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Abstract: Located at the intersection of the Tethys and Pacific Rim metallogenic belts, the Laojunshan
polymetallic metallogenic province in SE Yunnan Province hosts many large-scale W–Sn and Sn–Zn
polymetallic deposits. The newly discovered Caiyuanzi medium-sized Pb–Zn deposit is located
in the northern part of this province and has eight sulfide ore bodies. All the ore bodies occur in
the siliceous rocks of the Lower Devonian Pojiao Formation (D1p). The ore bodies are conformable
with stratigraphy and controlled by a lithologic horizon. The sulfide ores have banded or laminated
structures. The ore minerals are mainly pyrite, chalcopyrite, sphalerite, and galena. In this study, in
situ sulfur and lead isotopes were used to constrain the origin of the Caiyuanzi Pb–Zn deposit. The
results show that the in situ δ34S values of pyrite, chalcopyrite, and sphalerite range from 0.1‰ to
6.0‰, with an average of 4.7‰. This δ34S signature reflects the mixing between magmatic-derived and
reduced seawater sulfate sulfur. The in situ Pb isotopes characteristics of pyrite, galena, and sphalerite
suggest that the sulfur and lead of ore minerals come from the upper crust. Integrating the data
obtained from the studies including regional geology, ore geology, and S–Pb isotope geochemistry,
we proposed that the Caiyuanzi Pb–Zn deposit is a hydrothermal deposit formed by sedimentary
exhalative and magmatic hydrothermal superimposition.

Keywords: in situ S and Pb isotopes; the source of ore-forming elements; ore genesis; Caiyuanzi
Pb–Zn deposit

1. Introduction

The Laojunshan polymetallic metallogenic province in SE Yunnan Province is located
at the intersection of the Tethys and Pacific Rim metallogenic belts. This province hosts
many large-scale W–Sn and Sn–Zn polymetallic deposits, such as the Dulong super-large
Sn–Zn polymetallic deposit, Xinzhai large-scale Sn polymetallic deposit, and the large-scale
Nanyangtian W–Sn deposit. In recent years, one large-scale (Hongshiyan Pb–Zn) and two
medium-sized (Gaji Pb–Zn-Cu polymetallic and Caiyuanzi Pb–Zn) deposits have been
discovered in the northern part of the province. The Pb–Zn deposits have a total Pb, Zn,
and Cu metal resource of nearly 1.2 million tons, indicating that this province has good
prospecting potential for these metals.

At present, the genesis of the Pb–Zn deposits is controversial [1–6], but theories include
sedimentary exhalative (SEDEX) [1,2,6], and magmatic hydrothermal origins [3–5]. The
main reason for the diversity in genetic views is the lack of understanding of the source
of ore-forming materials. In this study, the in situ S and Pb isotopes of sphalerite, galena,
pyrite, and chalcopyrite are used to trace the source of metallogenic elements and to discuss
the ore genesis of the Caiyuanzi Pb–Zn deposit.
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2. Geological Setting
2.1. Regional Geology

The Laojunshan metallogenic province is located at the junction of the Cathaysian,
Yangtze, and Indochina blocks (Figure 1a), and in the northern part of the Song Chay meta-
morphosed dome (Figure 1b). The sedimentary environment in this province is complex
and diverse and has experienced multiple periods of large-scale magmatic intrusion [7–11].
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geological map ((b), quoted from [10]).

Since the Cambrian, this province has experienced repeated transgression and re-
gression, ending in late Triassic marine sedimentation. The exposed strata are Cambrian,
Devonian, and Permian, which show a trend of decreasing metamorphism. The Lower
Cambrian is mainly sandy argillaceous slate and schist. The abundance of carbonate
rocks gradually increases in the upper Middle Cambrian; the Lower Devonian is sandy
argillaceous slate, which overlies the Cambrian at a slight angle. The Middle and Upper
Devonian are mesa facies carbonate rocks, and the Permian is a continental shelf carbonate
with siliceous rocks [12]. There are mainly NNE- and NW-trending regional structures
(Figure 1b); the former were formed in the Caledonian–Indosinian, and the latter were
formed in the Indosinian–Himalayan [12]. The Nanwenhe and Laojunshan granites are
the main igneous rocks, both of which are closely related to tin and zinc polymetallic
mineralization in the area [10,13,14]. The Nanwenhe granites are known as the Song
Chay granites in the Vietnamese part, and are also known as the Song Chay metamorphic
dome [7,8]. They intruded during the late Silurian (420–440 Ma) [7,15,16], and then under-
went deformation and metamorphism during the Indosinian, forming gneissic, banded, and
eyeball-shaped structures [12]. The Laojunshan granites intruded during the Cretaceous
(83–117 Ma) [13,14,17–21].
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2.2. Ore Deposit Geology
2.2.1. Strata

The main strata exposed in the mining area are Devonian (Figure 2). The Lower
Devonian Pojiao Formation (D1p) comprises shallow continental shelf clastic rocks; the
Lower Devonian Gumu Formation (D1g) is a carbonate mesa marginal facies deposit; the
Middle Devonian Donggangling Formation (D2d) is a sub-tidal sedimentary of the mesa;
the Upper Devonian Gedang Formation (D3g) is a shallow facies carbonate mesa deposit.
The Batang Wedge (bw) is an informal stratigraphic unit that belongs to the late Early
Devonian–early Middle Devonian carbonate mesa slope facies [22]. The Pojiao Formation
is the main ore-hosting layer in the mining area, which is in extensive contact with the
overlying Batang Wedge, and has a transitional relationship with the Lower Posongchong
Formation. It is mudstone, marl locally interspersed with quartz sandstone, carbonaceous
mudstone, marl limestone lens, and has been metamorphosed into mica schist, quartz
schist, siliceous dolomite, and locally siliceous rocks.
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The Pojiao Formation can be subdivided into two sections [23]. The lower section
(D1p1) can be divided into three beds from bottom to top, as follows: the first bed is quartz
schist and siliceous dolomite; the second is quartz schist mixed with siliceous rocks; the
third is carbonaceous mica schist and quartz mica schist. The upper section (D1p2) can
be divided into four beds from bottom to top, as follows: the first bed is thick bedded
siliceous rocks sandwiched between banded quartz schist; the second is quartz schist and
siliceous dolomite interspersed with banded siliceous rocks; the third is siliceous dolomite
interspersed with siliceous rock; the fourth is quartzite mica schist with quartz schist,
locally sandwiched with thin siliceous bands, and locally contains striped pyrite.

2.2.2. Tectonic

The overall structural form of the mining area is a monocline that strikes EW and dips
south (Figure 2). A secondary steep slope of compressive tensional NNW, near EW and
NE faults developed, off the Xingjie fault (Fs). The strata of the mine area were strongly
compressed, resulting in a series of soft wrinkles and folds, which were caused by the
above-mentioned fault activity.

2.2.3. Ore Body

A total of eight conformable Pb–Zn strata-bound ore bodies have been found in the
mining area, in the siliceous dolomite rocks layer of the Lower Devonian Pojiao Formation
(D1p) (Figure 3). Ores have banded and laminated structures (Figure 4). The main ore body
is spread along the banded siliceous dolomite on top of the siliceous rocks [23], which can
be divided into lower and upper ore-bearing sections.
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Figure 4. Strata-bound ore body (a) and ores with laminated structure (b). Abbreviations are as
follows: Py, pyrite; Gn, galena; Sph, sphalerite.

2.2.4. Texture and Structure

The ore minerals are mainly pyrite, chalcopyrite, sphalerite, and galena, with a small
amount of hematite, pyrrhotite, and magnetite, and the gangue minerals are mainly calcite,
quartz, and epidote. The ore minerals have euhedral granular, allomorphic granular
and metasomatic residual textures. The sulfide ores have massive, disseminated, veined
disseminated, banded, and laminated structures (Figure 5).
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Figure 5. Hand specimens and microscopic photos of the ores from the Caiyuanzi deposit.
(a) Disseminated-banded Pb–Zn ore sample (CYZ-1); (b) disseminated-net vein Pb–Zn ore (CYZ-2);
(c) pyrite replaced and enclosed by galena and sphalerite; (d) sphalerite, galena, and chalcopyrite,
forming network veins occurring along the wall rock fractures, where galena and chalcopyrite alter-
nate with sphalerite. Abbreviations are as follows: Py, pyrite; Gn, galena; Sph, sphalerite; Qz, quartz;
Ccp, chalcopyrite; Ep, epidote; Cal, calcite.
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The galena, sphalerite, and chalcopyrite are mostly disseminated, veined, banded,
and laminated. Pyrite is subhedral to euhedral granular, forming locally fine-grained
aggregates; sphalerite and chalcopyrite are anhedral granular and aggregate; galena is
allomorphic granular and aggregate. Pyrite is encapsulated and cemented by other sulfides
or alternatively metasomatized, suggesting that pyrite formed early. Sphalerite, galena,
and chalcopyrite often occur together where galena and chalcopyrite are replaced with
sphalerite, indicating that the formation of sphalerite is later than galena and chalcopyrite,
but the formation sequence of galena and chalcopyrite is difficult to determine (Figure 5).

2.2.5. Altered Wall Rocks

The wall rock alteration mainly includes silicification, skarnization, pyritization, and
calcitization. The wall rock alteration has an enrichment effect on the Pb–Zn–Cu polymetal-
lic mineralization in the mining area. Skarns include actinolite epidote skarn, and chlorite
epidote skarn, which are limited to the siliceous limestone in the Pojiao Formation.

3. Sampling and Analytical Methods
3.1. Samples

All the samples were collected from the PD2 tunnel of the Caiyuanzi ore deposit. The
detailed information about those samples is listed in Table 1.

Table 1. Information of the samples.

No. Locations Features Purposes

CYZ—1 PD2 Disseminated banded ores Pb isotope analyses
CYZ—1(1) PD2 Banded ores Pb isotope analyses

CYZ—2 PD2 Disseminated ores S isotope analyses
CYZ—3 PD2 Skarn ores Pb isotope analyses
CYZ—4 PD2 Sulfide-bearing limestone
CYZ—5 PD2 Sulfide-bearing calcium siliceous rocks S and Pb isotope analyses
CYZ—6 PD2 Skarn ores
CYZ—7 PD2 Sulfide-bearing schistose marble S isotope analyses

3.2. Analysis Methods

The micro area in situ sulfur isotope test of sulfide was completed in Nanjing Polyspec-
trum Testing Technology Co., Ltd., and the galena, sphalerite, pyrite, and chalcopyrite of
samples CYZ-2, CYZ-5, and CYZ-7 were selected for sulfur isotope analyses. The mass
spectrometer model is the Nu Plasma II MC-ICPMS, and the laser model is Analytical
Excite. The deep ultraviolet beam generated by the laser generator is focused on the sulfide
surface through the homogenizing optical path. First, the gas background is collected for
40 s, and then the appropriate beam spot (pyrite 33 µm; sphalerite 40 µm; chalcopyrite
50 µm) at a 5 Hz frequency for 35 s, before the aerosol is sent out of the denudation pool
by helium, mixed with argon, and then enters the MC-ICPMS (single integration time is
0.3 s, and there are about 110 groups of data within the denudation time of 35 s). We used
a GBW07267 pyrite cake pressed by National Geological Experimental Testing Center of
Chinese Academy of Geological Sciences (δ34S = 3.6‰) and GBW07268 chalcopyrite cake
pressing (δ34S = −0.3‰), and NIST SRM 123 crushed zinc blender particles (δ34S = 17.1‰)
as the data quality control, and the long-term external reproducibility is about ±0.6‰
(1 SD).

Micro area in situ lead isotope testing of sulfide was completed in two testing units,
respectively. The lead isotope composition analysis of samples CYZ-2 and CYZ-5 was
completed in Wuhan Shangpu Analysis Technology Co., Ltd. The instrument model is
the MC-ICPMS (Neptune Plus) with multi-receiver mass spectrometry, GeoLas HD with a
193 nm exciter laser ablation system, and a beam spot of 90–120 µm. Energy intensity is
6 mJ/cm2, the frequency is 8 Hz, the carrier gas (He) is 500 mL/min, collected data (pulses)
are 500, and the recommended values of standard samples (Sph HYLM) are 208Pb/204Pb
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(38.519), 207Pb/204Pb (15.764), and 206Pb/204Pb (18.217). The lead isotope analyses of
samples CYZ-1 and CYZ-3 were completed in the National Key Laboratory of Continental
Dynamics, Northwest University. The mass spectrometer model is Nu Plasma II MC-
ICPMS, the laser model is Quantronix Integra HE Ti 266 nm NWR UP Femto (ESI, Hartland,
WI, USA), and the erosion radius is 15–65 µm. The laser frequency is 5–50 Hz, the erosion
mode is 3 µm/s lines scanning, and the He airflow is 0.7 L/min. The sample standard
sample cross method is adopted. The standard sample is NIST610, and the analysis error is
better than 0.003 (1 σ).

4. Results
4.1. In Situ S Isotopic Compositions

The results of in situ S isotopic compositions of pyrite, chalcopyrite, and sphalerite
are shown in Table 2 and Figure 6. Pyrite, chalcopyrite, and sphalerite have δ34S values
between 0.1‰ and 6‰, with an average of 4.7‰ (Figure 7). Pyrite has δ34S values ranging
from 4.3‰ to 6‰ (except 0.1‰ for one point), with an average of 5.40‰; sphalerite has
δ34S values are between 4.7‰ and 5.3‰, with an average of 5.08‰; chalcopyrite has δ34S
values are between 4.3‰ and 4.9‰, with an average of 4.67‰.

Table 2. In situ sulfur isotopic compositions of ore sulfides.

No. Point No. Mineral δ34S (‰)

cyz-2

cpy-sp-1 Sphalerite 4.70
cpy-sp-3 Chalcopyrite 4.50
cpy-sp-4 Chalcopyrite 4.90
cpy-sp-5 Chalcopyrite 4.90
py-sp-1 Pyrite 0.10
py-sp-2 Pyrite 5.00
py-sp-3 Sphalerite 4.70
py-sp-4 Pyrite 6.00

cyz-5

cpy-Gn-1 Chalcopyrite 4.70
cpy-Gn-2 Chalcopyrite 5.10

pyd-pyx-sp-cpy-1 Pyrite 5.30
pyd-pyx-sp-cpy-2 Pyrite 5.90

pyd-pyx-sp-cpy-3 Pyrite 5.50
pyd-pyx-sp-cpy-4 Sphalerite 4.90
pyd-pyx-sp-cpy-5 Sphalerite 5.20

sp-cpy-1 Sphalerite 5.30
sp-cpy-2 Chalcopyrite 4.90

cyz-7

cpy-1 Chalcopyrite 4.40
cpy1-1 Chalcopyrite 4.80
cpy-2 Chalcopyrite 4.30
cpy-5 Sphalerite 4.30

4.2. In Situ Pb Isotopic Ratios

The results of LA-MC-ICPMS in situ Pb isotopes of galena are listed in Table 3. The
Pb isotopic ratios of galena are relatively uniform, with 206Pb/204Pb, 207Pb/204Pb, and
208Pb/204Pb ratios of 18.134–18.202 (mean 18.158), 15.698–15.735 (mean 15.715), and 38.430–
38.542 (mean 38.46), respectively.
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Table 3. In situ Pb isotopes of sphalerite, pyrite, and chalcopyrite.

No. Deposits Point Nos. Mineral 206Pb/204Pb 1s 207Pb/204Pb 1s 208Pb/204Pb 1s

CYZ-1

Caiyuanzi

GN-1 Galena 18.148 0.001 15.712 0.001 38.449 0.002
1-GN-2 Galena 18.146 0.001 15.711 0.001 38.447 0.002
1-GN-7 Galena 18.142 0.004 15.707 0.004 38.432 0.010
1-GN-8 Galena 18.134 0.001 15.698 0.001 38.410 0.003

CYZ-1

GN-1 Galena 18.153 0.001 15.719 0.001 38.464 0.002
GN-10 Galena 18.147 0.001 15.710 0.001 38.445 0.002
GN-11 Galena 18.148 0.001 15.711 0.001 38.444 0.002
GN-2 Galena 18.151 0.001 15.717 0.001 38.461 0.002
GN-3 Galena 18.153 0.001 15.718 0.001 38.463 0.002
GN-4 Galena 18.147 0.001 15.712 0.001 38.449 0.003
GN-5 Galena 18.146 0.001 15.711 0.001 38.446 0.002
GN-6 Galena 18.145 0.001 15.709 0.001 38.437 0.002
GN-7 Galena 18.143 0.001 15.707 0.001 38.435 0.002
GN-8 Galena 18.144 0.001 15.708 0.001 38.438 0.002
GN-9 Galena 18.142 0.001 15.707 0.001 38.434 0.002
SP-1 Sphalerite 18.162 0.022 15.720 0.020 38.473 0.052

CYZ-2 Caiyuanzi 01 Pyrite 18.170 0.003 15.728 0.003 38.510 0.006
04 Pyrite 18.167 0.002 15.721 0.002 38.492 0.006

CYZ-5 Caiyuanzi 02 Pyrite 18.147 0.006 15.720 0.004 38.467 0.011

CYZ-3 Caiyuanzi

GN-1 Galena 18.147 0.001 15.703 0.001 38.430 0.003
GN-10 Galena 18.154 0.001 15.709 0.001 38.444 0.003
GN-11 Galena 18.151 0.001 15.706 0.001 38.438 0.002
GN-12 Galena 18.152 0.001 15.708 0.001 38.445 0.002
GN-2 Galena 18.149 0.001 15.705 0.001 38.436 0.003
GN-3 Galena 18.158 0.001 15.716 0.001 38.468 0.002
GN-4 Galena 18.158 0.001 15.717 0.001 38.470 0.002
GN-5 Galena 18.157 0.001 15.716 0.001 38.469 0.003
GN-6 Galena 18.153 0.001 15.711 0.001 38.455 0.003
GN-7 Galena 18.151 0.001 15.708 0.001 38.445 0.003
GN-8 Galena 18.149 0.001 15.706 0.001 38.443 0.002
GN-9 Galena 18.156 0.001 15.711 0.001 38.453 0.002

5. Discussion
5.1. Source and Formation Mechanism of Reduced Sulfur

Sulfur isotopes are one of the most important bases for determining the source of
sulfur and the formation process of sulfide deposits [24–61]. Three sources of sulfur have
been proposed, as follows: (1) mantle-derived sulfur, δ34S = −3‰ to 3‰ (average 0‰);
(2) sedimentary sulfur (marine sulfate), which could form reduced sulfur by thermo-
chemical sulfate reduction (TSR) or bacterial sulfate reduction (BSR) [32,37]; and (3) mixed
sulfur of the above two types [31].

The ore mineral assemblages of the Caiyuanzi Pb–Zn deposit are simple, with mainly
pyrite, sphalerite, and galena and other sulfides. The δ34S values of the Caiyuanzi deposit
are relatively homogeneous (0.1‰ to 6‰, with a mean value of 4.7‰) and positive, which
may represent the δ34S∑S of the ore-forming hydrothermal fluids.

The δ34S values differ significantly from the values found in typical Mississippi Valley-
type (MVT) Pb–Zn deposits, whose reduced sulfur was mainly formed by TSR and/or BSR;
for example, the δ34S values of sulfides in the Daliangzi (MVT) Pb–Zn deposit are mainly
10‰ to 20‰ [39,41], while the in situ δ34S values of sulfides in the Maoping (MVT) Pb–Zn
deposit ore are −20.4‰ to 25.6‰ [33,35,40].

In addition, the sulfur isotopic compositions of the Caiyuanzi Pb–Zn deposit are similar
to those of the adjacent Gejiu Sn and Dulong Sn–Zn polymetallic deposits (Figure 8), whose
sulfur was mainly derived from the magmatic rocks, with less marine sulfate [13,14]. For
example, the δ34S values of the Gejiu deposit are mainly −3.1‰ to 8.4‰ [51], and the δ34S



Minerals 2023, 13, 238 10 of 16

values of the Dulong deposit are mainly 4.2‰ to 12.4‰, most being 5.2‰–9.4‰ [10,42].
Hence, we propose that the sulfur for the Caiyuanzi deposit is mainly derived from the
magmatic rocks, although some contribution from the wall rock cannot be excluded.
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5.2. Source of Metals

Due to the low contents of U and Th, the proportion of radiogenic Pb in sulfide
minerals is negligible. Therefore, Pb isotopes of galena could represent the Pb isotopes
of the ore-forming fluids without age correction [49,50]. The in situ Pb isotopic ratios
of galena from the Caiyuanzi Pb–Zn deposit obtained in this study has a narrow range
(Table 3), suggesting either a single source or a high degree of homogenization in the
ore-forming metals in this deposit [39]. In this paper, we collected Pb isotopic data from
the Laojunshan granites, marble, schist, and ores in Dulong (Table 3). The samples of the
Caiyuanzi deposit fall on the average upper crustal growth curve and mantle curve in
the corresponding Figure 9a,b, respectively. The whole rock Pb isotope ratios of marble
and schist are significantly different from those of the Caiyuanzi deposit (Figure 9), so
the wall rocks (marble and schist) may not have provide lead to the deposit. The data
of Yanshanian granites are concentrated between the orogenic belt and the upper crust,
close to the upper crust, and its 208Pb/204Pb and 207Pb/204Pb ratios are consistent with
the data of Caiyuanzi sample points. The Pb isotope ratios of the Caiyuanzi and Dulong
deposits and the Yanshanian granites have the same distribution range and trend and are
projected between the orogenic belt and the upper crustal evolution curve, indicating that
the Laojunshan granites might have provided metals for the Caiyuanzi deposit. Another
end member should be the underlying Proterozoic rocks, with relatively unradiogenic
crustal Pb.

In addition, the µ values (238U/204Pb) of the Caiyuanzi deposit range from 9.71 to
9.76, which are between the mantle or lower crust Pb (µ = 7.86–7.94) and upper crust
Pb (µ = 9.81), and so could be a mixture between them. The average value of ω is 39.14,
which is closer to the upper crust Pb between normal lead (ω = 35.55 ± 0.59) and the
upper crust Pb (41.860) [38]. The Th/U average value is 3.89, which is close to normal
Pb (Th/U = 3.92 ± 0.9), slightly higher than the upper crust of the Chinese mainland
(Th/U = 3.76). In the corresponding Pb isotope4β–4γ genetic classification diagram [55],
the data point of the Caiyuanzi deposit falls in the upper crust Pb source area (Figure 10).
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The Pb isotopes of the Dulong deposit and the Yanshanian granites span two source
areas of upper crustal Pb and magmatic Pb, and generally show a trend from magmatic
Pb to crustal Pb, suggesting that the intermediate-acidic magma rich in deep-source low
µ-value Pb has been contaminated by shallow-source high µ-value Pb during ascent. The
µ values of the Dulong deposit (9.56) and the Dulong Yanshanian granites (µ = 9.62) are
similar to that of the Caiyuanzi deposit (µ = 9.72).

The degree of crustal contamination of magmatic hydrothermal fluids is positively
correlated with the µ values [44], suggesting that the intermediate-acid magmatic hy-
drothermal fluids related to the Caiyuanzi Pb–Zn deposit are greatly contaminated by
crustal materials. In addition, the Pb isotope of sulfides in the Caiyuanzi deposit is signifi-
cantly higher in U/Pb (208Pb/204Pb > 18.000, 207Pb/204Pb > 15.300), and slightly lower in
Th/Pb (208Pb/204Pb < 39.000), suggesting that the ore-forming material is dominated by
upper crust lead, with a small amount of deep crust-derived magmatic Pb, showing the
characteristics of orogenic belt Pb.

5.3. Ore Genesis

At present, the ore genesis of the Pb–Zn deposits in the Laojunshan area is still contro-
versial. The focus is whether it belongs to a SEDEX deposit or a magmatic hydrothermal
deposit. In this paper, the in situ S and Pb isotopes of the Caiyuanzi Pb–Zn deposit show
that the sulfur was mainly derived from the mixed sources of magmatic rocks and marine
sulfate, and the source of metal Pb is the upper crust. The ore bodies are strata-bound
and stratiform, which resembles the SEDEX deposits (Table 4). However, the Caiyuanzi
Pb–Zn deposit is characterized by epigenetic mineralization with extensive pyrrhotite
and skarnization, which can be compared to the general metallogenic characteristics of
magmatic hydrothermal deposits. Most of ore bodies and ores underwent some fractures
and deformation. Therefore, all of these observations suggest that the Caiyuanzi Pb–Zn
deposit was a product of syn-sedimentary hydrothermal exhalative and superimposed
magmatic–hydrothermal ore-forming processes.

Table 4. Summary and comparison of principal characteristics of SEDEX, MVT, magmatic hydrother-
mal vein-type, and the Caiyuanzi Pb–Zn deposit.

Features Sedimentary Exhalative
(SEDEX)

Mississippi Valley-Type
(MVT)

Magmatic Hydrothermal
Vein-Type Caiyuanzi Deposit

Ore-forming age Syngenetic—early
diagenetic Epigenetic Epigenetic Syngenetic, epigenetic

Geological setting Extensional first and
second-order basins

Carbonate platform
sequences and thrust belts,

rare occurrences in
extensional basins

Varied Thrust belt

Host rocks

Varied. Mainly
sandstones, siltstones,
limestones, dolomites,
cherts, and turbidites

Limestones, dolostones,
and rare micrites

Varied. Sandstone,
siltstone, and carbonates

Siliceous dolomite,
quartz schist

Structural controls

Syn-sedimentary faults
controlling sub-basins and

associated fractures
and breccias

Normal, trans-tensional,
and wrench faults and

associated fractures
and breccias

Fault zone/strata Lithologic interface

Associated igneous
activity

No direct association with
igneous activity, but tuffs

related to synchronous
distal volcanism may

be present

Not associated with
igneous activity

Associated with
igneous activity

Associated with
igneous activity

Ore-body morphology

Single or multiple wedge-
or lens-shaped, or

sheeted/stratiform mor-
phology

Commonly discordant on
a deposit scale but
strata-bound on a

regional scale

Veins, stratiform-
like morphology

Stratiform-like
morphology
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Table 4. Cont.

Features Sedimentary Exhalative
(SEDEX)

Mississippi Valley-Type
(MVT)

Magmatic Hydrothermal
Vein-Type Caiyuanzi Deposit

Mineralogy
Sp, Gn, and Py (±Pyr) and
common Brt, Ap, and very

rare Fl

Sp, Gn, Py, Mar, minor
Dol, Cal, Fl (rare), Cpy,

and Brt (minor to absent)

Sp, Gn, Py, Cpy, and
minor Brt

Sp, Gn, Py, Ccp, minor
Hem, Po, Mag, Grt,

and Chl

Host rock alteration
Silicification,
chloritization,

epidotization, albitization

Carbonatization,
silicification

Silicification, pyritic and
carbonate alteration Silicification, skarnization

References [56] [57–59] [60,61] This paper

Abbreviations are as follows: Sp, sphalerite; Gn, galena; Py, pyrite; Brt, barite; Ap, apatite; Cpy, chalcopyrite; Fl,
fluorite; hem, hematite; Po, pyrrhotite; Mag, magmatite, Grt, garnet, Chl, chlorite.

In South China, the Devonian is widely exposed and consists of carbonate and clastic
deposition of large transgressive-regressive cycles [63]. The Devonian sedimentary rocks
in South China host numerous SEDEX pyrite deposits, such as Dajiangping [64], and
sedimentary reworking deposits, such as Huodehong [65]. The reducing environment
within the early Devonian sea floor led to the rapid burial of organic matter. The reduction
of marine sulfate by organic matter formed S2− and then mixed with deeply-derived Pb
and Zn, etc., and eventually formed the syn-sedimentary sulfide ore bodies. During the
Cretaceous, extensional tectonics developed in South China. The southeastern Yunnan–
northern Guangxi and the large-scale mineralization in Late Mesozoic in western South
China were controlled by a similar continental dynamic background [48]. After 135 Ma, the
movement direction of the Izanagi plate in eastern China changed, from the subduction of
the Eurasian continent to rapid strike-slip along a NE direction [46], and the South China
region underwent lithospheric extension. As a result of the extension of the lithosphere,
the lithospheric mantle has undergone underplating and upwelling, resulting in a large
amount of ferromagnesian magmatism. Upwelling of this magma and underplating of
the lower crust, as well as the partial melting of the lower crust, may have produced
granitic melt that invaded the upper crust [45]. During this period, a large number of
granite bodies were formed in southeastern Yunnan, such as the Gejiu, Laojunshan, and
Bozhushan granites. At the same time, a number of world-class W–Sn polymetallic deposits
related to granites were formed, such as the Gejiu, Dulong, Dachang, and Bainiuchang
deposits. The newly obtained S and Pb isotopic data from Caiyuanzi suggest that the
mineralization is related to the Yanshanian granites in Laojunshan. The regional magmatic
hydrothermal events contributed to the Dulong Sn (diopside, garnet, and tremolite skarn)
and Zn mineralization (epidote skarn, although some parts show a lack of skarn minerals),
and Caiyuanzi skarnization (epidote, garnet skarn).

6. Conclusions

(1) The sulfur and lead of ore minerals come from the upper crust and mantle.
(2) The Caiyuanzi Pb–Zn deposit is a hydrothermal deposit formed by the superimposed

magma of sedimentary exhalative.
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