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Abstract: Travertines formed of crystalline crust have been widely reported, but there has not been
focus on their geochemical characteristics. We therefore carefully conducted a series of geochemical
investigations and U-Th dating on a travertine mound mainly composed of crystalline crust from
Sobcha (southwest China) to determine their geochemical features and geological implications. The
Sobcha travertines dominantly consist of granular crystals and fan crystals and show δ13C from 3.4‰
to 4.9‰ V-PDB, δ18O from −26.7‰ to −23.7‰ V-PDB, and 87Sr/86Sr from 0.712458 to 0.712951.
When normalized to PASS, the Sobcha travertines exhibit MREE enrichment relative to HREE and
LREE, HREE enrichment relative to LREE, and positive Eu anomalies. The δ13C signatures and
mother CO2 evaluation of the Sobcha travertines show that the Sobcha travertines were thermogene
travertines largely receiving mother CO2 from (upper) mantle (i.e., magmatic CO2) or a mixture
of soil-derived CO2 and CO2 related to carbonate decarbonation. The 87Sr/86Sr of the Sobcha
travertines is out of the 87Sr/86Sr ranges of local deposits exposed at Sobcha and surrounding areas
but is well matched with the mean 87Sr/86Sr of Nadi Kangri volcanic rocks which cropped out
to the northeast of the studied travertines (over 20 km away). This might indicate the important
role of the Nadi Kangri volcanic rocks in suppling Sr to the studied travertines, but more studies
are required. The LREE depletion compared to MREE and HREE in the Sobcha travertines was
interpreted to be caused by the difference in geochemical mobility between LREEs and HREEs during
water–rock interaction at depth, while the MREE enrichment compared to HREE was considered
to be most likely inherited from reservoir/aquifer rocks. The positive Eu anomalies of the Sobcha
travertines may result from very high reservoir temperatures and/or preferential dissolution of
Eu-rich minerals/rocks (especially plagioclase). The Sobcha travertine mounds displays no or very
slight vertical variations in δ13C, 87Sr/86Sr, and REE patterns, indicating the compositional stability of
mother CO2 and paleo-fluids. However, a significant vertical increase in δ18O was observed and was
explained as the result of gradual water temperature decrease related to climate cooling, self-closure
of the vents, or mound vertical growth. The findings in this study might help us better understand
the deposition of crystalline crust in Ca2+-deficient hot spring systems.

Keywords: travertine mound; crystalline crust; C-O-Sr isotopes; rare-earth elements; Tibet

1. Introduction

Travertines (i.e., thermogene/hypogean travertines) are typical terrestrial carbonate
rocks/deposits associated with warm-hot springs on the earth’s surface [1]. Travertine
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systems are often characterized by diverse morphologies, rapid changes of lithofacies
and environments, rapid precipitation rates, and the deficiency of macrophytes and fau-
nas [1–4]. More attention has recently been paid to travertines largely owing to their great
potentials in enhancing our understanding of tectonic activity [5–15], paleo-climate [16–19],
paleo-environment [16,17,20,21], thermal fluid circulation in geothermal systems [8,22], CaCO3
polymorphism and crystallization [23–25], microbe-mediated carbonate precipitation [26–40],
simulation of engineered geological storage and leakage of CO2 [41,42], and pre-salt car-
bonate hydrocarbon reservoirs [43–45].

The lithofacies composition of travertines is quite complex [46,47], but one attractive
lithofacies in many travertine systems is abiotic crystalline crust, which is formed of
abundant well-packed bright calcite and/or aragonite crystals and often has a low porosity.
Similar lithofacies in carbonate deposits from other environments (e.g., marine, lake) is
commonly treated as diagenetic products. In contrast, abiotic crystalline crust in travertine
systems is commonly considered to be primary deposits mainly formed by rapid passive
CO2 degassing [47–53]. However, calcite/aragonite crystals constituting abiotic crystalline
crust shows various morphologies and sizes, such as dendritic crystals over 1 cm high,
and raft-like crystals more than 5 cm long [49–52,54]. Therefore, abiotic crystalline crust is
often further subdivided according to the morphology and size of the main fabrics. Gandin
and Capezzuoli [47], for example, split abiotic crystalline crust in tufa and travertine
systems up into five subtypes: feather-like/dendritic crystals, fan/ray crystals, banded
palisade crystals, and foam rock and calcite rafts, which can be formed under numerous
deposition conditions.

Many works on the sedimentological, petrological, and mineralogical characteristics of
abiotic crystalline crust have been carried out over the past few decades [47–52,55–57]. Geo-
chemical characteristics of travertines have also been investigated in some studies [58–61].
However, most of them only focused on the stable carbon and oxygen isotope compositions
of travertines [52,61–67]. The 87Sr/86Sr and rare-earth elements signatures of travertines
were poorly examined and interpreted in past studies. This study thus carefully charac-
terized the geochemical compositions (δ13C, δ18O, 87Sr/86Sr, and rare-earth elements) of
laminated crystalline crust travertines at Sobcha, Tibet, southwestern China. Based on the
geochemical results, this study attempted to determine the genesis, (paleo-)fluid source(s),
and fluid evolution of the Sobcha travertine system. Some geochronological data were also
obtained in this study. Considering that the Sobcha travertine system was likely deposited
by hot springs deficient in Ca2+ (Ca2+ concentrations of active hot springs at Sobcha are 0.17
mM) [68], the findings obtained in this study might aid in the geochemical interpretation of
crystalline crust travertines, especially those formed in Ca2+-deficient hot spring systems.

2. Geological Setting

Sobcha is located in central Tibet, southwestern China (32◦31′36.7′′ N, 89◦56′39′′ E;
altitude: ca. 4735 m) (Figure 1) and lies to the north of Qixiang Co Lake (ca. 2 km). The
sedimentary sequences cropping out at Sobcha and surrounding areas mainly include
(1) Upper Triassic–Lower Jurassic Sobcha Formation (also known as Xiaochaka Formation
and Suobucha Formation) marine deposits mainly consisting of limestone, (2) Lower
Jurassic Quse Formation and Middle Jurassic Sewa Formation marine deposits mainly
composed of clastic deposits (e.g., shale, sandstone, and claystone), and (3) Neogene
and Quaternary terrestrial clastic deposits [69–71]. A series of E–W faults developed at
Sobcha and surrounding areas. The studied travertines were formed on the Upper Triassic–
Lower Jurassic Sobcha Formation marine deposits and are situated very close to two faults
(Figure 1).



Minerals 2023, 13, 220 3 of 19Minerals 2023, 13, x FOR PEER REVIEW 3 of 19 
 

 

 
Figure 1. (A) The location of Sobcha in the Tibetan Plateau, southwestern China. (B) Simplified ge-
ological map of the study area (modified from Fu et al. [70]). 
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Sobcha have vent temperatures from 45 °C to 50 °C and only two hot springs at Sobcha 
show vent temperatures near 60 °C. The water composition of one hot spring was also 
reported by Liao [68]: pH = 8.62, Ca2+ concentration = 0.17 mM, Mg2+ concentration = 0.69 
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14.95 mM, SO42− concentration = 1.58 mM, Cl− concentration = 3.55 mM, and CO32− concen-
tration = 1.68 mM. Na+ is absolutely dominant in the cation composition. Thus, the studied 
fossil travertines were anticipated to be formed by Ca2+-deficient hot springs, similar to 
those in Tengchong (China) [72], Lake Bogoria (Kenya) [73], and Waikite (New Zealand) 
[74]. 
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Fifty-eight fossil travertines samples were collected in the field. Specific sampling 
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composition, thirty powder samples were made using an agate motor and a pestle and 
were then analyzed with a DX-2700 X-ray diffractometer (XRD) (Cu-Kα radiation; 2θ from 
5° to 60°). Fifty-eight thin sections were prepared and were observed with a Nikon 
LV100POL polarizing microscope to check the petrographic and mineralogical features of 
the Sobcha travertines. Both the XRD and thin section analyses were conducted at 
Chengdu University of Technology, China. 

Figure 1. (A) The location of Sobcha in the Tibetan Plateau, southwestern China. (B) Simplified
geological map of the study area (modified from Fu et al. [70]).

The studied Sobcha travertines are fossil travertine deposits, but modern hot springs
and associated deposits, though very limited, are still present near the studied travertines.
Liao [68] called this place Quse or Sobcha Hot Fountain. Specifically, this place is a hot
spring area composed of 12 vents [68]. The location information of these hot spring vents
given by Liao [68] is very close to that of the Sobcha travertines (89◦56′25′′ E, 32◦31′35′′ N;
altitude: 4770 m). A pioneering study by Liao [68] showed that most of the hot springs at
Sobcha have vent temperatures from 45 ◦C to 50 ◦C and only two hot springs at Sobcha show
vent temperatures near 60 ◦C. The water composition of one hot spring was also reported by
Liao [68]: pH = 8.62, Ca2+ concentration = 0.17 mM, Mg2+ concentration = 0.69 mM, K+ con-
centration = 0.87 mM, Na+ concentration = 22.17 mM, HCO3

− concentration = 14.95 mM, SO4
2−

concentration = 1.58 mM, Cl− concentration = 3.55 mM, and CO3
2− concentration = 1.68 mM. Na+

is absolutely dominant in the cation composition. Thus, the studied fossil travertines
were anticipated to be formed by Ca2+-deficient hot springs, similar to those in Tengchong
(China) [72], Lake Bogoria (Kenya) [73], and Waikite (New Zealand) [74].

3. Methods

Fifty-eight fossil travertines samples were collected in the field. Specific sampling
sites for geochemical analysis are shown in Figure 2D. To evaluate their mineralogical
composition, thirty powder samples were made using an agate motor and a pestle and
were then analyzed with a DX-2700 X-ray diffractometer (XRD) (Cu-Kα radiation; 2θ
from 5◦ to 60◦). Fifty-eight thin sections were prepared and were observed with a Nikon
LV100POL polarizing microscope to check the petrographic and mineralogical features of
the Sobcha travertines. Both the XRD and thin section analyses were conducted at Chengdu
University of Technology, China.
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entific DELTA V Advantage isotope ratio mass spectrometer and their values were re-
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sion is commonly better than 0.2‰ for δ13C and 0.3‰ for δ18O. 87Sr/86Sr values were deter-
mined for thirty travertine samples using a Thermo Fisher Scientific Triton Plus mass 
spectrometer. The final 87Sr/86Sr results were corrected by assuming a non-radiogenic 
86Sr/88Sr isotopic ratio of 0.1194. Rare-earth elements (i.e., REE), Mn, Sr, Zr, and Cu con-
centrations were determined for twenty travertine samples using a Jena Plasma Quant MS 
ICP-MS. U-Th dating of three travertine samples collected from the bottom (Sample 1), 
middle (Sample 21), and top (Sample 30) of the sampling profile at Sobcha, respectively, 

Figure 2. (A) General view of the studied travertine mound at Sobcha. (B) Nearly horizontal
laminated abiotic crystalline crust travertines; (C) Paleo-vent situated at the top of the studied
travertine mound (its location can be found in panel (A)). (D,E) Schematic diagram of sampling
sites of the Sobcha travertines for geochemical analysis. The red dots represent the sample site for
geochemical analysis, the number represents the sample number, and the same number represents
the same sample.

δ13C, δ18O, 87Sr/86Sr, and concentrations of some trace elements (including rare-
earth elements, manganese, strontium, zirconium, copper) of the Sobcha travertines were
examined to determine the genesis of the travertines and the characteristics of paleo-fluids.
Travertine samples used for geochemical analyses were ground into powder using an
agate motor and a pestle and the powder samples were then sifted using a 200 mesh
sieve. δ13C and δ18O signatures were determined for thirty samples using a Thermo
Fisher Scientific DELTA V Advantage isotope ratio mass spectrometer and their values
were reported relative to the Vienna Pee Dee Belemnite standard (V-PDB). The analytical
precision is commonly better than 0.2‰ for δ13C and 0.3‰ for δ18O. 87Sr/86Sr values were
determined for thirty travertine samples using a Thermo Fisher Scientific Triton Plus mass
spectrometer. The final 87Sr/86Sr results were corrected by assuming a non-radiogenic
86Sr/88Sr isotopic ratio of 0.1194. Rare-earth elements (i.e., REE), Mn, Sr, Zr, and Cu
concentrations were determined for twenty travertine samples using a Jena Plasma Quant
MS ICP-MS. U-Th dating of three travertine samples collected from the bottom (Sample 1),
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middle (Sample 21), and top (Sample 30) of the sampling profile at Sobcha, respectively,
was also conducted using a Neptune Plus MC-ICP-MS. The δ13C-δ18O analyses, 87Sr/86Sr
analyses, trace element analyses, and U-Th dating were completed at Yangtze University
(China), Chengdu University of Technology (China), Beijing Createch Testing Technology
Co., Ltd. (Beijing, China), and the Institute of Geology and Geophysics (Chinese Academy
of Sciences), respectively.

In this study, rare-earth elements were divided into three groups: light REE (i.e., LREE:
La, Ce, Pr, and Nd), middle REE (i.e., MREE: Sm, Eu, Gd, Tb, Dy, and Ho), and heavy REE
(i.e., HREE: Er, Tm, Yb, and Lu) [75]. To better interpret REE characteristics of the Sobcha
travertines, REE of Post-Archean Australian Shale (PAAS) [76] was utilized to normalize
the REE values of the studied travertines. Additionally, anomalies of Eu were presented as
(Eu/Eu*)N, and were calculated using the following equations: (Eu/Eu*)N = EuN/(SmN

2

× TbN)1/3 [77]. The relative enrichments of LREE, MREE, and HREE were presented as
(Pr/Yb)N (LREE compared to HREE), (Pr/Tb)N (LREE compared to MREE), and (Tb/Yb)N
(MREE compared to HREE) [75].

4. Results
4.1. Description of the Sobcha Travertines

The studied travertine system is a domical mound system developed on a slightly
inclined slope (Figure 2), morphologically similar to the travertine mounds found in
Chusang (southwestern China) [78]. It is characterized by an asymmetric outline with a
nearly flat surface at the upslope side and a relatively steep surface at the downslope side.
An orifice which had been nearly fully sealed was found on the top surface of the mound
(Figure 2C). Determining the exact scale of the mound system was handicapped by the fact
that some of the travertine mound was covered by clastic deposits and/or soils and that
fluvial incision eroded parts of the travertine mound (Figure 2A). However, the residual
travertines were observed to be at least over twenty meters wide. The fluvial incision was
largely caused by a north-flowing river (i.e., Sobcha River). Due to the fluvial incision,
a four-meter-high travertine profile was exposed, providing a good place for our field
observation and sampling.

4.2. Petrology and Mineralogy

The outcropping travertines at Sobcha show great laminated structures, which are
characterized by the alternation of wavy dark laminae and wavy light laminae (Figure 2B).
Both dark laminae and wavy light laminae have highly variable thicknesses, but in general,
light laminae are thicker and more dominant. Furthermore, the Sobcha travertines are
consolidated and show visible large calcite crystals ranging from 1 to 10 mm in hand
specimens. Large cavities (up to 2 cm in diameter) are also visible in the outcrop, but their
development is very limited in fresh samples. Therefore, these cavities are largely secondary
(probably generated by the dissolution of meteoric water or temporary flood water).

According to the lithofacies classification of Gandin and Capezzuoli [47], most of the
Sobcha travertines are identified as (abiotic) crystalline crust. In this study, the Sobcha
travertines were termed ‘laminated crystalline crust’ to clearly indicate their textural and
petrological characteristics. Apart from the laminated crystalline crust, a small amount of
clotted peloidal boundstone was also observed in the studied travertine system. XRD and
thin-section analyses shows the predominance of calcite in both the laminated crystalline
crust and the clotted peloidal boundstone.

The clotted peloidal boundstone is formed of dark micrite peloids and sparite (Figure 3A),
while components constituting the laminated crystalline crust include fan crystals and
granular crystals (Figure 3B,C). The fan crystals range from 0.2 to 2 mm long and usually
develop as thin layers ca. 30 mm thick (Figure 3B,C). The granular crystals are the most
widely developed crystals in the Sobcha travertines and have highly variable sizes between
0.1 and 0.5 mm in diameter (Figure 3B). The granular crystals have a more irregular
morphology and are subhedral to anhedral in shape (Figure 3B).
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Figure 3. Thin-section microphotographs of the Sobcha travertines (A–C); plane-polarized light. (A) Clot-
ted peloidal boundstone and fan crystals. (B) Fan crystals and granular crystals. (C) Fan crystals.

4.3. δ13C, δ18O, and 87Sr/86Sr

The δ13C, δ18O, and 87Sr/86Sr signatures of the Sobcha travertines are listed in Table
S1. The Sobcha travertines show δ13C from 3.4‰ to 4.9‰ V-PDB (average = 4.0‰ V-PDB).
δ18O of the Sobcha travertines has a range larger than δ13C (from −26.7‰ to −23.7‰ V-
PDB, average = −25.6‰ V-PDB). A positive δ13C-δ18O correlation was found in the Sobcha
travertines, but the correlation is not very strong (R2 = 0.50, n = 30) (Figure 4). Additionally,
it is notable that there is a gradual positive δ18O shift from the bottom to the top of the
studied profile, although a few anomalous values are also present (Figure 5A). Such increase
was also found in δ13C of the travertines, but the δ13C excursion is very slight (Figure 5B).
Unlike visible δ13C and δ18O variations, 87Sr/86Sr of the Sobcha travertines are nearly
unchanged and show a very narrow range from 0.712458 to 0.712951 (average = 0.712737,
n = 30) (Figure 5C).
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4.4. U-Th Dating

The U-Th dating results of three travertine samples (i.e., Samples 1, 21, and 30) are
listed in Table S2. Samples 1, 21, and 30 were collected from the bottom, middle, and top of
the sampling profile at Sobcha, respectively. Sample 1 has a measured depositional age of
8981 ± 420 yr BP, while Sample 21 exhibits a depositional age of 6502 ± 1542 yr BP. Sample
30 is the youngest of the three samples and its corrected age is 1785 ± 642 yr BP. The dating
results show that travertine deposition of the studied travertine mound system began, at
least, in the early Holocene and ceased in the late Holocene.

4.5. Rare-Earth Elements, Mn, Sr, Zr, and Cu

Rare-earth elements, Mn, Sr, Zr, and Cu concentrations and some main calculated geo-
chemical parameters of the Sobcha travertines are listed in Tables S3 and S4. ΣREE of the
Sobcha travertines is highly variable (ranging from 0.61 to 23.05µg g−1, average = 8.04 µg g−1),
but most of the samples show ΣREE below 13.00 µg g−1. The Sobcha travertines show
significant MREE and HREE enrichment relative to LREE, as shown by their very low
(Pr/Tb)N (from 0.10 to 0.55, mostly between 0.10 and 0.25, average = 0.16) and (Pr/Yb)N
(from 0.12 to 0.60, commonly between 0.12 and 0.24, average = 0.19). (Tb/Yb)N ratios of the
Sobcha travertines vary from 1.09 to 1.21 (average = 1.14), indicating the Sobcha travertines
are weakly MREE-enriched compared to HREE.

Elemental anomaly calculations show that the Sobcha travertines have (Eu/Eu*)N
ratios range from 1.05 to 1.68 (average = 1.36) and most of the (Eu/Eu*)N data are between
1.28 and 1.43. This reflects unneglectable positive Eu anomalies in the Sobcha travertines.

The Sobcha travertines have very low Zr and Mn concentrations and Mn/Sr ratios.
Their Zr concentrations are from 0.38 to 3.24 µg g−1 (average = 1.73 µg g−1), but most
of the values are lower than 2 µg g−1. Mn concentrations of the Sobcha travertines are
between 279 and 1280 µg g−1 and have an average value of 825.75 µg g−1. The calculated
Mn/Sr ratios are within a small range from 0.53 to 2.48 (average = 1.63). Cu concentrations
of the Sobcha travertines are between 0.19 and 1.17 µg g−1 and have an average value of
0.52 µg g−1.
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5. Interpretation and Discussion

5.1. Interpretation of δ13C: Source of Mother CO2

δ13C analyses of travertines are good tools in the determination of mother CO2
sources [52,62,79]. δ13C of mother CO2 (i.e., δ13Cmother-CO2) of spring-related carbonates
have been used to divide them into thermogene travertine and meteogene travertine [79–83].
For example, according to Pentecost and Viles [83], δ13C of thermogene travertines ranges
from −4‰ to 8‰ V-PDB, whereas δ13C of meteogene travertines ranges from −11‰ to
0 V-PDB. δ13C values of the Sobcha travertines are between 3.4‰ and 4.9‰ V-PDB, which
is obviously in the δ13C range of thermogene travertines. In addition, Figure 6 also shows
that the Sobcha travertines belongs to hypogean CATT (calcitic or aragonitic travertine
and tufa) [60]. However, spring-related carbonates with δ13C in the travertine range may
show highly different CO2 sources. Thus, δ13Cmother-CO2 of the Sobcha travertines were
calculated and compared with δ13C of potential CO2 sources to determine their genesis
and mother CO2 source(s).
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meteogene travertines were from Pentecost and Viles [64]. δ13C and δ18O ranges of different CATT
(i.e., calcitic or aragonitic travertine and tufa) were from Teboul et al. [65].

The empirical equation developed by Panichi and Tongiorgi [84] was adapted to
calculate δ13Cmother-CO2 of the Sobcha travertines. The calculated δ13Cmother-CO2 varies
from −6.5‰ and −4.6‰ V-PDB (Table S1). A simple comparison in Figure 7 shows
that the calculated δ13Cmother-CO2 overlaps the δ13C range of mantle-derived CO2, and is
significantly different from δ13C of soil-related CO2 and δ13C of marine carbonate rocks
in the study area and surrounding areas [69,85–88]. This might be indicative of the close
relationship between the Sobcha travertines and mantle-derived CO2. Such magmatic CO2-
containing volatiles has been found in hot springs from Naqu (close to the study area) and
was interpreted as the product of magma bodies in the shallow crust [89,90]. Unfortunately,
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detailed analyses of hot spring gases from the study area have not been performed. Thus,
such a mantle-derived CO2 origin is possible but is not the only interpretation.
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An alternative explanation of the similarity between the calculated δ13Cmother-CO2
range and δ13C of mantle-derived CO2 is underground CO2 mixing. Apart from magmatic
CO2, there are at least two main CO2 sources for travertine systems: soil CO2 (C3 or C4
plants) and carbonate-related CO2 (either by the dissolution or decarbonation of carbonate
rocks) [82]. In our study area, the distribution of C4 plants is very limited, probably due
to its high altitude [91]. Therefore, the plants in the study area are mainly C3 plants. For
the carbonate-related CO2, given the low Ca2+ concentration (0.17 mM) and high HCO3

−

concentrations (14.95 mM) of the modern spring in the study area [68], the dissolution of
carbonate rocks is considered to only supply minor CO2 to the spring waters and travertines
at Sobcha. However, this cannot exclude the CO2 contribution of carbonate decarbonization
because this process can provide CO2 to the spring water (in other words, elevating HCO3

−

concentration) without increasing the concentrations of Ca2+ and Mg2+. If there was an
underground mixing between soil CO2 and carbonate-related CO2, their mixture may yield
similar δ13C to mantle-derived CO2. Thus, mixing, if present, might happen between soil
CO2 (C3 plants) and CO2 related to carbonate decarbonation.

5.2. Interpretation of 87Sr/86Sr: Sr Source Rocks

The 87Sr/86Sr analysis of travertines can be used to determine their Sr sources [72].
With respect to the studied travertines, all the rocks exposing in the study area are their
potential Sr source rocks. A simple comparison between 87Sr/86Sr of the studied travertines
and 87Sr/86Sr of potential Sr source rocks [92–94] was made and is given in Figure 8. The
comparison shows that the 87Sr/86Sr range of the Sobcha travertines is significantly higher
than 87Sr/86Sr ranges of carbonate rocks and clastic rocks exposed in/near the study area
(mainly the Quse Formation) and Cambrian to Cenozoic marine carbonates (Figure 8). This
suggests that the studied travertines must acquire more radiogenic Sr from other Sr source
rocks, instead of from the local rocks cropping out in the study area. Interestingly, the
studied travertines display 87Sr/86Sr very close to the average 87Sr/86Sr value of Nadi
Kangri volcanic rocks. However, the nearest exposed Nadi Kangri volcanic rocks are
located in the Bilong Co area and are ca. 20 km away from the study area [95]. Thus,
simply treating the Nadi Kangri volcanic rocks as the main Sr source rocks of the studied
travertines is not very appropriate. Conclusively, further studies are required to uncover
the main Sr source rocks of the Sobcha travertines.
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Figure 8. 87Sr/86Sr in the studied travertines in comparison with 87Sr/86Sr ranges of potential Sr
source rocks: oil shales and micritic limestones of the Quse Formation (data from Fu et al. [76]),
average values of Nadi Kangri volcanic rocks (data from Fu et al. [75]), and Cambrian to Cenozoic
marine carbonates (data from McArthur et al. [77]).

5.3. Interpretation of REE Patterns and Eu Anomalies

REE of carbonate rocks might not be pristine, because they can be easily contaminated
by other materials, such as clastic detritus [96–103] and Fe-Mn (oxyhydr) oxides [104]
during or after deposition. Thus, prior to the analysis of REE of carbonates, a contaminant
evaluation is often required. The Sobcha travertines shows Zr concentrations lower than
4 µg g−1 (Table S3). This indicates that there is no significant contamination from clastic
detritus [98]. In addition, the Sobcha travertines display no Cu–ΣREE correlations and
have very low Mn concentrations (279 to 1660 µg g−1) (Table S3, Figure 9), reflecting that
the contamination of Fe-Mn (oxyhydr)oxides is not important [105]. The REE modification
of post-depositional processes can be also neglected because the Mn/Sr ratios of the Sobcha
travertines are all less than 3 (Table S4) [106–108]. These show that our REE data are not
significantly contaminated and can provide original geological information.
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There are two striking REE characteristics of the Sobcha travertines: (1) MREE-
enrichment relative to both HREE and LREE and HREE-enrichment relative to LREE,
and (2) positive Eu anomalies (1.28 and 1.43; Figure 10 and Table S4). There are two main
factors which might influence REE patterns of the studied travertine: solution complexation
and REE of aquifer rocks. Paleo-fluids depositing the Sobcha travertines might be composi-
tionally similar to active hot springs at Sobcha (i.e., bicarbonate- and carbonate-rich) [68].
Such fluids could form strong HREE-complexes (i.e., preferential HREE incorporation into
fluids) and the resulting fluids and associated deposits would be HREE-enriched com-
pared to REE of their aquifer rocks [109]. However, it is strange that although the Sobcha
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travertines are HREE-enriched compared to LREE, their HREE are depleted compared to
MREE. This indicates that their MREE-enrichment was largely inherited from aquifer rocks,
instead of caused by solution complexation. However, this does not mean that the influence
of solution complexation on the REE pattern of the Sobcha travertines is very weak. It
is here believed that solution complexation might indeed cause the HREE-enrichment in
the Sobcha travertines, but such HREE-enrichment did not fully mask the aquifer rock
REE information recorded in the travertines (i.e., MREE-enrichment). In Figure 11 the
REE patterns of the Sobcha travertines are compared with those of rocks cropping out in
the study area, such as shale, calci-mudstone, and marl of the Quse Formation and Nadi
Kangri volcanic rocks (including basalt, rhyolite, dacite, and tuff) [70,110–115]. It is clear
that none of the surface rocks display MREE-enrichment, excluding the possibility that
these rocks are aquifer rocks. Such inference is consistent with the results of the 87Sr/86Sr
analyses in Section 5.2 because aquifer rocks were often considered as predominant Sr
source rocks [116–118].
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Figure 11. Comparison of PAAS-normalization patterns between Sobcha travertines and potential
source rocks: basalt, rhyolite, and dacite of the Nadi Kangri volcanic rocks (data from Fu et al. [93]);
tuff of the Nadi Kangri volcanic rocks (data from Wang et al. [96]; Fu et al. [97]; Wang et al. [98]);
shale of the Quse Formation (data from Fu et al. [50]); mudstone of the Quse Formation (data from
Nie et al. [95]); and marl of the Quse Formation (data from Fu et al. [94]).
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Positive Eu anomalies in marine carbonate rocks are often indicative of a hydrothermal
origin of their parent fluids [75,119]. At high temperatures (often >250 ◦C), Eu might be
fractionated from other REE because of the reduction of Eu into Eu2+ [120], which would
finally cause Eu enrichment in high-temperature fluids. As a result, carbonate rocks
deposited from these fluids, or their cooled products might show positive Eu anomalies. At
Sobcha, the temperature of its reservoir(s) has not been investigated. However, geothermal
systems with reservoir temperatures over 250 ◦C have been found in Central Tibet (e.g.,
Yangbajing geothermal field) [121]. Therefore, it is possible that positive Eu anomalies of the
Sobcha travertines might be related to undiscovered high-temperature reservoirs beneath
Sobcha. An alternative explanation of the positive Eu anomalies in the Sobcha travertines
might be the preferential dissolution of Eu-rich minerals/rocks (especially plagioclase).
Indeed, such a process is not uncommon in groundwater systems [122]. Therefore, positive
Eu anomalies of the studied travertines might be caused by high-temperature geothermal
reservoir(s), preferential dissolution of Eu-rich minerals/rocks, or both, and more studies
are still necessary in this region.

5.4. Evolution of Paleo-Fluids

Travertine deposition may be affected by various factors, such as tectonic activity,
climate, hydrodynamics, and hydrochemistry [10,12,17,123] and is thus not always steady.
For example, some of these complex controlling factors (either internal or external), such
as climate change, may lead to the changes in the flow path and/or discharge. However,
changes in (paleo-)fluids (e.g., the source and physicochemical properties of the mother
water) might be reflected by the geochemical features of travertine deposits, such as δ13C,
87Sr/86Sr, and REE. The δ13C of the Sobcha travertines shows a great stability (Table S1,
Figure 5B). The small range of δ13C indicates that the CO2 source of the Sobcha travertines
did not change. The 87Sr/86Sr and REE signatures of the Sobcha travertines also display
little changes in the sampling profile (Table S1 and Figure 5C), indicating the source and
physicochemical stability of the mother water of the Sobcha travertines

The δ18O of the Sobcha travertines has a larger variation than δ13C and shows a striking
gradual increase from bottom to top of the sampling profile (Table S1 and Figure 5A). The
δ18O signature of travertines is important to the recovery of paleo-temperature of the
mother water in travertine deposition systems [52,62,79]. We were unable to recover
the exact temperature changes of the mother water depositing the Sobcha travertines.
However, according to common traditional oxygen isotope thermometers, there is an
inverse relationship between δ18O of carbonate deposits and water temperature [124]. Thus,
the positive δ18O excursion in the studied travertine profile of Sobcha, at least, indicates
that paleo-fluid temperature forming the Sobcha travertines decreased gradually. However,
the factors that cause such a δ18O increase or temperature decrease remain unknown.

Climate (mainly atmospheric temperature and rainfall) may influence the temperature
of mother water of travertines [63,64,125]. The Sobcha travertine deposition began, at
least, in the early Holocene and ceased in the late Holocene. From the early Holocene to
the middle Holocene and to the late Holocene, the southern Qinghai–Tibet Plateau was
generally in a climate background from drought to humid and to drought, as recorded in
the δ18O composition of cave deposits [126–128]. In the Holocene, the temperature of the
Qinghai–Tibet Plateau also experienced a gradual increase from the early to the middle
period and a gradual decrease from the middle to the late period [126]. In general, the
trend of δ18O during the deposition period of the Sobcha travertines are similar to that of
δ18O recorded in cave deposits of the southern Qinghai–Tibet Plateau at the same time.
This seems to indicate that the δ18O of the Sobcha travertines, or rather the temperature of
the mother water, is affected by climate.

In addition to climate, a gradual decrease in the discharge of the mother water may
also lead to a faster decrease in the temperature of the mother water (assuming the air tem-
perature is stable). This would in turn lead to a gradual increase in the δ18O of the deposits.
The gradual decrease in the discharge of the mother water of the Sobcha travertines may
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also be due to the gradual drought of the climate during the deposition period. However,
the self-closure of the vents and mound vertical growth might also lead to a gradual de-
crease in water discharge of mound springs. For the Sobcha travertines, we found that the
paleo-vent was completely closed due to the growth of deposit (Figure 2C). Therefore, it is
possible that water discharge of paleo-fluids depositing the Sobcha travertines gradually
decreased due to the gradual closure of the vent(s) and/or mound vertical growth.

6. Conclusions

Through the geochemical and geochronological study on the Sobcha fossil travertine
mound, we mainly draw the following conclusions:

(1) The Sobcha travertines are dominantly composed of laminated crystalline crust mainly
composed of granular crystals and fan crystals. In addition, a small amount of clotted
peloidal boundstone was also observed. Calcite has an absolute predominance in the
Sobcha travertines.

(2) δ13C and δ18O analyses show that the Sobcha travertines belong to thermogene
travertines, and its parent CO2 may be derived from mantle-derived CO2 or the
mixture of soil-derived CO2 and CO2 related to carbonate decarbonation.

(3) The Sobcha travertines display 87Sr/86Sr very close to the average 87Sr/86Sr value of
Nadi Kangri volcanic rocks. However, further studies are required to uncover the
main Sr source rocks of the Sobcha travertines.

(4) For the PAAS-normalized REE patterns of the Sobcha travertines, the LREE depletion
relative to HREE of the Sobcha travertines may be due to the differences in geochemi-
cal mobility between LREEs and HREEs during water–rock interaction at depth, while
the MREE enrichment of the Sobcha travertines may be inherited from aquifer rocks.
Positive Eu anomalies were also observed in the Sobcha travertines and may result
from the hydrothermal property of the mother water and/or preferential dissolution
of Eu-rich minerals/rocks.

(5) Travertine deposition in the studied travertine mound began, at least, in the early
Holocene and ceased in the late Holocene. During the whole deposition period, the
source of CO2 and the source of the mother water of Sobcha travertines remained
stable. However, δ18O of the studied travertines gradually decreased, probably
because of climate drying, self-closure of the vents, or mound vertical growth.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/min13020220/s1. Table S1: δ13C, δ18O, and 87Sr/86Sr values of
the Sobcha travertines and their calculated δ13Cmother-CO2 (i.e., δ13C of mother CO2). δ13Cmother-CO2
was evaluated using the equation from Panichi and Tongiorgi [84]. Table S2: U-Th dating results
of the Sobcha travertines. Table S3: Concentrations (µg g−1) of trace elements in the travertine
samples from Sobcha. Table S4: Mn/Sr, enrichment indexes, and elemental anomalies of the studied
travertines from Sobcha.
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