe3+) index [25]

RED/GREEN; (3)

3. Gossan index [26]

SWIR1/RED; (4)

These algorithms were mainly established for applications on solid surfaces. In order
to prove their suitability for water-related applications, they were estimated using the
Sentinel-2 spectral reflectance bands for the mosaic image in Figure 8. The measured
values of the Fe3+ concentrations and the calculated band ratios are graphically depicted
in Figure 10. From their comparison, no correlation could be identified, indicating that
the available band ratios for the differentiation of ferric iron-bearing minerals may not be
suitable for water applications.

In this study, supervised machine learning artificial neural network algorithms were
implemented to establish relationships between the surface reflectance and ferric iron-
bearing minerals in water bodies.

The relation of the SO4
2− content in the gypsum and in the optically active components

turbidity and total suspended solids (TSS) was also investigated. The turbidity of the
surface waters was calculated using the well-established algorithm of the normalized
difference turbidity index (NDTI), as follows:

NDTI = (RED − GREEN)/(RED + GREEN). (5)
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The algorithm for the qualitative estimation of the TSS in the surface waters was based
on Sentinel-2 imagery (Level-2A BOA Product), proposed by [27]:

TSS = 2.272 + (RED/2.468) × 2.154. (6)

The performed analysis revealed the TSS to be slightly more suitable then NDTI at
reflecting the changes in the sulfate concentration (Figures 11 and 12). However, the relation-
ships between the surface reflectance and sulfate concentration in water bodies was further
investigated using supervised machine learning algorithms of artificial neural networks.

Figure 10. Comparison of Sentinel-2 indices and observed values of Fe3+ concentrations from water
analysis. The samples are ordered according to their measured Fe3+ values.

Figure 11. Comparison of the Sentinel-2 turbidity index (NDTI) and observed values of SO4
2−

content from water analysis.

3.3. Prediction Modelling Using Artificial Neural Networks

In this study, correlations between Sentinel-2 spectral reflectance bands and AMD con-
stituents were investigated using the supervised machine learning algorithm of ANNs. Ar-
tificial neural networks of the multilayer perceptron type (MLP) were implemented in the
advangeo® Prediction Software from Beak Consultants GmbH (www.advangeo.com (accessed
on 10 November 2018)). The modelling and prediction software is developed to analyze com-
plex relationships between a wide variety of spatial-influencing parameters and a given
prognostic event or occurrence by using artificial intelligence methods within a geographic
information system (GIS) environment [28]. The base principle is the ability of ANNs to

www.advangeo.com
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generalize and learn from non-linear relationships and model natural complex processes and
events, which are difficult or impossible to describe with analytical mathematics [29].

Figure 12. Comparison of Sentinel-2 total suspended solids (TSS) and observed values of SO4
2−

content from water analysis.

To model the distribution of iron concentration, pH value, and sulfate content across
the Lusatian pit lakes, ANNs of the multilayer perceptron type were used according to the
processing scheme in Figure 13.

Figure 13. General processing schema of the prediction modelling using artificial neural networks.

The modeling process was limited to the identified water bodies, which were extracted
as described in Section 2.2. The Sentinel-2 multispectral bands were used as controlling
parameters. They were all resampled to 10 m using bilinear interpolation and were linearly
scaled between 0 and 1.

Some important parameters of the used MLP are highlighted in the following:

• Network topology: input layer with a connection rate of 1 fully connected and 1 hidden
layer with a predefined number of hidden neurons;

• Activation function: Sigmoid function with a steepness of 0.5;
• Learning algorithm: RPROP (derivative of the backpropagation algorithm);
• Weight initialization: ‘Initialize’ algorithm [30];
• Predefined stop parameters:

# Maximum number of training epochs = 100;
# Mean squared error (MSE) = 0.001.
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4. Results

Several neural network models have been designed with the described principles and
workflow. Here, the most significant models and results are presented.

4.1. Prediction Modelling of Dissolved Iron Concentration (Fe3+)

As revealed from the available sample data, the dissolved iron concentration values in
the study area in the selected time intervals range from <0.01 to about 340 mg/L. For the first
modelling approach, all available samples were taken into consideration as calibration data
for the training scenario (Section 4.1.1). In the second approach (Section 4.1.2), representative
samples for each lake (about 30% of the available data) were considered for the calibration of
the machine learning algorithm. The rest of the sample data was used for validation.

4.1.1. Scenario 1: Use of All Available Samples as Calibration Data
for the Training Scenario

Controlling parameters include Sentinel-2 multispectral bands of Level-1C and Level-
2A products. The modelling was carried out using ANNs of the multilayer perceptron type.
The validation and accuracy were assessed by analyzing the following parameters:

• Statistical evaluation: A comparison plot of the modelling results with the measured
values of dissolved iron concentration, which suggested that the trained neural net-
work has been able to reproduce the calibration data (Figure 14). The best results were
obtained when using Sentinel-2 Level-2A BOA products as controlling parameters;

• The network MSE error: In both cases, the model error converges after approximately
10 iterations and the final error is below 0.2, indicating that the neural network is
stable and accurate (Figure 15a).

• The model parameter weights: The model weights revealed the Sentinel-2 Level-2A
B03 (Green), B02 (BLUE), and B11 (SWIR1) spectral bands to have the highest contribution
for the modelling (Figure 15b).

• The distribution raster map: The prediction software delivers a distribution map in the
value ranges of 0–1 (linearly scaled for 0–340), illustrating the distribution of dissolved
iron concentration over the pit lakes in the study area. Analogously to the example
in Figure 7, Figure 16 shows the distribution map for the Grüner See associated with
AMD (July 2018) and after the neutralization of the acid mine water (July 2020).

Figure 14. Plot of given and modelled Fe3+ values based on (a) Sentinel-2 Level-1C TOA products
and (b) Sentinel-2 Level-2A BOA products.
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Figure 15. (a) Plot of MSE and (b) weight parameters for the MLP based on Sentinel-2 Level-2A
BOA products.

Figure 16. Distribution map of Fe3+ in the “Grüner See” (a) in July 2018 with AMD and (b) in July
2020 after the neutralization of the acid mine water.

4.1.2. Scenario 2: Use of Representative Samples for Each Lake as Training Data

In this scenario, around 30% of the available sampling data has been used for the
calibration. Their selection met two criteria: (i) each pit lake has to be represented by at
least one measurement; (ii) if there are strong variations of dissolved iron concentration in
one pit lake, extreme values have to be taken into consideration as calibration data.

Figure 17 shows the comparison plot of the given and modelled values for dissolved
iron concentration for the training and validation samples using Sentinel-2 Level-2A TOA
and BOA products. Overall, the trained neural network was able to reproduce the calibra-
tion and validation data. Moreover, in this scenario, the best results were achieved when
using atmospherically corrected Sentinel-2 Level-2A BOA products.
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Figure 17. Plot of given and modelled Fe3+ values based on Sentinel-2 (a) Level-1C TOA and
(b) Level-2A BOA products.

4.1.3. Comparison between Scenario 1 and Scenario 2

In order to prove the consistency between the two scenarios, the development of
Fe3+ concentration over time have been tracked in some typical pit lakes associated with AMD
(Figures 18–20). The linear graphs describe the Fe3+ concentration in the time-series from
20 March 2018–15 September 2020 in the Grüner See, Klärteich See, and Lugteich See, which
was estimated based on the Level-2A BOA products with Scenario 1 and Scenario 2. Addi-
tionally, the recorded sampling measurements have been shown. The results from the two
scenarios are mostly consistent, and one can distinguish clearly epochs of AMD (represented
from high concentration of Fe3+) and its neutralization. The concentration of Fe3+ has been
clearly underestimated in the second scenario. This may be related to the reduced number of
samples with high Fe3+ content used as calibration data in the second scenario.

Figure 18. Development of Fe3+ concentration over time in the Grüner See.
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Figure 19. Development of Fe3+ concentration over time in the Klärteich See.

Figure 20. Development of Fe3+ concentration over time in the Lugteich See.

4.2. Prediction Modelling of pH

In contrast to Fe3+, the pH value is an optically non-active constituent of AMD and there-
fore its modelling is more challenging. We tested the suitability of Sentinel-2 multispectral
imagery to model pH values in water bodies. The correlation between Sentinel-2 bands and
pH values has been shown to be especially strong for pH values in acidic to weakly-acidic
water bodies (pH < 5) (Figure 21). In neutral to basic water bodies (pH ≥ 5), the modelled
pH values show significant differences from the measured values. Consequently, no correla-
tion could be found between the Sentinel-2 bands and the pH values.

To better understand these relationships, the pH values in acidic to weakly acidic
water bodies (2–5) were used as calibration data in a new scenario. In this case, the ANNs
were able to model the pH values with much better accuracy (Figure 22).

The obtained results based on Sentinel-2 Level-1C TOA and Level-2A BOA products
look very similar, and it is hard to distinguish which one performed best. In both cases, the
network error converges after approximately 50 iterations and the final error is below 0.2,
indicating that the neural network is stable and accurate (Figure 23a). The model weights
confirmed that the Sentinel-2 Level-2A B03 (Green), B02 (BLUE), and B11 (SWIR1) spectral
bands have the highest contribution for the modelling. In comparison to the prediction
models for Fe3+ concentration, in this case, band B01 was also given a significant weight.

Figure 24 shows the modelling distribution raster map of pH for the Grüner See. The
map illustrates the differences of the pH values associated with AMD (July 2018) and after
the neutralization of the acid mine water (July 2020).
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Figure 21. Plot of given and modelled pH values based on Sentinel-2 (a) Level-1C TOA and
(b) Level-2A BOA products.

Figure 22. Plot of given and modelled pH values in acidic to weakly acidic water bodies based on
Sentinel-2 (a) Level-1C TOA and (b) Level-2A BOA products.

The correlation between Sentinel-2 bands and pH values in acidic to weakly acidic
water bodies may be well-explained by the linear dependency between dissolved iron
concentration and pH values, which was discussed in Section 2.1. As a result, the surface
reflectance patterns of Fe3+ concentration influence the good result obtained in acidic to
weakly acidic water.
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Figure 23. (a) Plot of MSE and (b) weight parameters for the MLP based on Sentinel-2 Level-2A
BOA products.

Figure 24. Distribution map of pH values in the “Grüner See” (a) in July 2018 with AMD and
(b) in July 2020 after the neutralization of the acid mine water.

4.3. Prediction Modelling of Sulfate Concentration (SO4
2−)

Similar to the pH value, sulfate concentration is an optically non-active constituent
of AMD. The suitability of Sentinel-2 multispectral imagery for modeling the sulfate
concentration was tested on the water bodies. The results revealed that no correlation could
be found between Sentinel-2 bands and sulfate concentration (Figure 25). Samples with
sulfate concentrations higher than 1500 mg/L were used as calibration data in a separate
ANN model; however, in this case, the results also did not show any correlation between
Sentinel-2 bands and sulfate concentration. The reason is because the sulfate concentration
is controlled either by the AMD processes or the equilibrium with gypsum.
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Figure 25. Plot of given and modelled sulfate content values based on Sentinel-2 (a) Level-1C TOA
and (b) Level-2A BOA products.

5. Discussion

Water environments are optically complex, and the signal that a remote sensing
detector collects is a mixed signal composed of various optically active constituents from
different sources [31]. For a water quality analysis based on remote sensing data, it is of
crucial importance to use cloud- and cirrus-free images in pure water environments to
avoid the influence of various optically active constituents (soil, vegetation, etc.) in the
surface reflectance signal.

The proposed method provides an advanced approach to automatically identify and
quantify iron concentration in water bodies using ANNs and low-to-medium resolution
Sentinel-2 images. Careful selection of training samples and multispectral images proved
to be key factors in establishing the ANN models. In this case study, many samples had
to be left out of consideration due to their inconvenient location, e.g., proximity to the
lake banks, samples in narrow small-scale lakes barely visible from the medium resolution
imagery, etc.

The trained ANNs have been used to produce high spatial (10 × 10 m) and temporal
resolution water quality maps showing the wide variability of water quality in differ-
ent parts of the mining region. Considering the newly established dependencies, the
approach opens many doors for the optimization of both the monitoring program and the
sanitation technology.

On the other hand, the selection of cloud- and cirrus-free optical imagery has proved
to be of critical importance for a proper calibration. In the Lusatia area, the selection of
suitable imagery was especially challenging because of the presence of cirrus clouds, which
compromised the quality of water pixels. However, reliable results could be obtained after
an extensive quality control review of Sentinel-2 imagery.

An important aspect to consider is that the ANN results are limited to concentrations
in a specific range defined from the calibration data, meaning that in this case, a quantitative
analysis beyond this range cannot be extrapolated. In this context, discrete samples are still
useful for properly calibrating the algorithms. However, the proposed method drastically
reduces the need for continuous and discrete sampling and enables the mapping of the
iron concentration throughout the entire area of the water bodies.
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The suitability of other satellite remote sensing sensors such as WorldView-3 super-
spectral, EnMAP hyperspectral data, or UAV-based high-resolution data can be further
investigated in order to elaborate the influence of spatial, spectral, and temporal resolution
in the modelling process.

Additionally, field spectro-radiometric measurements of surface reflectance could be
useful information for validating the Sentinel data and obtained results, as these measure-
ments are completely unaffected by the atmospheric conditions [32].

6. Conclusions

In this study, the established ANN model was used to perform several water quality
analyses based on a time-series of Sentinel-2 data for all post-mining lakes in the Lusatia
region. In this large and dynamically changing region, this workflow proved to be a fast and
efficient method for an area-wide monitoring of the water quality in the post-mining lakes.

The area-wide AMD modelling allows for a better identification of the source and
location of the contamination, therefore supporting the responsible authorities to take
mitigation measures in due time. Figure 26 shows an example of AMD modelling in
August 2020 in the Schlabendorfer See. The AMD map illustrates the distribution of the
Fe3+ concentration based on remote sensing (R/S) data and provides information about the
contamination source and its dilution within the water body. As indicated in Figure 26, the
modelled AMD distribution map is consistent with the sample measurements.

Figure 26. (a) False-color image over the Schlabendorfer See (bands 8-4-3) acquired in August 2020.
(b) The AMD distribution according to the R/S model.

The proposed approach not only provided reliable results for the concentration of
(Fe3+) but also for pH values in acidic to weakly acidic waters associated with AMD.
These two parameters are strong indicators for the mapping of AMD in water bodies.
Furthermore, the ANN model was trained and validated based on an extensive in situ
database and was applied in a time-series over a wide variety of water bodies. Therefore,
we conclude that this approach can be used cost-effectively and extensively for larger areas
that are suspected to be the subject of AMD.
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