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Abstract: When preparing lightweight ceramsite using carbide slag, trace amounts of toxic elements
are released into the atmosphere due to high-temperature calcination, posing a significant risk to
the environment. The real-time monitoring of the released gases is challenging under laboratory
conditions while preparing large quantities of ceramsite. Therefore, heating was simulated using
experimental data and the FactSage 7.0 thermochemical database to study the release of harmful
Al-, C-, H-, S-, and F-containing elements when using carbide slag to prepare lightweight ceramsite.
The results indicated that no Al, C, H, S, or F elements were evident in the high-temperature liquid
products obtained in a 50 ◦C to 1150 ◦C calcination temperature range. Al was present in a solid
state with no gaseous products. When the temperature reached 450 ◦C, CO gas was released and its
level increased as the temperature rose. H and S mainly combined into H2S gas, starting at 250 ◦C
and reaching a peak at 1050 ◦C. H and F primarily combined into HF, starting at 400 ◦C. Other
F-containing gases mainly included SiF4 and TiF3, which began to release at 800 ◦C and 900 ◦C,
respectively. The release trends of HF, SiF4, and TiF3 were consistent with those of CO. This study
aimed to conduct an environmental impact and management assessment for the preparation of
lightweight ceramsite using carbide slag. The use of raw material carbide slag for the low-cost
treatment of tail gas was proposed, which provides theoretical and up-to-date support for greening
the application of the process.

Keywords: carbide slag; lightweight ceramsite; FactSage; gaseous contaminants

1. Introduction

Polyvinyl chloride (PVC) is primarily produced via calcium carbide smelting in China.
When calcium carbide is hydrolyzed to acetylene, many calcium-containing byproducts are
produced as carbide slag, with Ca(OH)2 as the main component [1,2]. Manufacturing 1 ton
of PVC produces about 1.5 tons of carbide slag [3], occupying land resources while causing
water pollution and other problems [4]. A previous study indicated that heavy metals in
carbide slag, such as Pb and Sr, pose potential ecological risks [5]. Resource utilization
is essential to reducing the hazardous nature of solid waste. This can be achieved by
recycling the expanded polystyrene waste to remove the phenol from water [6], using
sago waste or waste fish bones to remove the heavy metals from water, and so on [7,8].
Therefore, reutilization methods have been proposed to prepare CaSO4, CaCO3 [9,10], CaO
briquettes [11], aerated concrete [12], and adsorption materials [13] for the alleviation of
the environmental threat from carbide slag. Currently, the resource utilization of carbide
slag is still focused on the production of building materials.
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Lightweight ceramsite is an important building material and environmental protection
material. It can be produced using carbide slag as the raw material [14–18]. However, high-
temperature calcination is essential for preparing ceramsite. Consequently, the harmful
components in carbide slag migrate and transform with an increase in calcination tempera-
ture. Parts of the components are released into the air. Gaseous pollutants that are easy to
disperse and difficult to treat can affect ambient air quality and human health when a large
amount of carbide slag is used to produce lightweight ceramsite. Therefore, the potential
environmental risks of using industrial solid waste to produce building materials have
gained great attention. Predicting the release and migration of trace hazardous components
in raw materials during calcination and effectively controlling the resulting contaminants
has become a challenge.

FactSage [19] is a software for chemical thermodynamic calculation. It is used for
simulations in many fields, such as material science, metallurgy, the chemical industry,
environmental science, and combustion science [20]. Studies that cannot be conducted
under specific experimental conditions (e.g., high temperature, high pressure, etc.) can
be carried out via the prediction and simulation of the data using FactSage. In addition,
FactSage can calculate multiphase equilibrium conditions for a wide range of constraints.
For example, the effect of concentration and temperature on the leaching of fluorescent lamp
powder with sulfuric acid was evaluated by FactSage [21]. The software was also used to
explore the effect of additives on sludge and fouling during Zhundong coal gasification [22].
FactSage was also used to calculate the linear relationship between the melting behavior
and temperature of ash [23], determine the best operating parameters of a blast furnace [24],
and predict the ash melting behavior in reducing conditions [25]. However, the prediction
of the migration behavior of hazardous components produced during the preparation of
lightweight ceramsite using carbide slag has not been reported.

The raw materials used in producing ceramsite from carbide slag contain various
chemical components. Of these, Al can damage the human central nervous system, while
C, H, S, and F are rapidly released when influenced by temperature. Therefore, further
research into these five elements is required. This study qualitatively and quantitatively
analyzed carbide slag samples, and, combined with the proportion of the ceramsite raw
materials described in ref. [18], predicted the release and migration characteristics of Al, C,
H, S, and F during raw material calcination (50–1150 ◦C) using FactSage 7.0. Prevention
and control methods to restrict gaseous pollutant release and render this process more
environmentally friendly are proposed.

2. Materials and Methods
2.1. Pretreatment of Materials

The following procedure was used to pretreat the materials:
Grinding: Carbide slag (Anning, Yunnan, China) was ground in a planetary ball mill

(YXQM, Changsha MITR Instrumentation Co., Ltd., Changsha, China).
Drying: The ground carbide slag was dried in a vacuum drying oven (DZF-6090,

Shanghai JINYOU test equipment Co., Ltd., China) at 100 ◦C for 24 h.
Sieving: The dried carbide slag was passed through a 180-mesh sieve (85 µm opening).

2.2. Analytical Methods

Since X-ray fluorescence (XRF) spectrometry (ZSX-100e, Rigaku, Tokyo, Japan) could
not determine if the H elements and the quantification of C and N elements were inaccurate,
an organic elemental analyzer (VarioEL III, Elementar, Langenselbold, Germany) was used
to initially determine the C, H, and N elements. The test conditions included the use of the
dynamic combustion method, an oxidation furnace temperature of 950 ◦C, and a reduction
furnace temperature of 850 ◦C. The remaining elements were determined via XRF. The test
conditions included an Rh target, a voltage of 50 kV, and a 60-mA current. The test results
are shown in Table 1.
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Table 1. Chemical composition of carbide slag (wt%).

Composition SiO2 Al2O3 CaO Fe2O3 TiO2 MgO Na2O C H S F

Content 5.67 4.63 75.03 3.34 0.87 0.31 0.13 6.81 2.17 0.53 0.35

2.3. Raw Material Formulas and Analysis

The formulas used for the ceramsite raw materials are described in ref. [18]. The spe-
cific content of each component is listed in Table 2. There, mainly included is SiO2, Al2O3,
and CaO. Therefore, to prepare the SiO2-Al2O3-CaO ternary ceramsite, the three compo-
nents were normalized while the content of the other components remained unchanged.
After normalization, the SiO2, Al2O3, and CaO levels were 60.78 wt%, 20.54 wt%, and
18.68 wt%, respectively. This is considered to be the basic formula for the SiO2–Al2O3–CaO
ternary ceramsite.

Table 2. Primary composition of raw materials of lightweight ceramsite (wt%).

Raw Material Composition SiO2 Al2O3 CaO Fe2O3 K2O Na2O MgO Other

Tail mud 61.69 20.83 3.58 3.71 3.14 1.64 0.79 2.80
Carbide slag 2.95 1.07 62.45 0.84 - - 0.23 21.33

Total 49.94 16.88 15.35 3.14 2.51 0.31 0.68 6.51

Note: tail mud: carbide slag = 4:1, mass ratio.

Although the carbide slag displayed a high CaO content (Table 1), minimal levels were
evident in the raw ceramsite materials (Table 2). Therefore, the SiO2-Al2O3-CaO ternary
ceramsite was obtained by adding an appropriate amount of Al2O3 and SiO2 to the carbide
slag, which was calculated based on the CaO content. The total component mass of the carbide
slag-based ceramsite was 75.03 g/18.68 wt% = 401.66 g. When using 100 g of carbide slag,
the mass of the SiO2, Al2O3, and CaO in the SiO2-Al2O3-CaO ternary ceramsite was 244.13 g,
82.50 g, and 75.03 g, respectively, while that of the SiO2 and Al2O3 added to the carbide
slag was 238.46 g and 77.87 g, respectively. The proportion of ceramsite raw materials was
calculated (Table 3). The Al, C, H, S, and F composition and distribution at thermodynamic
equilibrium were calculated during raw material calcination and heating using the Equilib
phase calculation module, oxide database (FToxid-SlagH), and Fact Pure Substances database
(FactPs) of the FactSage 7.0 software. Before simulation, the hypothesis and calculation
parameters were set as follows: (1) The gas-phase equilibrium products generated during
the reaction were considered ideal gases and the high-temperature molten-phase products
generated were considered liquid-phase products. (2) The input reactant was calculated
according to the chemical composition of the ceramsite raw materials listed in Table 3, and
the input was expressed in grams. (3) The reaction pressure was 1.01 × 105 Pa, while the
temperature was maintained in a range of 50 ◦C to 1150 ◦C at 50 ◦C increments.

Table 3. The composition of the SiO2-Al2O3-CaO lightweight ceramsite.

Composition SiO2 Al2O3 CaO Fe2O3 TiO2 MgO Na2O C H S F

Carbide slag/g 5.67 4.63 75.03 3.34 0.87 0.31 0.13 6.81 2.17 0.53 0.35
Additive (SiO2/Al2O3)/g 238.46 77.87 0

Composite/g 244.13 82.50 75.03 3.34 0.87 0.31 0.13 6.81 2.17 0.53 0.35

3. Results and Discussion
3.1. Equilibrium Product Production of Each Phase

The FactSage calculation results showed that no liquid-phase products containing Al,
C, H, S, or F were formed during the calcination and heating of the ceramsite raw materials.
Figure 1 shows the variation trend in the gas-phase and solid-phase equilibrium products
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comprising Al, C, H, S, or F based on temperature, which did not change significantly
upon increasing the temperature. Over the whole temperature range, only the solid-
phase conversion of Al elements occurred, and no gas-phase products were generated; the
generation of gas-phase equilibrium products comprising S and F was very low. When the
temperature exceeded 1000 ◦C, the amount of F-containing gaseous pollutants increased
slightly, but the S-containing gaseous pollutants decreased gradually, indicating that the
high-temperature stage (>1000 ◦C) accelerated the volatilization of F in the ceramsite
raw materials. However, the amount of C-containing gas-phase equilibrium products
decreased gradually upon increasing the temperature, and the amount of corresponding
solid-phase equilibrium products increased gradually upon increasing the temperature.
This might be due to the gradual transformation of some C-containing gas-phase products
into solid-phase products during the heating process.
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Figure 1. Equilibrium amounts of products in gas phase (a) and solid phase (b).

3.2. Migration and Transformation of Aluminum

Figure 2 shows the distribution of Al in each phase during the firing of ceramsite. Al
always existed in the solid phase during heating and calcination, and no Al-containing gas-
phase product was found. Among them, Fe3Al2Si3O12 (almandite) existed only at 50 ◦C.
Ca2Al3Si3O12(OH) (zoisite) and Ca3Al2Si3O12 (grossularite) disappeared at 250 ◦C and 450 ◦C,
respectively. During the initial temperature increase stage (50–600 ◦C), the CaAl2Si2O8 (anor-
thite) content increased with an increase in temperature. When the temperature exceeded
650 ◦C, a small amount of CaAl2Si2O8 (0.26 wt%) was transformed into NaAlSi3O8 (albite).
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3.3. Migration and Transformation of Carbon

Figure 3 shows the forms of C in each phase of ceramsite during heating. Gaseous
substances included CH4, CO2, and CO. The mass fractions of C and H2 (Figure 4) increased
with the temperature, which showed that the migration and transformation of CH4 mainly
occurred due to the cracking of methane [26] (Equation (1)).
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Figure 4. Distribution of hydrogen products in different phases during the heating process.

When the calcination temperature reached 250 ◦C, gaseous CO2 began to appear
in the reaction system, and its release decreased with an increase in temperature. It
peaked to 0.34 wt% at 700 ◦C and completely disappeared at 950 ◦C, indicating that CO2
was an intermediate product. This was because a small amount of O2 reacted with the
solid-phase C to produce CO2 first, which was then reduced to the gas-phase CO by C
(Equations (2) and (3)). When the calcination temperature reached 450 ◦C, CO began to
appear, and its release increased gradually with an increase in temperature. When the
maximum calcination temperature was 1150 ◦C, the mass fraction of CO reached 15.42 wt%.
This was because when the temperature was higher than 450 ◦C, the main substance
Ca(OH)2 in carbide slag began to decompose, and the water–gas reaction between C
and the decomposition product to the gas-phase H2O led to the increased CO release
(Equations (4) and (5)).

When the calcination temperature reached 850 ◦C, the solid Fe3C (cementite) began
to appear, whose mass fraction increased with an increase in temperature and remained
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unchanged after reaching the peak of 2.46 wt% at 1050 ◦C. Fe3C was formed due to the
solid-state reaction between Fe2O3 and C in carbide slag [27,28]. This reaction occurred
because of an increase in the gas-phase CO release (Equations (6) and (7)).

CH4(g)→ C(s) + 2H2(g) (1)

C(s) + O2(g)→ CO2(g) (2)

CO2(g) + C(s)→ 2CO(g) (3)

Ca(OH)2(s)→ CaO(s) + H2O(g) (4)

C(s) + H2O(g)→ CO(g) + H2(g) (5)

3C(s) + Fe2O3(s)→ 2Fe(s) + 3CO(g) (6)

C(s) + 3Fe(s)→ Fe3C(s) (7)

3.4. Migration and Transformation of Hydrogen

Figure 4 shows the distribution of H in each phase during the firing of ceramsite.
Gaseous H-containing products included CH4, H2, H2O, H2S, and HF. Solid substances,
which include Ca2Mg5Si8O22(OH)2 (tremolite) and Ca2Al3Si3O12(OH) (tanzanite), only
formed at calcination temperatures below 200 ◦C, and their mass fractions remained
unchanged. When the calcination temperature gradually increased, Ca2Mg5Si8O22(OH)2
and Ca2Al3Si3O12(OH) decomposed. The existence of CH4, H2, and H2O was discussed in
the previous section.

H2S gas was generated when the calcination temperature reached 250 ◦C and its
release peaked at 1050 ◦C. Combined with the changes discussed in the mass fractions
of FeS and H2S in the previous section, it was hypothesized that H2S was formed by the
reaction of FeS with H2 and H2O, respectively [29,30] (Equations (8) and (9)). When the
calcination temperature reached 600 ◦C, HF gas was generated and HF release increased
with an increase in calcination temperature. Combined with the changes in the mass
fractions of CaF2, HF, and SiF4 discussed in the previous section, it was hypothesized that
CaF2 reacted with SiO2 in ceramsite raw materials to form SiF4 [31], which was further
hydrolyzed to form H4SiO4 and HF (Equations (10) and (11)). The highly unstable solid-
phase H4SiO4 then decomposed into SiO2 and H2O (Equation (12)). H2S and HF are the
gas-phase substances that need to be focused on in the actual production process due to
their severe toxicity characteristics.

FeS(s) + H2(g)→ H2S(g) + Fe(s) (8)

FeS(s) + H2O(g)→ H2S(g) + FeO(s) (9)

7SiO2(s) + 6CaF2(s)→ 2Ca3Si2O7(s) + 3SiF4(g) (10)

SiF4(g) + 4H2O(g)→ H4SiO4(s) + 4HF(g) (11)

H4SiO4(s)→ SiO2(s) + 2H2O(g) (12)

3.5. Migration and Transformation of Sulfur

Figure 5 shows the distribution of S in each phase during the firing of ceramsite. When
the temperature was in the range of 50–750 ◦C, only solid-phase FeS and gas-phase H2S
existed in the system. The migration and transformation trends of FeS and H2S were
consistent with the results discussed in the previous section.
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The gaseous-phases of COS, HS, CS2, and SiS were generated in the high-temperature
stage of calcination, and their release was at a low level (<0.1 wt%). As depicted in
Equations (13)–(16), it was hypothesized that COS was released due to the reaction of H2S
with the CO2 (Equation (2)), and that CS2 was generated due to the decomposition of COS
and the reaction of H2S with CO2 and COS [32,33]. Moreover, HS in this reaction system
might have been formed due to an intermediate that was generated by the gas-phase
reaction between H2S and O2 [34] (Equation (17)). HS radicals might not have a serious
impact on the atmospheric environment due to their instability.

When the calcination temperature reached 1050 ◦C, solid CaS with a mass fraction of
65.68 wt% appeared, which increased to 86.8 wt% with an increase in temperature. It was
hypothesized that in the middle of the heating stage (400–800 ◦C), the high-temperature
calcination solid-phase product of carbide slag, CaO, was formed, and CaS, which was
the product of the reaction between H2S and CaO, was hydrolyzed [35]. This hypothesis
could reasonably explain why CaS was not produced in the middle of the heating period,
besides the lower release of H2O and higher release of H2S (Figure 4). When the calcination
temperature reached 1050 ◦C, FeS was replaced by Ca and formed solid-phase CaS. H2O
in the system was consumed, and the hydrolysis reaction of CaS no longer occurred.
Meanwhile, H2S continued to react with CaO to form CaS. Therefore, the release of H2S
decreased, and the content of CaS increased above 1050 ◦C. The expected series of reactions
is described by Equations (4) and (18)–(20).

Gaseous SiS began to be released at 1100◦C, and its release increased with an increase
in the calcination temperature. It was hypothesized that it was generated by the reaction
between C, produced by the cracking of CaS, CH4, and SiO2 in the raw material [36]. This
result explained the higher release of CO in the later heating phase (Equation (21)).

H2S(g) + CO2(g)→ COS(g) + H2O(g) (13)

2COS(g)→ CS2(g) + CO2(g) (14)

H2S(g) + COS(g)→ CS2(g) + H2O(g) (15)

2H2S(g) + CO2(g)→ CS2(g) + 2H2O(g) (16)

H2S(g) + O2(g)→ HS(g) + HO2(g) (17)

CaS(s) + 2H2O(g)→ H2S(g) + Ca(OH)2(s) (18)

FeS(s) + CaO(s)→ CaS(s) + FeO(s) (19)

H2S(g) + CaO(s)→ CaS(s) + H2O(g) (20)
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CaS(s) + C(s) + SiO2(s)→ SiS(g) + CaO(s) + CO(g) (21)

3.6. Migration and Transformation of Fluorine

Figure 6 shows the distribution of F in each phase during the firing of ceramsite. F
existed only in the form of solid CaF2 in the initial heating stage (<350 ◦C), and its mass
fraction decreased with an increase in the calcination temperature, until it disappeared at
1100 ◦C. In this system, the gaseous-phases HF and SiF4 began to be released at 400 ◦C and
800 ◦C, respectively, and the released amounts increased with an increase in the calcination
temperature. The maximum released amounts were 29.94 wt% and 24.88 wt%, respectively.
The migration and transformation trends of CaF2, HF, and SiF4 were consistent with the
results discussed in the Migration and Transformation of Hydrogen section.
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Figure 6. Distribution of the main fluorine products (a) and trace gaseous products (b) in different
phases during the heating process.

Gaseous TiF3 appeared at a calcination temperature of 900 ◦C, and its release increased
with an increase in the calcination temperature. At 1150 ◦C, the mass fraction of TiF3 was
42.94 wt%, and it was produced by the reaction of HF with titanium oxides [37] (Equation (22)).
As shown in Figure 6b, when the calcination temperature exceeded 1000 ◦C, various trace
fluorine-containing gases began to appear in the system, including NaAlF4, NaF, SiF3, SiHF3,
AlF3, TiF2, and TiF4 (Figure 6b). It was hypothesized that these gaseous fluorides were formed
due to a series of reactions between HF and metal oxides, or high-temperature solid products
in raw materials. Therefore, the actual production process could reduce the production of
large amounts of gaseous fluoride by appropriately lowering the temperature.

Ti2O3(s) + 6HF(g)→ 2TiF3(g) + 3H2O(g) (22)

4. Environmental Impact Assessment and Management

In a previous study, the firing behavior of triaxial ceramsites and the presence of
different phases were interpreted using FactSage [38]. Although this study analyzed the
formation of the liquid phase and the crystallization of the mineral phase at different
temperatures during ceramsites firing, it disregarded the generation of gaseous-phase
substances at high temperatures, which might adversely affect the atmospheric environ-
ment. Therefore, this study predicted the possible gaseous pollutants generated when
using carbide slag to prepare lightweight ceramsite, and proposed prevention and control
methods to restrict the release of gaseous pollutants while exploring ways to render this
process more environmentally friendly.

The migration and transformation of Al, C, H, S, and F, when using carbide slag for
ceramsite preparation, were calculated and analyzed. The following conclusions were drawn:
(1) Throughout the heating process (50–1150 ◦C), no Al-containing gas products were released,
and they existed in the solid phase. (2) The C-containing gas-phase substance was mainly CO,
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and its release increased with the increase in temperature. CO was formed via three routes:
the reduction in C and O2, the water–gas reaction of C and H2O, and the high-temperature
solid-state reaction between C and solid compounds (Fe2O3, CaS, and SiO2). (3) The main
H- and S-containing harmful gas was H2S, which began to be released at 250 ◦C. H2S was
formed via two routes: the reduction in FeS and H2, and the hydrolysis between H2O, FeS,
and CaS. (4) HF was the main H- and F-containing harmful gas, which began to be released
at 400 ◦C. F-containing harmful gases began to appear at high temperatures (>1000 ◦C).
Moreover, HF was produced via the hydrolysis of SiF4, and SiF4 was produced as a result of
the high-temperature solid-state reaction between SiO2 and CaF2. TiF3 was generated from
the gas–solid reaction between HF and Ti2O3 at high temperatures.

Various gaseous pollutants were released throughout the calcination process during
the preparation of lightweight ceramsite using carbide slag. At calcination temperatures
above 1000 ◦C, the types of gaseous pollutants released increased significantly, such as CS2,
SiS, and various F-containing gases. Therefore, the calcination temperature was maintained
below 1000 ◦C, which reduced the type and release of harmful gases. The main gaseous
pollutants were H2S, HF, and CO. CO is the basic raw material for the one-carbon chemical
industry [39], while H2S and HF are typical acidic gases [40]; CO can be recycled after the
selective removal of H2S and HF.

The goal of hazardous solid waste treatment is reduction and resource utilization [41].
The alkalinity of carbide slag is extremely high, with a pH value greater than 13 [42]. The
alkaline slurry prepared from carbide slag can theoretically be effectively removed from
the acid gas by acid-base neutralization [43]. Therefore, the removal of H2S and HF used
carbide slag slurry due to the inability of Ca(OH)2 to react with CO.

On a laboratory scale, it was assumed that (1) no material loss occurred during the
preparation of lightweight ceramic pellets; (2) H2S and HF could be completely removed
by the carbide slag slurry; and (3) no loss of CO occurred after passing through the carbide
slag slurry.

The cost analysis for the preparation of SiO2-Al2O3-CaO lightweight ceramsite is
shown in Table 4. The cost of preparation of SiO2-Al2O3-CaO lightweight ceramsite is
~91.42 $/ton, and the price of lightweight ceramsite in China is ~94.0 $/ton.

Table 4. Cost analysis for the preparation of SiO2-Al2O3-CaO lightweight ceramsite.

Items Price Cost ($/ton)

Carbide slag (CaO) ~7.20 $/ton ~1.70
Natural sand (SiO2) ~11.50 $/ton ~6.60

Bauxite (Al2O3) ~43.30 $/ton ~82.20
Electricity consumption ~0.14 $/(kW·h) [44] ~0.92 [44]

Total ~91.42

Combining the gas-phase equilibrium amounts of S, F, and C (Figure 1) and the
distribution of S, F, and C products in different phases during the heating process, the
amounts of H2S, HF, and CO released during the preparation of one ton of lightweight
ceramsite were calculated to be about 0.39 kg, 0.22 kg, and 1.99 kg, respectively. Based on
the acid-base neutralization reactions, the carbide slag slurry consumption for removing
0.39 kg H2S and 0.22 kg HF is ~1.21 kg. The price of carbide slag is ~7.20 $/ton, and the
price of general waste liquid treatment is ~0.44 $/kg [45]. Thus, the treatment of waste gas
produced by one ton of lightweight ceramsite cost ~0.54 $. Moreover, the current recovery
price of CO is ~10.94 $/kg [46] and the potential value of CO generated from the production
of one ton of lightweight ceramsite is ~21.77 $.

According to the aforementioned economic analysis, the profit margin of preparing
SiO2-Al2O3-CaO lightweight ceramsite is ~2.04 $/ton (the price of lightweight ceramsite
minus expenses and exhaust treatment cost), and the potential value of the recoverable CO
recovery is ~21.77 $/ton.
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5. Conclusions

The preparation of lightweight ceramsite using carbide slag is essential to the resource
utilization of carbide slag. In this study, the release and migration of elements during
the lightweight ceramsite preparation were analyzed computationally for the first time,
and treatment methods were proposed, aiming to promote the environmentally friendly
process of lightweight ceramsite preparation using carbide slag.

This study found that various gaseous contaminants were released throughout the
heating process (50–1150 ◦C) during the preparation of lightweight ceramsite, and main-
taining the calcination temperature below 1000 ◦C prevented the formation of many trace
gaseous contaminants. The main gaseous pollutants H2S, HF, and CO needed treatment
or recovery. The use of the lightweight ceramsite prepared using carbide slag could yield
a profit of ~2.04 $/ton and the potential value of the recoverable CO was ~21.77 $/ton,
which could simultaneously realize the reuse value of carbide slag, the resource value of
CO, and the economic value of lightweight ceramsite.
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