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Abstract: A strain of Leptospirillum sp. CC previously isolated from Akhtala polymetallic ore (Armenia)
was studied. The main morphological and physiological characteristics of CC were revealed. The
optimal growth temperature was 40 ◦C and optimal pH 1.5. A phylogenetic analysis based on 16S
rRNA gene sequences (GenBank ID OM272948) showed that isolate CC was clustered with L. ferriphilum
and possessed 99.8% sequence similarity with the strain L. ferriphilum OL12-2 (KF356024). The molar
fraction of DNA (G + C) of the isolate was 58.5%. Bioleaching experiment indicates that L. ferriphilum
CC can oxidize Fe(II) efficiently, and after 17 days, 44.1% of copper and 91.4% of iron are extracted from
chalcopyrite and pyrite, respectively. The efficiency of L. ferriphilum CC in pyrite oxidation increases
1.7 times when co-cultivated with At. ferrooxidans ZnC. However, the highest activity in pyrite oxidation
shows the association of L.ferriphilum CC with heterotrophic Acidocella sp. RBA bacteria. It was shown
that bioleaching of copper and iron from chalcopyrite by association of L. ferriphilum CC, At. ferrooxidans
ZnC, and At. albertensis SO-2 in comparison with pure culture L. ferriphilum CC for 21 days increased
about 1.2 and 1.4–1.6 times, respectively.

Keywords: Leptospirillum ferriphilum; isolation; characterization; phylogenetic analysis; bioleaching

1. Introduction

Although At. ferrooxidans was considered to be the most important microorganism
in bioleaching of metals for many years, leptospirilla have been found to be the dominant
iron-oxidizing bacteria in gold–arsenopyrite and pyrite biooxidation reactors operating
at 40 ◦C [1–6]. One of the major factors that determines the dominance of particular
microorganisms in the commercial bioleaching operations is the ratio of ferric/ferrous ions
(related to the redox potential). In contrast to At. ferrooxidans, Leptospirillum ferrooxidans
is found to be resistant even to 500 mM ferric iron concentration [7]. Both L. ferrooxidans
and L. ferriphilum can oxidize ferrous iron even at a pH as low below 1.0 and up to 40 ◦C
temperature [6,8–11].

On the basis of 16S rRNA gene phylogeny, the genus Leptospirillum has been divided
into three groups [12]. At present, the genus Leptospirillum comprises four species of Gram-
negative obligately aerobic chemolithotrophic bacteria: Leptospirillum ferrooxidans (group
I) [13], Leptospirillum rubarum (group II) [14], Leptospirillum ferriphilum and L. ferrodiazotro-
phum (group III) [14,15]. In addition, microbial community genomics has identified further
species of “Leptospirillum sp. group IV UBA BS” [14,16].
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Leptospirillum spp. are vibrio and spiral-shaped chemolithotrophic organisms that fix
carbon (CO2) using Fe(II) as energy source [1,17–19].

The temperature optimum is between 30 to 37 ◦C, although many isolated strains are
defined as being moderately thermophilic (above 40 ◦C). Leptospirillum spp. bacteria are
able to grow in a pH range from 1.0–2.0 [20].

Leptospirillum ferriphilum belongs to the bioleaching microbial communities involved
in solubilization of metals from sulfide ores [21].

As reported by Galleguillos et al. (2009) [22], the metal resistance ability of the
L. ferriphilum was far greater than At. ferrooxidans and L. ferrooxidans, which makes it an
ideal candidate for bioreoxidation of ferrous iron from leachates containing different metals.
The organism is quite useful in two-stage bioleaching processes for treatment of copper
and other base metal concentrates [23–26].

Recently, scientists particularly highlighted species of Leptospirillum genera and their
mixed cultures with other bacteria in the processes of biooxidation and bioleaching of
minerals occurring at temperatures higher than 40 ◦C [17,27–31]. Leptospirillum spp. bacteria
capable of oxidizing Fe(II) within the temperature range of 30–40 ◦C have been isolated
from leaching pulps of copper concentrate and arsenopyrite concentrates.

This study addresses the characterization and reclassification based on 16S rRNA
analysis of the previously isolated and described strain L. ferriphilum CC dominate in a
bioleaching pulp of copper concentrate [32]. The objective of this study is to assess the
potential of the isolated strain as a promising candidate for the regeneration of ferric iron
and biodegradation of sulfide minerals.

2. Materials and Methods
2.1. Cultures and Growing Conditions

In this study, L. ferriphilum CC, iron- and sulfur-oxidizing At. ferrooxidans ZnC, sulfur-
oxidizing At. albertensis SO-2 (KP455986), and heterotrophic Acidocella sp. RBA (KX784767)
isolated by us previously were used [32–35]. Before bioleaching experiments, L. ferriphilum
CC and At. ferrooxidans ZnC were grown on MAC medium [36] with ferrous iron as a
source of energy at 40 and 30 ◦C, respectively, At. albertensis SO-2 was grown on MAC
medium with elemental sulfur as a source of energy at 30 ◦C, and Acidocella sp. RBA was
grown on LHET2 35 ◦C [37].

2.2. Morphology and SEM Images

Gram-staining was performed by Huker method [38] and was observed with Leica
DM500 trinocular (×1000) microscope. For SEM studies, bacterial culture L. ferriphilum CC
was grown on MAC medium at pH 3.0 containing ferrous iron at 40 ◦C. Then bacterial
culture was filtered onto a 0.2 µm pore-size membrane, then the sample was successively de-
hydrated with acetone/water mixtures of 30%, 50%, and 70% acetone, and stored overnight
at 4 ◦C in 90% acetone. The sample was dried by critical-point drying and coated with gold.
A Zeiss Sigma 300V P FEG scanning electron microscope operating at 5 kV was used to
observe samples.

2.3. Optimal pH and Temperature for Growth

The study of the effect of temperature and pH on the growth of CC strain was carried
out in 100 mL flasks containing 50 mL of sterile MAC medium, 5 mL inoculum on the
rotary shaker, and cultures were agitated at 150 rpm. Growth ranges for temperature and
pH were set as 25–50 ◦C and 0.5 to 2.5, respectively.

2.4. Determination of Organic Acids in Culture Liquid of L. ferriphilum CC

Organic acids in the culture liquid were determined by HPLC. The method is based
on the use of reverse-phase high-performance liquid chromatography (HPLC). The mass
concentration (mass fraction) of organic acids in the sample was determined by a diode
array detector. Eluent: phosphate buffer solution, molar concentration 0.1 mol/dm3, pH
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2.2–2.6, column temperature−30 ◦C, ambient temperature −22 ± 1 ◦C. The measurements
were carried out in the wavelength range of the diode array detector: 200–600 nm. Eluent
flow rate: 1 ml/min, injected sample volume −5–10 µl.

Prior to analysis, the samples were preconcentrated under a stream of nitrogen in a
NER-13 nitrogen concentrator, the concentrated samples were passed through a membrane
filter with a pore diameter of 0.95 µm, and then through a C18 purification column.

2.5. Phylogenetic Analysis

Total DNA of CC strain was extracted by following a protocol provided by the Nucle-
oSpin Microbial DNA Kit (Macherey-Nagel, Düren, Germany). Polymerase chain reaction
(PCR) was performed to amplify the 16S rRNA gene region by using the genomic DNA
of the strains as template, universal bacterial primers fD1 (27F) (AGAGTTTGATCCTG-
GCTCAG) and rP2 (ACGGCTACCTTGTTACGAG) as primers. PCR products were tested
by 1.5% agarose gel electrophoresis and sequenced with primers 908fwd (16Sfwd) (GT-
GCCAGCAGCCGCG) and 796rev (16Srev) (GGGTTGCGCTCGTTG) by Microsynth AG
(Balgach, Switzerland). Close relative and phylogenetic affiliation of the obtained 16S
rRNA sequences were determined by submitting to the NCBI 16S ribosomal RNA GenBank
database using NCBI BLAST search analyses (www.ncbi.nlm.nih.gov) performed with
Geneious prime 2022.0.2. (https://www.geneious.com) and the 16S Biodiversity tool (RDP
tool version 2.12) [39,40]. Construction of phylogenetic trees was performed by MEGA X
software using neighbor-joining method [41,42].

DNA base composition (G + C) content was determined using HPLC Method [43].

2.6. Leaching Experiments

Pyrite (FeS2) and chalcopyrite (CuFeS2) from Shamlugh ore deposit (Armenia) were
tested in the bioleaching experiments. Chemical composition of minerals is presented in
Table 1. Feed minerals were ground to a particle size ≤ 63 µm.

Table 1. Chemical composition of the analyzed minerals (wt%).

Sample Fe Cu S

Pyrite 43.8 - 49.0

Chalcopyrite * 29.7 30.2 33.8
* It can be supposed that tested sample of chalcopyrite may contain some amount of enargite (Cu3AsS4).

Bioleaching of pyrite and chalcopyrite was performed using pure culture of L. fer-
riphilum CC as well as its associations with At.ferrooxidans ZnC, At. albertensis SO-2, and
heterotrophic bacteria Acidocella sp. RBA [34]. Bioleaching experiments with L. ferriphilum
CC were carried out in 250 mL Erlenmeyer flasks containing 100 mL of MAC medium
without iron at 40 ◦C. Comparative studies on bioleaching of minerals by pure and mixed
cultures were performed at 35 ◦C, which is closer to optimal growth temperatures of all
bacteria used. Pulp density (PD) was 4% and pH 1.5. The inoculum of used cultures was 5%
and all experiments were carried out in triplicate. For each bioleaching experiment chemical
controls with the same conditions and without inoculum were included. Copper, total iron,
ferric (Fe(III)), and ferrous (Fe(II)) ions in leachate were analyzed at 24 h intervals and pH
was recorded as well. The redox potential was measured with an oxidation/reduction po-
tentials (ORP) electrode met BNC-connector (Pt/Ag/AgCl) of Hi2211-01 Benchtop pH/mV
Meter (Hanna Instruments, Vöhringen, Germany). pH was determined with a Hi2211-01
Benchtop pH/mV Meter equipped with an Ag/AgCl electrode. Copper and total iron were
determined by atomic-absorption spectrophotometer AAS 1N (Carl Zeiss, Jena, Germany)
using an air–propane–butane flame. Concentrations of ferric (Fe(III)) and ferrous (Fe(II))
ions were determined by the complexometric method with EDTA [44].

www.ncbi.nlm.nih.gov
https://www.geneious.com
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3. Results
3.1. Cell Morphology

Cells of Leptospirillum sp. CC are Gram-negative and are motile, vibrio- or spiral-
shaped (Figure 1, Supplementary Figure S1). They have a diameter of 0.2–0.6 µm and a
length of 1.2–1.9 µm.
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Figure 1. SEM micrograph of Leptospirillum sp. CC. Cells were grown on ferrous iron at 40 ◦C for
5 days. Bar represents 2 µm.

This observation is typical for the genus of Leptospirillum. Cells were mainly vibrio-like,
and seldom were spiral with up to ten turns (Supplementary Figure S1). The morphol-
ogy results show that strain CC is consistent with previously described Leptospirillum
species [45].

3.2. Physiological–Biochemical Characteristics

Optimal pH and temperature for growth: the study on the influence of temperature
and pH on the growth of CC strain indicates an optimum of 40 ◦C and pH 1.5, respectively
(Figure 2). No growth is detected at 50 ◦C. pH 0.5 is the lower limit for the growth of CC
strain (Figure 2).

The influence of Fe2+/Fe3+, as well as Cu, Zn, Ni, and Co ions, on the growth of
Leptospirillum sp. CC and Fe2+ oxidation was studied previously. The comparison of iron
oxidation kinetic parameters of Leptospirillum sp. CC with other strains of L. ferriphilum
indicates the high potential of Leptospirillum sp. CC strain in view of biogenic regeneration
of concentrated ferric iron (Fe3+) during the bioleaching processes of ores and mineral
concentrates [32].
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Figure 2. Effect of temperature (a) at pH 1.6) and pH (b) at temperature 40 ◦C on iron oxidation by L.
ferriphilum CC.

3.3. Phylogenetic Analysis of 16S RNA

The sequence of 16S rRNA of Leptospirillum sp. CC was submitted to the GenBank
and the accession number OM272948 was obtained. Based on homology of 16S rRNA,
the phylogenetic tree was built as shown in Figure 3. Isolate CC was clustered with Lep-
tospirillum ferriphilum strains and possessed 99.80% sequence similarity with L. ferriphilum
OL 12-2 (Figure 3, Table 2). In Figure 3, Lactobacillus acidophilus is used as an outgroup to
root the tree, and the database accession numbers of the gene sequences used are given
in parentheses.

Table 2. Identity of 16S rRNA of isolated Leptospirillum sp. CC with other L. ferriphilum strains.

Isolated Strain Type Strains
(Accession Numbers) Identity, % Reference

L. ferriphilum CC

L. ferriphilum OL 12-2
(KF356024.1) 99.80 Moshchanetskiy et al., 2014 [48]

L. ferriphilum MP1
(MN780596.1) 99.73 Muravyov and Panyushkina, 2020 [49]

L. ferriphilum P1
(MG386692.1) 99.60 Panyushkina et al., 2018 [50]

L. ferriphilum P3a
(NR028818.1) 98.27 Coram and Rawlings, 2002 [51]

Chromosomal DNA base analysis shows that Leptospirillum sp. CC has a G + C content
of 58.5%, which is close to, or coincides with, Group II Leptospirilla capable of growing in
the temperature range of 35−45 ◦C [30]. Thus, G + C content analysis suggests that strain
CC belongs to Group II Leptospirilla.
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3.4. Leaching Results

Bioleaching of pyrite and chalcopyrite: the bioleaching trends for pyrite and chalcopy-
rite by L. ferriphilum CC at 40 ◦C are shown in Figures 4 and 5, respectively. As shown
in Figure 4, L. ferriphilum CC demonstrates an elevated pyrite-oxidizing activity. After
17 days of bioleaching, 26.3% of iron was leached resulting in 4.6 g/L concentration in the
leached solution.

Minerals 2023, 13, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 4. Bioleaching of pyrite by L. ferriphilum CC (T 40 °C; pH 1,5; PD 4%). 

  
(a) (b) 

Figure 5. Bioleaching of iron (a) and copper (b) from chalcopyrite by L. ferriphilum CC (T 40 °C; pH 
1.5, PD 4%). 

As shown in Figure 5, the amount of leached copper increases with the bioleaching 
time and reaches 0.325 g/L corresponding to 3% for 15 days. Thus, activity of L. ferriphilum 
CC in biodegradation of chalcopyrite is much lower compared with pyrite.  

3.4.1. Pyrite Leaching by L. ferriphilum CC with Associations of Other Iron- and Sulfur-
Oxidizing and Heterotrophic Bacteria 

The operational feasibility of the bioleaching and biooxidation processes is largely 
determined by the nature of the used microorganisms. It has been shown that associations 

0

1

2

3

4

5

6

1 4 7 10 13 16 19

To
ta

l F
e,

 g
/L

Time (days)

Control
L. ferriphilum CC

0

0.4

0.8

1.2

1.6

2

0 3 6 9 12 15

To
ta

l i
ro

n,
 g

/L

Days

Control

L.ferriphilum CC

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 3 6 9 12 15

C
u,

 g
/L

Days

Control
L.ferriphilum CC

Figure 4. Bioleaching of pyrite by L. ferriphilum CC (T 40 ◦C; pH 1,5; PD 4%).



Minerals 2023, 13, 243 7 of 15

Minerals 2023, 13, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 4. Bioleaching of pyrite by L. ferriphilum CC (T 40 °C; pH 1,5; PD 4%). 

  
(a) (b) 

Figure 5. Bioleaching of iron (a) and copper (b) from chalcopyrite by L. ferriphilum CC (T 40 °C; pH 
1.5, PD 4%). 

As shown in Figure 5, the amount of leached copper increases with the bioleaching 
time and reaches 0.325 g/L corresponding to 3% for 15 days. Thus, activity of L. ferriphilum 
CC in biodegradation of chalcopyrite is much lower compared with pyrite.  

3.4.1. Pyrite Leaching by L. ferriphilum CC with Associations of Other Iron- and Sulfur-
Oxidizing and Heterotrophic Bacteria 

The operational feasibility of the bioleaching and biooxidation processes is largely 
determined by the nature of the used microorganisms. It has been shown that associations 

0

1

2

3

4

5

6

1 4 7 10 13 16 19

To
ta

l F
e,

 g
/L

Time (days)

Control
L. ferriphilum CC

0

0.4

0.8

1.2

1.6

2

0 3 6 9 12 15

To
ta

l i
ro

n,
 g

/L

Days

Control

L.ferriphilum CC

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 3 6 9 12 15
C

u,
 g

/L
Days

Control
L.ferriphilum CC

Figure 5. Bioleaching of iron (a) and copper (b) from chalcopyrite by L. ferriphilum CC (T 40 ◦C;
pH 1.5, PD 4%).

As shown in Figure 5, the amount of leached copper increases with the bioleaching
time and reaches 0.325 g/L corresponding to 3% for 15 days. Thus, activity of L. ferriphilum
CC in biodegradation of chalcopyrite is much lower compared with pyrite.

3.4.1. Pyrite Leaching by L. ferriphilum CC with Associations of Other Iron- and
Sulfur-Oxidizing and Heterotrophic Bacteria

The operational feasibility of the bioleaching and biooxidation processes is largely
determined by the nature of the used microorganisms. It has been shown that associations
and natural consortia of microorganisms function in a more efficient and stable way in com-
mercial bioleaching installations than the corresponding pure cultures [52–56]. Therefore,
the development and establishment of a highly active resistant microbial associations for
use at commercial scale remains an important challenge.

Based on the above-mentioned, the associations of L. ferriphilum CC with iron- and
sulfur-oxidizing bacteria At. ferrooxidans ZnC, sulfur-oxidizing bacteria At. albertensis SO-2,
and heterotrophic bacteria Acidocella sp. RBA were studied.

The data presented in Figure 6 show that the efficiency of L. ferriphilum CC in pyrite
oxidation increases by 1.7 times when co-cultivated with At. ferrooxidans ZnC. At. albertensis
SO-2 in association with L. ferriphilum has no significant effect (1.2 times) on pyrite bioleach-
ing. However, the association constructed on the basis of L. ferriphilum CC and Acidocella
sp. RBA bacteria makes it possible to increase the amount of total iron leached from pyrite
by about 2.8 times (Figure 6). Thus, the association of L. ferriphilum CC with heterotrophic
bacteria shows the highest activity in pyrite oxidation (Figure 6).
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Figure 6. Bioleaching of pyrite by mono and mixed cultures of L. ferriphilum CC, At. ferrooxidans ZnC,
At. albertensis SO-2, and Acidocella sp. RBA (T 35 ◦C; pH 1.8; 180rpm; PD 4%).

It should be noted that when using a pure culture of At. ferrooxidans ZnC, leached
iron is present in the ferric and ferrous form in approximately equal amounts. Accordingly,
the redox potential of the leaching solution differs slightly from that of the non-inoculated
control (Table S1). A low ORP (625 mV) is also observed when using the association of
L. ferriphilum CC with the sulfur-oxidizing bacterium At. albertensis SO-2. When using
associations of L. ferriphilum CC with At. ferrooxidans ZnC, due to the high iron-oxidizing
activity of L. ferriphilum CC, the leached iron is exclusively in the form of ferric iron, which
provides the highest ORP (850 mV) value and, therefore, a high oxidizing power of the
leaching solution. Despite the fact that when using L. ferriphilum CC with Acidocella sp. RBA,
the highest amount of leached iron is observed, the ORP of the solution is significantly lower,
at −715 mV (Table S1). Thus, the ORP, and, consequently, the oxidizing features of the
leaching solution, depend on the activity of the iron-oxidizing bacteria or the associations
between them.

The degree of iron extraction by the association of L. ferriphilum CC and Acidocella
sp. RBA reach 56%, while in the case of the monoculture of L. ferriphilum CC and At.
ferrooxidans ZnC, this parameter does not exceed 20%.

Pyrite is insoluble in acid and, therefore, according to the mechanism of oxidation of
sulfide minerals, can be dissolved only under the action of ferric iron. Thus, the presence of
L. ferriphilum CC in association with At. ferrooxidans ZnC leads to intensive oxidation of
Fe(II) ions and regeneration of ferric iron (Fe(III)), which, in turn, accelerates the oxidation
of pyrite according to the equation below (Equation (1)):

FeS2 + 7Fe2(SO4)3 + 8 H2O → 15 FeSO4 + 8H2 SO4 (1)

3.4.2. Bioleaching of Chalcopyrite by L. ferriphilum CC with Associations of At. ferrooxidans
ZnC, At. albertensis SO-2, and Acidocella sp. RBA

The data shown in Figures 7 and 8 indicate that associations of iron-oxidizing bac-
terium L. ferriphilum CC with At. ferrooxidans ZnC and sulfur-oxidizing At.albertensis SO-2
oxidize chalcopyrite much more actively than a pure culture of L. ferriphilum CC. Thus, in
the presence of At. ferrooxidans ZnC and At. albertensis SO-2, the leaching of copper and
iron by L. ferriphilum CC from chalcopyrite increases, approximately 1.2 and 1.4–1.6 times,
respectively (Figures 7 and 8). It is noteworthy that in the leaching of copper and iron from
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chalcopyrite, the association of L. ferriphilum CC with a heterotrophic bacterium seems to be
more effective in comparison with pure culture (1.3 and 1.85 times, respectively). However,
the association consisting of L. ferriphilum CC, At. ferrooxidans ZnC, and sulfur-oxidizing
bacterium At. albertensis SO-2 shows the highest efficiency in leaching of copper and iron
from chalcopyrite (Figures 7 and 8). This is because for 25 days of bioleaching of chalcopy-
rite with the association of L. ferriphilum CC, At. ferrooxidans ZnC, and At. albertensis SO-2,
copper extraction reaches 15% and iron extraction 33% (Table 3).
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Table 3. Leaching of iron and copper from chalcopyrite by L. ferriphilum CC and association with
iron- and sulfur-oxidizing and heterotrophic bacteria.

Bacteria and Their Associations

Extracted for 25 Days
Final

Iron Copper

g/L %
g/L % pH ORP,

mVFe3+ Fe2+ Fe total Fe total

Control 0 0.672 0.672 5.6 0.44 3.5 1.8 520

L. ferriphilum CC 1.4 0.23 1.63 13.6 1.2 9.4 1.8 640

At. ferrooxidans ZnC 1.096 0.448 1.544 12.8 1.12 8.7 1.75 600

L. ferriphilum CC + At. ferrooxidans ZnC 2.632 0.112 2.632 22.1 1.43 11.2 1.7 680

L. ferriphilum CC + At. albertensis SO-2 2.016 0.616 2.744 23.0 1.67 13.4 1.6 720

L. ferriphilum CC + Acidocella sp. RBA 0.336 3.024 3.360 28.2 1.55 12.1 1.6 620

L. ferriphilum CC + At. ferrooxidans ZnC +
At. albertensis SO-2 3.960 0 3.960 33.3 1.91 14.9 1.5 815

The data in Table 3 show that chalcopyrite bioleaching is correlated with changes in
solution pH and ORP. When using L. ferriphilum CC and At. ferrooxidans ZnC as monocul-
ture, the final pH is 1.8 and 1.75, and the ORP is 640 and 600 mV, respectively, while in case
of L. ferriphilum CC in association with At. albertensis SO-2, the pH is relatively lower (1.6),
and the ORP is significantly higher (720 mV). The lowest pH (1.5) and the highest ORP
value (815 mV) are observed in case of using the association consisting of L. ferriphilum CC,
At. ferrooxidans ZnC, and At. albertensis SO-2 (Table 3).

Chalcopyrite is an acid-soluble sulfide mineral and is, therefore, attacked by both
ferric iron (Fe3+) and protons (H+) (Equations (2) and (3)) [57,58].

CuFeS2 + 4H+ → Fe2+ + Cu2+ + 2H2S (2)

CuFeS2 + 2Fe2(SO4)3 → CuSO4 + 5FeSO4 + 2S0 (3)

Ferric ions oxidize chalcopyrite, releasing copper and iron, as well as elemental sulfur,
into solution (Equation (2)). The role of L. ferriphilum CC lies in the regeneration of the
oxidizing agent—Fe(III) (Equation (4)).

Fe2+ + H+ + 0.5O2
At.ferrooxidans→ Fe3+ + H2O (4)

It is assumed that iron-oxidizing bacteria accelerate the leaching of chalcopyrite
through the ferric iron they produce. At. albertensis in a mixed culture oxidizes sulfide
sulfur to sulfuric acid, and thereby prevents the formation of jarosite and the hydrophobic
layer of sulfur on the surface of chalcopyrite (Equation (5)). Thus, it ultimately limits the
mineral passivation phenomena and promotes the oxidation rate of chalcopyrite.

0.125S8 + 1.5O2 + H2O At.ferrooxidans,At.caldus→ SO4
2 + 2H+ (5)

3.5. Determination of Organic Acids in Culture Liquid of L. ferriphilum CC

The data shown in Tables 4 and 5 have to be regarded in conjunction with the fact that
both At. ferrooxidans and Leptospirillum excrete low molecular compounds (organic acids) to
the solution. Excretion of some organic acids by the mentioned bacteria has been observed
in our previous work [34].
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Table 4. Analysis of organic acids in culture liquid L. ferriphilum CC by HPLC.

N Organic Acids Exit Time Peak Area Height Conc., g/L Final Concentration,
mg/L

1 Tartaric acid 4.523 266,4847 80,296 1948.151 160.078

2 Malic acid 5.630 374,937 20,535 316.628 26.017

3 Lactic acid 7.200 −506 −7 0.000 0.000

4 Acetic acid 7.940 −825 −1 0.000 0.000

5 Citric acid 10.358 6377 394 2.316 0.19

Table 5. Analysis of organic acids in culture liquid At. ferrooxidans ZnC by HPLC.

N Organic Acids Exit Time Peak Area Height Concentration,
g/L

Final Concentration,
mg/L

1 Tartaric acid 4.538 6,309,607 232,851 4612.673 230.6

2 Malic acid 5.657 562,506 42,482 475.027 23.75

3 Lactic acid 7.070 −26,250 −81 0.000 0.000

4 Acetic acid 8.481 5645 312 7.677 0.384

5 Citric acid 10.363 51,123 1937 18.569 0.928

Analysis of the culture liquid of At. ferrooxidans ZnC and L. ferriphilum CC after cell
removal by high-performance liquid chromatography (HPLC) shows the presence of tartaric,
malic, acetic, and citric acids. The results of the analysis of organic acids in samples of the
culture liquid At. ferrooxidans ZnC and L. ferriphilum CC are presented in Tables 4 and 5.

Berthelot et al. [59]., Johnson and Roberto [60]., and Liu et al. [61] proposed that
the presence of heterotrophs, such as A. acidophilum, could improve metal bioleaching
by biodegrading organic matter and, thus, detoxify the growth environment for other
acidophiles. Paiment et al. [62] in a 21 day bioleaching experiment, using At. ferrooxidans
alone or mixed culture with A. acidophilum, showed that the recovery of copper from copper–
nickel sulfide ore increased from 1.7 to 2.5% in case of mixed culture. Bacelar-Nicolau and
Johnson [63] found that pyrite leaching was enhanced when mixed cultures containing iron
oxidizers and A. acidophilum were used.

Thus, acidophilic heterotrophic Acidocella sp. RBA bacteria can utilize organic com-
pounds contained in exudate or lysate of cells and, thus, reduce their toxic effect on
autotrophic bacteria such as At. ferrooxidans ZnC and L. ferriphilum CC. In addition, het-
erotrophic Acidocella sp. RBA bacteria excrete CO2 during respiration that can be assimilated
by autotrophic bacteria in their constructive metabolism.

Thus, interactions between iron-oxidizing and sulfur-oxidizing autotrophs and het-
erotrophs in association increase the extraction of metals.

It is well-known that a mixed culture consisting of moderately thermophilic bacteria
L. ferrooxidans and At. caldus leaches chalcopyrite more efficiently than the mesophilic
bacterium At. ferrooxidans in pure and mixed culture. In addition, it was noted that when
using At. ferrooxidans, passivation of the chalcopyrite surface and inhibition of mineral
leaching quickly occurred [52,54,64–66].

4. Conclusions

The cells of CC are Gram-negative and are motile, vibrio- or spiral-shaped, with a
0.12–0.13 µm width and a 0.6–1.0 µm length. It has a guanine plus cytosine (G + C) content
of 58.5% and exhibits 99.8% similarity of 16S rRNA to L. ferriphilum OL12-2.
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Physiological investigation has indicated that L. ferriphilum CC is an obligate chemolithoau-
totroph, metabolizing ferrous iron and pyrite. Optimal growth temperature for L. ferriphilum
CC was found to be 40 ◦C and the optimal pH -1.5.

It has been shown that during bioleaching experiments L. ferriphilum CC can oxidize
Fe(II) efficiently, and after 17 days, 44.1% of copper and 91.4% of iron are extracted from
chalcopyrite and pyrite, respectively.

When co-cultivated with At. ferrooxidans ZnC, the efficiency of L. ferriphilum CC in
pyrite oxidation increases by 1.7 times. The association of L. ferriphilum CC with het-
erotrophic Acidocella sp. RBA resulted in highest activity in pyrite oxidation.

It has also been shown that bioleaching of copper and iron from chalcopyrite by associ-
ation of L. ferriphilum CC, At. ferrooxidans ZnC, and At. albertensis SO-2 in comparison with
pure culture L. ferriphilum CC for 21 days increases about 1.2 and 1.4–1.6 times, respectively.

Thus, it is supposed that heterotrophic Acidocella sp. RBA bacteria can utilize organic
compounds contained in exudate or lysate of cells and, therefore, reduce their toxic effect
on autotrophic bacteria such as At. ferrooxidans ZnC and L. ferriphilum CC.

This indigenous strain may contribute to the iron cycling as well as to the acid mine
drainage patterns in the local area.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/min13020243/s1, Figure S1: SEM micrograph of strain Leptospirillum
sp. CC after growth of 5 days; Table S1: Iron leaching from pyrite by a pure culture of L. ferriphilum
CC and associations with other iron- and sulfur-oxidizing and heterotrophic bacteria.
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