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Abstract: As the need to discovers new mineral deposits and occurrences has intensified in recent
years, it has become increasingly apparent that we need to map potentials via integrated information
on the basis of metallogeny. Occurrences of mineralization such as tungsten (W), tin (Sn), columbium
(Nb), tantalum (Ta), gold (Au), copper (Cu), lead (Pb), zinc (Zn), manganese (Mn) and monazite (Mnz)
have been discovered in Rwanda. The objective of this study was to present a regional quantitative
mineral prospectivity mapping (MPM) of W, Sn and Nb-Ta mineralization in Rwanda using the
random forest (RF) method on the basis of open source data, such as geological maps, Bouguer gravity
anomalies, magnetic anomalies, Landsat 8 images, ASTER GDEM, Globeland30, and OpenStreetMap.
In addition, a newly introduced interpolation–density–delineation (IDD) process was applied to
deal with the blank (masked) areas in remotely sensed mineral alteration extraction. Additionally, a
k2-fold cross-validation method was also proposed to obtain more reasonable test errors. Firstly, the
metallogenic regularity of W, Sn and Nb-Ta in Rwanda was summarized with the help of articles
online. Secondly, original geological, geophysical, and remote sensing data were utilized to generate
secondary data. Specifically, the IDD process was applied subsequent to the directed principal
component analysis method (DPCA) to reconstruct the alteration anomaly map, and a relevant
dataset was formed by the combination of original and secondary data. Thirdly, specific predictor
layers for W, Sn and Nb-Ta were selected from relevant data via spatial correlation with known
deposits, respectively, and the predictive models were established. Finally, near 26,000 squares were
zoned in Rwanda, and RF was optimized and applied, the k2-fold cross-validation method was
utilized to assess test errors, metallogenic belts and prospective areas for W, Sn, and Nb-Ta were
delineated on the basis of total mineralization potential map and likelihoods map. Results proved
that the open source data online were valid for drawing a preliminary mineralization potential map.
Furthermore, it was also shown that the IDD method is suitable for the postprocessing of masked
alteration anomaly maps. Belt IV-4 in the northwest and belt IV-2, IV-1 in the middle-east of Rwanda,
containing a number of prospective areas, possess considerable likelihoods of deposits, and mining
in Rwanda is at its dawn, with potential worth expecting.

Keywords: MPM; W-Sn-Nb-Ta; open source data; alteration extraction; IDD process; k2-fold cross-
validation; Rwanda

1. Introduction

The need to discover new deposits and map potentials has increased significantly in
recent years [1]. MPM was firstly proposed by Cargill [2], and methods of MPM can be cate-
gorized into data-, knowledge-, or hybrid-driven types, depending on whether the function
parameters are estimated from spatial statistical analysis or from expert knowledge [3,4].
Knowledge-driven data analysis is affected by the limited capacity of the human brain to
process multiple variables at the same time, which leads to a lack of reproducibility [5].
This limitation could be overcome by algorithms in quantitative MPM, among which
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supervised algorithms may perform more accurate prospectivity assessments than unsu-
pervised ones [6,7]. Common supervised algorithms include weight of evidence [8–10],
logistic regression [11,12], back propagation artificial neural network (BP-ANN) [13,14],
support vector machine (SVM) [8,15,16], random forest (RF) [15–17], and deep learning
methods [15,18,19]. The main tasks of quantitative MPM are to analyze geological, geo-
physical, geochemical, remote sensing, and drilling data comprehensively, and finally we
must delineate prospective areas [20]. This involves data collection, the construction of
the conceptual model of mineralization, the conversion of data into mappable layers, the
identification of predictor layers, integrated computation and training, and the mapping
and testing of mineral prospectivity results [21–23]. Both positive and negative samples,
and the modeling of the relationships between the samples and predictor layers, are the
bases for quantifying the potential of the mineralization [17,24].

Geological, geophysical, and drilling data are typically needed in the 3D MPM [3,19,
20,25–27], while during the 2D MPM, geological, geophysical, geochemical, and remote
sensing data are commonly necessary [1,16,24,28]. In some cases, access to sufficient and
detailed mineralization-related data is not available, which limits the establishment of a
quick view on regional mineralization potential via MPM. Fortunately, there are some open
source data available and a vast geological literature exists online, including geological,
geophysical, and remote sensing data. These assist extensively in MPM. As for remote
sensing, it has been used for regional mineral exploration since the 1970s [29], and could
provide unprecedented opportunities for the initial stages of mineral exploration [30]. Being
easily accessible, spatially continuous, and spectrally wide, the sufficient interpretation
and extraction of geological information using remote sensing data could be of great
assistance. Visual or automated interpretation, band ratio, principal component analysis
(PCA), spectral angle mapper (SAM), and other fitting methods are commonly applied
to multispectral and hyperspectral images to identify geological elements and mineral
alterations. To deal with alteration extraction in vegetation area, Carranza [31], Fraser [32],
and Shevyrev [33] introduced directed principal component analysis (DPCA) to enhance the
target alterations. Chakraborty [34] conducted a pilot study to explore the possible relation
between element content of soil and rock, bark and needle of Pinus radiata, and the spectral
characteristics. The result showed that lab-based hyperspectral scanning can discriminate
samples from a mineralized zone spectrally, while airborne-based hyperspectral scanning
was not ideal. Due to the mechanism of optical remote sensing, pixels in dense vegetation
area need to be masked during the extraction of mineral alterations. The masking may
leave the residual valid pixels and mineral alteration scattered in the imageries, making the
identification of an alteration zone difficult.

Rwanda is located in the middle of Africa. The characteristics of W, Sn, and Nb-
Ta mineralization in Rwanda has been extensively studied, including regional tectonic
events [35–38], mineralogy and mineralization [39–44], ore-controlling factors [45], frac-
tionation and zonation of pegmatites [46–48], metal sources [49], geochemistry [50–52],
metallogenic fluids [48,53,54], dating [46,48,55,56], and potential mineral exploration tar-
gets from the interpretation of aeromagnetic data [25]. However, quantitative regional
mineral prospectivity mapping of W, Sn, and Nb-Ta using integrated information, which
is paramount for MPM [1], has rarely been conducted in Rwanda, leaving a void in the
mineral prospecting and exploration field.

In order to obtain the preliminary distribution of W, Sn, and Nb-Ta prospective areas
in Rwanda, firstly, this study summarized the metallogeny via vast articles and collected
open source geological, geophysical, and remote sensing data online. Secondly, the use of
an additional interpolation–density–delineation (IDD) process on the extracted alteration
map after the directed principal component analysis method (DPCA) was proposed to
solve the scattered distribution of alterations. Thirdly, geological, geophysical, and remote
sensing data were integrated, the random forest algorithm was applied to mapping the
potential of mineralization, and a k2-fold cross-validation method was newly introduced to
reduce the imbalance between positive and negative samples. Finally, metallogenic belts
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and prospective areas of W, Sn, Nb-Ta were delineated according to total mineralization
potential and likelihoods of deposits, respectively.

2. Study Area
2.1. Geological Setting

Rwanda is a landlocked country situated in central Africa (Figure 1a). It is bordered
on the north by Uganda, on the east by Tanzania, on the south by Burundi, and on the west
by the Democratic Republic of the Congo. The country lies 120 km south of the equator,
covering a land area of approximately 26,000 km2, and is typically hilly, known as “the
Land of a Thousand Hills”, though there are also swamps and extensive mountainous
areas. SW and NE parts of the former Kibara belt (KIB) in central Africa were subdivided
and redefined into the recently KIB and Karagwe–Ankole belt (KAB) by the Rusizi–Ubende
belt [36]. KAB was additionally divided into the western part and the eastern part by the
NE-oriented Musongati–Kabangabasiteultrabasite belt [36,37]. The western part is charac-
terized by massive mafic and felsic intrusions, while the eastern part has no intrusions [43].
Rwanda is geologically located in the western part of KAB (Figure 1b), which is mainly
covered by Mesoproterozoic metasediments, Meso-Neoproterozoic granites, and Cenozoic
volcanic rocks, and the presence of metamorphic complex suggests intense tectonic events
in geological history.

2.1.1. Stratums

The stratums in KAB are mainly composed of metasediment rocks and scarce carbonate
rocks [46]. The earliest Kibaran lithosphere had subducted beneath the Tanzanian craton [43].
Mesoproterozoic stratums in Rwanda are defined as the Akanyaru Supergroup, which consists
of four groups from bottom to top: Gikoro, Pindura, Cyohoha and Rugezi [37] (Figure 1c). Due
to intensive tectonic events, the stratums are under various strikes.

2.1.2. Magmatic Rocks

The main magmatic events in Rwanda were S-type granitic intrusions, which were
mainly triggered by probable lithospheric delamination and asthenospheric upwelling that
provoked crustal melting (partial melt of the 2 Ga Rusizian metasedimentary basement [36])
during the subduction between the Congo and Tanzania cratons [43]. The granitic intrusions
had developed four generations, including G1, G2, G3 (all gneissic) and G4 (i.e., tin granites,
not gneissic). G1–G3 granites intruded at 1380 ± 10 Ma (U-Pb), and G4 granites took
place around 986 ± 10 Ma (U-Pb) [36]. G4 granites are leuco granites characterized by
equigranular, unfoliated alkali feldspars, muscovites, a spot of biotites and accessory
minerals including apatite, tourmaline, ilmenite, monazite, xenotime and zircon [50,57].
Additionally, they are also enriched in Li, Rb, Cs, U and Sn elements [50].

Pegmatites and quartz veins in Rwanda are important ore-bearing geological bod-
ies. Pegmatites are generally regarded as the products of differentiation of the evolved
leucogranites [54] and are spatiotemporally associated with peraluminous G4 granites [47].
A regional pegmatite zonation 30 km west-southwest of the Nyakabingo deposit in
Gatumba–Gitaramais was aged in 975 ± 8 Ma (U-Pb), and the Ar-Ar ages of muscovite
samples vary between 940 Ma and 560 Ma, which suggests the Late Neoproterozoic tectonic
thermal events [46]. Additionally, a close spatiotemporal relationship between Sn-quartz
veins and early Neoproterozoic leucogranite and pegmatite intrusions was reported [36,56].

2.1.3. Structures

Structural deformation in Rwanda is complex and varies in dimensions. Regional
anticlines and synclines can be identified on the geological map and remote sensing imagery,
the axes of which are mainly NW- and NE-oriented. In general, the maximum stress seemed
to be regionally EW-oriented during the compressive events, and the minimum stress was
expected to be EW-oriented during the extensional relaxation [43].
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Figure 1. (a) Location in central Africa (https://www.naturalearthdata.com/ and Tianditu); (b)
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2.2. Metallogenic Characteristics
2.2.1. Ore-Controlling Factors

The W, Sn, and Nb-Ta mineralization in Rwanda is characterized by Nb–Ta–Sn-
pegmatite, W-quartz vein and Sn-quartz vein [48] and is spatiotemporally related to the
G4 granites [53]. The W deposits in central Rwanda are related to carbonaceous shale,
with bedding rocks serving as a reactive horizon [40]. W-bearing quartz veins in the
Nyakabingo W deposit are located on the eastern flank of the Bumbogo anticline and
are hosted in sandstones and black organic-rich metapelitic rocks [48]. The Sn-bearing

https://www.naturalearthdata.com/
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quartz veins in the Musha Sn deposit and the pegmatites in the Ntunga Sn-Ta deposit
are hosted in low-grade metamorphic pelites and meta-sandstones [44]. Sometimes, Sn-
bearing quartz veins are hosted in muscovite-feldspar-rich sandstone and quartzite, and
W-bearing quartz veins are hosted in organic-rich metapelites [48,58]. The analysis of
Sn-quartz veins in the Rwamagana–Musha–Ntunga area indicated that the hydrothermal
fluids consisted of 20%–95% magmatic fluids and 5%–80% metamorphic fluids [53]. Due to
the bedding-parallel joints, interactions between fluids and stratums, and the involvement
of metamorphic fluids, mineralization may tend to be stratum-selective.

From aerial photographs, the locations of mineral occurrences in Gatumba are strongly
related to structural factors, indicating most of the deposits are associated with fractures [39].
W-bearing vein-type deposits in the “tungsten belt” (central Rwanda) are located in the
core and along the flanks of secondary anticlines crosscut by numerous faults, some of
which might act as pathways of fluids [40]. Tumukunde [43] and Dewaele [49] also re-
garded faults in Rutsiro as the main pathways for the emplacement of metal-rich fluids.
Pegmatites adjacent to the mining field of Gatumba Mining Company occur along the cleav-
age planes [46]. Sn-Ta-bearing pegmatites in Musha–Ntunga are controlled by a regional
NNW-SSE shear zone, 4 km west of a granite deposit [44]. Hulsbosch [45] considered that
mineralization in Rwamagana–Musha–Ntunga (eastern Rwanda) was controlled by two
factors: (1) reactivation of pre-existing discontinuities such as beddings, bedding-parallel
joints or strike-slip fault planes, and (2) the regional post-compressional stress regime.

2.2.2. Mineral Alteration

In the Nyakabingo W-bearing vein deposit, mineralization took place with quartz and
euhedral arsenopyrite, pyrite, scheelite, massive ferberite, and molybdenite [40]. The cassi-
terite mineralization is closely related with intense phyllic alterations, while the columbite-
tantalite mineralization is followed by intense alkali metasomatism (the widespread ex-
istence of albite and white mica) [46]. The arsenopyrite, pyrite and pyrrhotite of W- and
Sn-bearing vein deposits in Rutsiro imply at least one sulphide phase existed in later stages
of W and Sn mineralization [43]. Illite is a common alteration product of feldspars found
in ore deposits and mineralized zones [59], and goethite is a typical weathering product
of pyrite. It can be seen from the above that W, Sn, and Nb-Ta mineralization might be
indicated by the surface concentration of goethite-quartz, quartz, and illite, respectively.

3. Data and Methods

Figure 2 shows the RF-based framework of the regional quantitative MPM in this
study, comprising three main parts: data processing, modeling, and prediction.

3.1. Data Processing

Geological, geophysical, remote sensing, landcover, geographical, and mineralization
data were collected during this study (Table 1). To process the data, firstly, regional
geological map and faults in western Rwanda were facsimiled to obtain vectorized original
data. Secondly, Bouguer samples and magnetic samples were interpolated to generate
raster-format anomaly map. Thirdly, according to metallogenic characteristics, the digital
original data were processed to generate secondary data, including: buffer zones of granites
boundaries derived from regional geological map, a 1000m-upward map derived from
a geophysical anomaly map, faults derived a from Bouguer 1000m-upward map, faults
interpreted in eastern Rwanda from remote sensing imageries, buffer zones of faults,
buffer zones of geographical elements, linear density map of faults, mineral alterations
extracted from remote sensing, and negative sites of W, Sn, Nb, and Ta (Table 1). Finally,
original data and secondary data together formed the relevant layers (Table 2, Figure 3).
Specifically, buffer zones were generated via the “buffer” tool in ArcGIS, a 1000 m-upward
map was processed by GeoIPAS software on the basis of anomaly map, and was classified
into 5 area-equal ranges, Bouguer faults were visually interpreted from a Bouguer map
upward of 1000 m according to the distribution of the linear gradient zone, convergence of
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contour [60], linear density maps were generated via the “line density” tool in ArcGIS, and
were also classified into 5 area-equal ranges, and additionally geological faults in western
Rwanda were collected from Uwiduhae [25]. The distribution of geological faults was
approximately consistent with the Landsat 8 OLI imageries and ASTER GDEM. Hence,
faults in eastern Rwanda were derived from true color image, false component image,
and terrain via visual interpretation. Spatial analysis showed that the distance between
two adjacent positive sites were less than 13 km, 10 km, 17 km for most of the positive W,
Sn, and Nb-Ta sites, respectively. Thus, 13 km, 10 km, and 17 km buffer zones for W, Sn,
and Nb-Ta were generated [28], and the negative sites for W, Sn, and Nb-Ta were created
randomly out of the buffer zones.
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Table 1. List of data.

Data Type
(Resolution)

Original Data
(Format) Secondary Data Original Source

Geology
(-)

Regional geological map
(.jpg)

Faults in western Rwanda
(.jpg)

Buffer zones of granites
boundaries [25,53]

Gravity
(2′)

Bouguer anomaly
(.xlsx)

Bouguer 1000 m-upward map
Faults derived from Bouguer

1000 m-upward map
Buffer zones of Bouguer faults

Linear density map of
Bouguer faults

Complete spherical Bouguer gravity
anomaly from Bureau Gravimetrique

International (BGI)

Magnetism
(2′)

Magnetic anomaly
(.xlsx)

Magnetic anomaly 1000
m-upward map

Earth magnetic anomaly grid from
National Oceanic and Atmospheric

Administration (NOAA)

Multispectral
imageries

(30 m)

Landsat 8 OLI path/row:
172061, 172062
173061, 173062

(.tiff)

Faults interpreted in eastern
Rwanda from remote sensing

Buffer zones of geological
remote sensing faults
Linear density map of

geological remote
sensing faults

Goethite, illite, and quartz
alterations extracted from

remote sensing

United States Geological
Survey (USGS)

DEM
(30 m)

ASTER GDEM path/row:
S02E029, S02E030
S03E028, S03E029

S03E030
(.img)

Faults interpreted in eastern
Rwanda from remote sensing Geospatial Data Cloud (in Chinese)

Landcover
(30 m)

Globeland30 path/row:
S36_00_2020LC030
S36_00_2020LC030

(.tiff)

Globeland30 (in Chinese)

Roads and rivers
(-)

Roads and rivers
(.shp)

50 m buffer zones of roads
and rivers OpenStreetMap

Mineralization
(-)

Known positive sites (deposits
or occurrences) of W, Sn, Nb,

and Ta
(.jpg, .shp)

Negative sites of W, Sn, Nb,
and Ta Private collections

Rwanda is mainly covered by forest and cultivated land, making the extraction of
mineral alteration very difficult. In order to reduce the influence of noise information,
firstly, the Landsat 8 OLI imageries were masked by dense vegetation (NDVI exceeds
0.6), cultivated land, lakes, wetland, artificial surface, and 50 m buffer zones of roads and
rivers. The masking left the residual valid pixels scattered in some regions of the imageries.
Secondly, the directed principal component analysis (DPCA) method [31–33] was utilized
to extract goethite, illite, and quartz alterations. This method aims to enhance mineral
information by principal analysis between two band ratio images: one of these images con-
tains information about hydrothermal alterations (band5/band7 for goethite, band5/band3
for illite, band5/band1 for quartz), the other image contains information of vegetation
(band5/band4 for goethite, band3/band4 for illite, band5/band4 for quartz). Thirdly, to
deal with the scattered distribution of alterations caused by the scattered distribution of
residual pixels, this study proposed that an additional interpolation–density–delineation
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(IDD) process be performed on the extracted alteration map after the DPCA method. Seven
main steps were included in the IDD process: (1) all the pixels in the original alteration map
(i.e., Alteration map #1, Figure 4a) were converted into points (Figure 4b) in ArcGIS; (2) an
alteration map #2 (Figure 4d) was generated via the “interpolation” tool on the points;
(3) a corresponding point density map #1 (Figure 4c) was generated via the “point density”
tool; (4) the range of the density map #1 (Figure 4c) was stretched to 0.5~1.0, namely point
density map #2 (Figure 4f); (5) alteration map #3 (Figure 4e) was generated via the product
of alteration map #2 (Figure 4d) and the point density map #2 (Figure 4f); (6) statistics of
alteration map #3 (Figure 4e) were analyzed, and the lower limit of anomaly was deter-
mined by adding the mean value to 2.5 times the standard deviation (Figure 4h), and (7) the
alteration map #4 (Figure 4g) was delineated along the anomaly of mean + 2.5 Stdev map
(Figure 4h) to represent the distribution of a specific mineral alteration. Goethite, illite, and
quartz alterations in Rwanda were obtained via the DPCA-IDD process (Figure 3i).

Table 2. Relevant layers of W, Sn, and Nb-Ta mineralization in Rwanda.

Original and Secondary Data Relevant Layers (Sequential Number)

Geological map Cyohoha group (#1), Pindura group (#2), Gikoro group
(#3), metamorphic complex (#4), granites (#5)

Buffer zones of granites boundaries 1 km (#6), 2 km (#7), 3 km (#8), 4 km (#9), 5 km (#10),
6 km (#11)

Buffer zones of Bouguer faults 1 km (#12), 2 km (#13), 3 km (#14), 4 km (#15)

Linear density map of Bouguer faults 0 (#16), 0~0.04 (#17), 0.04~0.07 (#18), 0.07~0.11 (#19),
0.11~0.30 (#20)

Buffer zones of geological remote
sensing faults 1 km (#21), 2 km (#22), 3 km (#23), 4 km (#24)

Linear density map of geological
remote sensing faults

0~0.04 (#25), 0.04~0.09 (#26), 0.09~0.16 (#27),
0.16~0.26 (#28), 0.26~0.60 (#29)

Bouguer 1000 m-upward map
−55.18~−46.01 (#30), −46.01~−33.00 (#31),
−33.00~−27.68 (#32), −27.68~−18.51 (#33),

−18.51~−9.34 mGal (#34)

Magnetic anomaly 1000 m-upward map −39.69~−0.35 (#35), −0.35~10.50 (#36), 10.50~17.25
(#37), 17.25~22.87 (#38), 22.87~55.83 nT (#39)

Mineral alteration Goethite (#40), illite (#41), and quartz (#42)

3.2. Modeling

Mineralization refers to the formation of natural geological bodies with a single
mineral (or multiple minerals) and a single genesis (or multiple geneses) in a specific time
and geological setting [61]. Since different minerals with different geneses have various
geological settings and ore-controlling factors, specific models should be established to
identify the predictor layers and ensure the precision of MPM. Understanding the genesis
and controlling factors of mineralization is the basis of MPM [62,63]. Mineralization
processes in Rwanda include: (1) deposition of meta-sedimentary rocks; (2) intrusion of
G1–G3 granites in an extensional context; (3) deposition of sediments, with deformation of
1000 Ma; (4) syn- to post-folding G4 granite intrusion; and (5) the intrusion of mineralized
pegmatites and veins [51]. As mentioned before, the ore-forming G4 granite was emplaced
around 986 Ma, indicating that the pegmatite-, vein-type W, Sn, and Nb-Ta mineralization
in Rwanda could only be possible in geological bodies earlier than Neoproterozoic, and was
selective for stratums and controlled by structures; in addition, the surface concentrations
of goethite-quartz, quartz, and illite could partially be indicators for W, Sn, and Nb-
Ta mineralization, respectively. Additionally, the geophysical field may change due to
mineralization and the existence of ore-controlling factors.
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Figure 4. Flowchart of the interpolation–density–delineation (IDD) process. (a) Alteration #1 map
obtained by DPCA process; (b) Point map obtained in the 1st step; (c) Density #1 map obtained in the
3rd step; (d) Alteration #2 map obtained in the 2nd step; (e) Alteration #3 map obtained in the 5th
step; (f) Density #2 map obtained in the 4th map; (g) Final alteration #4 map obtained in the 7th step;
(h) Alteration #3 anomaly map in the 5th step.

The 3D mineral prospectivity software developed by the research team of Professor
Jianping Chen, China University of Geosciences (Beijing), was employed to determine
predictor layers on the basis of metallogeny and relevant layers. This software is capable
of statistical analysis of the spatial relationships between the relevant layers and positive
sites. The relevant layers containing a sufficient number of positive sites were identified as
predictor layers for each mineral, finds which were summarized in the predictive model
(Tables 3–5).

Table 3. Predictive model of W mineralization in Rwanda.

Ore Genesis Type of Layers Original and Secondary Data Predictor Layers

Sn, Nb, Ta in
pegmatites,

W, Sn in qurtz veins

Ore-controlling factors

Geological map #2, #3, #4
Buffer zones of granites boundaries #11

Buffer zones of Bouguer faults #14
Linear density map of Bouguer faults #19, #20

Buffer zones of geological remote sensing faults #22
Linear density map of geological remote sensing faults #28, #29

Mineralization indicators
Bouguer 1000 m-upward map #30, #31

Magnetic anomaly 1000 m-upward map #36, #37
Alteration #40, #42
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Table 4. Predictive model of Sn mineralization in Rwanda.

Ore Genesis Type of Layers Original and Secondary Data Predictor Layers

Sn, Nb, Ta in
pegmatites,

W, Sn in qurtz veins

Ore-controlling factors

Geological map #1, #2, #3, #4
Buffer zones of granites boundaries #11

Buffer zones of Bouguer faults #14
Linear density map of Bouguer faults #19, #20

Buffer zones of geological remote sensing faults #22
Linear density map of geological remote sensing faults #28, #29

Mineralization indicators
Bouguer 1000 m-upward map #30, #31, #32

Magnetic anomaly 1000 m-upward map #36, #37
Alteration #42

Table 5. Predictive model of Nb-Ta mineralization in Rwanda.

Ore Genesis Type of Layers Original and Secondary Data Predictor Layers

Sn, Nb, Ta in
pegmatites,

W, Sn in qurtz veins

Ore-controlling factors

Geological map #1, #3, #4, #5
Buffer zones of granites boundaries #11

Buffer zones of Bouguer faults #14
Linear density map of Bouguer faults #19, #20

Buffer zones of geological remote sensing faults #22
Linear density map of geological remote sensing faults #28, #29

Mineralization indicators
Bouguer 1000 m-upward map #30

Magnetic anomaly 1000 m-upward map #36, #37
Alteration #41

Weights of evidence method was introduced to MPM by Agterberg [64], the weights
of different predictor layers could be calculated according to spatial distributions between
deposits and predictor layers, the algorithm is illustrated in Equation (1):

W+
I = ln

P(BA/DA)

P(BA/DB)
, W−I = ln

P(BB/DA)

P(BB/DB)
, CI = W+

I −W−I (1)

where DA and DB are the quantities of units with and without deposits, respectively, BA
and BB are the quantities of units with and without a specific predictor layer I, respectively.
P(BA/DA) is the probability of BA when DA is present in an unit, WI

+ and WI
− are the

weights of I when I is present and absent in an unit, respectively. CI means Contrast, is an
index of how well a predictor layer is related to deposits, and is designated as positive (I is
advantageous to mineralization) or negative (disadvantageous).

In this study, weight of evidence method was employed to precheck the spatial
contrasts of predictor layers (Table 6). Linear density, which describes the energy intensity
of the tectonic activity, mainly had high spatial contrast (1.49, 1.41 for W, 1.03, 0.55 for
Sn, 1.31, 1.02 for Nb-Ta); buffer zones of faults, which represent fracture zones, mainly
possessed medium spatial contrast (0.99, 0.90 for W, 0.89, 0.53 for Sn, 1.74, 0.60 for Nb-
Ta). The above indicates the considerable the ore-controlling effect of faults, which acted
as reservoirs or pathways of hydrothermal fluids. As widely applied mineralization
indicators, the distributions of Bouguer and magnetic anomalies are characterized by
various underground geological bodies [60]. In this study, high–medium spatial contrasts
(1.08, 0.83 for W, 1.14, 1.00 for Sn, 1.27, 1.09 for Nb-Ta) could be derived from lower Bouguer
and medium magnetic anomalies, which covered the extent of granites. The buffer zones
of granite boundaries also exhibited high–medium spatial contrasts (1.03 for W, 1.02 for
Sn, 0.84 for Nb-Ta). Together with the high spatial contrast (1.53) of granite for Nb-Ta,
they confirmed the existing metallogenic origin conclusions [36,47,53,54,56]. Stratums,
which might help in the reaction of hydrothermal fluids [40], showed medium–low spatial
contrast (0.60, 0.49, 0.21 for W, 0.71, 0.53, 0.25, 0.22 for Sn, 0.41, 0.35, 0.09 for Nb-Ta). The
reason for this might be that the geological groups are too large to reflect the role of specific
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rocks [40,44,48,58] as reactive horizon. The alterations generally had lower spatial contrast
(0.55, 0.37 for W, 0.06 for Sn, 0.62 for Nb-Ta) due to the relatively lower accuracy of alteration
extraction caused by dense vegetation and cultivated land. However, the positive spatial
contrasts of alterations verified the validation of the DPCA-IDD process.

Table 6. Weights and Contrasts of predictor layers for W, Sn, and Nb-Ta mineralization.

W Sn Nb-Ta
Predictor W+ W− Contrast Predictor W+ W− Contrast Predictor W+ W− Contrast

#19, #20 0.68 −0.81 1.49 #36, #37 0.50 −0.63 1.14 #14 0.65 −1.08 1.74
#28, #29 0.56 −0.85 1.41 #28, #29 0.45 −0.58 1.03 #5 1.29 −0.23 1.53
#36, #37 0.48 −0.59 1.08 #11 0.68 −0.35 1.02 #19, #20 0.62 −0.69 1.31

#11 0.68 −0.35 1.03 #30, #31, #32 0.26 −0.74 1.00 #30 0.81 −0.46 1.27
#22 0.29 −0.69 0.99 #22 0.27 −0.62 0.89 #36, #37 0.49 −0.60 1.09
#14 0.42 −0.47 0.90 #3 0.52 −0.19 0.71 #28, #29 0.45 −0.57 1.02

#30, #31 0.38 −0.45 0.83 #19, #20 0.31 −0.24 0.55 #11 0.58 −0.27 0.84
#2 0.43 −0.16 0.60 #1 0.44 −0.10 0.53 #41 0.57 −0.06 0.62
#42 0.46 −0.09 0.55 #14 0.27 −0.25 0.53 #22 0.20 −0.40 0.60
#4 0.34 −0.15 0.49 #2 0.19 −0.06 0.25 #4 0.29 −0.12 0.41
#40 0.34 −0.03 0.37 #4 0.16 −0.06 0.22 #1 0.30 −0.06 0.35
#3 0.16 −0.04 0.21 #42 0.05 −0.01 0.06 #3 0.08 −0.02 0.09

3.3. Prediction

An ensemble learning machine (ELM) is a combination of individual learning ma-
chines and ensemble algorithms [65], and types of individual learning machines could be
the same or different. Random forest (RF), proposed by Breiman [66], is a highly robust dis-
crimination ELM comprised of a number of decision trees (i.e., classification and regression
tree (CART)) that are organized hierarchically by a set of rules [67–69]. Characterized by
bootstrapping, subsets of variables, and the integration of votes (Figure 5), RF is advan-
tageous in accuracy and generalization ability. Bootstrapping means that each decision
tree in RF uses a specific training subset, every sample in the training subset is randomly
chosen from the total training dataset and then replaced [67], approximately 2/3 of sam-
ples (namely in bag samples) in the total training dataset are randomly chosen to train a
specific decision tree, while 1/3 (namely out of bag samples, i.e., OOB) have never been
chosen [70]. Though cross-validation or a separate test training dataset is not necessary
as the OOB could be used as test data [1], McKay [70] used both 5-fold cross-validation
and OOB errors to estimate the overall classification error. In common studies, positive
and negative samples in k-fold cross-validation were not separately treated, leading to
the numbers of positive and negative samples being random in every fold. Additionally,
in order to reduce the imbalance between positive and negative samples in the k-fold
cross-validation, a k2-fold cross-validation method was firstly introduced in this study. As
the k2-fold cross-validation method proposed, positive and negative samples were k-folded
separately, and every fold of positive and negative samples were combined into training
and test training sets. The quantity of sets is k2, as seen if we take 52-fold as an example:
the folds of positive sample include S+

1, S+
2, S+

3, S+
4, and S+

5, the folds of negative sample
include S−1, S−2, S−3, S−4, and S−5, and together they can combine into 25 training and
test training sets (Table 7). Additionally, the total error is represented by the mean error of
the 25 training and test training sets. A subset of variables means that for each node of a
decision tree, a random selection of the input variables is made, then the best variable is
chosen from the random selection of variables, and the size of random selection is a fraction
of the total number of variables [70]. The integration of votes means that the final output of
RF is based on the majority or mean of outputs from all decision trees [22,71]. RF has been
proven effective for MPM [27], and performs well with fewer training sample sets [72]. As
few as 14~16 positive sites were used in RF-based MPM for different districts with ideal
results [22,70]. In MPM, the values of positive sites are always set to 1, while the negative
sites are set to 0 [1]. For regression mission, the predictions are floating values ranging
from 0 to 1, denoting likelihoods of deposits. For classification mission, the predictions
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can be categorized into prospective and non-prospective areas using a certain threshold
value [67].
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Table 7. Illustration of training and test training datasets of 52-fold cross-validation.

No. Training Sets of
Positive Samples

Training Sets of
Negative Samples

Test Training Sets
of Positive Samples

Test Training Sets of
Negative Samples

1 S+
1, S+

2, S+
3, S+

4 S−1, S−2, S−3, S−4 S+
5 S−5

2 S+
1, S+

2, S+
3, S+

4 S−1, S−2, S−3, S−5 S+
5 S−4

3 S+
1, S+

2, S+
3, S+

4 S−1, S−2, S−4, S−5 S+
5 S−3

4 S+
1, S+

2, S+
3, S+

4 S−1, S−3, S−4, S−5 S+
5 S−2

5 S+
1, S+

2, S+
3, S+

4 S−2, S−3, S−4, S−5 S+
5 S−1

6 S+
1, S+

2, S+
3, S+

5 S−1, S−2, S−3, S−4 S+
4 S−5

7 S+
1, S+

2, S+
3, S+

5 S−1, S−2, S−3, S−5 S+
4 S−4

8 S+
1, S+

2, S+
3, S+

5 S−1, S−2, S−4, S−5 S+
4 S−3

9 S+
1, S+

2, S+
3, S+

5 S−1, S−3, S−4, S−5 S+
4 S−2

10 S+
1, S+

2, S+
3, S+

5 S−2, S−3, S−4, S−5 S+
4 S−1

11 S+
1, S+

2, S+
4, S+

5 S−1, S−2, S−3, S−4 S+
3 S−5

12 S+
1, S+

2, S+
4, S+

5 S−1, S−2, S−3, S−5 S+
3 S−4

13 S+
1, S+

2, S+
4, S+

5 S−1, S−2, S−4, S−5 S+
3 S−3

14 S+
1, S+

2, S+
4, S+

5 S−1, S−3, S−4, S−5 S+
3 S−2

15 S+
1, S+

2, S+
4, S+

5 S−2, S−3, S−4, S−5 S+
3 S−1

16 S+
1, S+

3, S+
4, S+

5 S−1, S−2, S−3, S−4 S+
2 S−5

17 S+
1, S+

3, S+
4, S+

5 S−1, S−2, S−3, S−5 S+
2 S−4

18 S+
1, S+

3, S+
4, S+

5 S−1, S−2, S−4, S−5 S+
2 S−3

19 S+
1, S+

3, S+
4, S+

5 S−1, S−3, S−4, S−5 S+
2 S−2

20 S+
1, S+

3, S+
4, S+

5 S−2, S−3, S−4, S−5 S+
2 S−1

21 S+
2, S+

3, S+
4, S+

5 S−1, S−2, S−3, S−4 S+
1 S−5

22 S+
2, S+

3, S+
4, S+

5 S−1, S−2, S−3, S−5 S+
1 S−4

23 S+
2, S+

3, S+
4, S+

5 S−1, S−2, S−4, S−5 S+
1 S−3

24 S+
2, S+

3, S+
4, S+

5 S−1, S−3, S−4, S−5 S+
1 S−2

25 S+
2, S+

3, S+
4, S+

5 S−2, S−3, S−4, S−5 S+
1 S−1

Model training is an important step to producing accurate predictions [16]. In this
study, the “RF_MexStandalone_v0.02” package was applied to RF-based MPM. Firstly,
approximately 26,000 1 × 1 km-sized squares were zoned in Rwanda, AND values of
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squares containing positive or negative sites were set to 1 or 0, respectively; squares where
variables (i.e., predictor layers) were present or absent were set to 1 or 0, respectively.
Secondly, a number of decision trees and number of selected variables for every node are
prerequisite to running RF [73]. Errors always converge as the number of trees increase [74],
and RF is less sensitive to the number of selected variables as the errors converge [1].
Hence, the number of selected variables was set to 1/3 of the total variables quantity as
recommended [67]. The 52-fold cross-validation was utilized to divide the training dataset
into training and test training subsets, and the accuracy of RFs with 50~1000 decision trees
was trained and tested using the training and test training subsets, respectively, then, an
optimal number of decision trees was determined according to the test error. Thirdly, the RF
with optimal number of decision trees was applied to regress the likelihoods of W, Sn, and
Nb-Ta deposit in each square, respectively. In addition, the total mineralization potential
was calculated based on likelihoods of W, Sn, and Nb-Ta deposits (Equation (2)). Finally,
metallogenic belts and prospective areas were delineated according to total mineralization
potential and likelihoods of W, Sn, and Nb-Ta deposits, respectively.

PT = (LW + LSn + LNb-Ta)/3 (2)

where PT represents the total mineralization potential, LW represents the likelihood of W
deposit, LSn represents the likelihood of Sn deposit, and LNb-Ta represents the likelihood of
Nb-Ta deposit.

4. Results
4.1. Performance of RF

The parameter configuration of RF is of great influence on its generalization capacity
and efficiency. Figure 6a shows the relationship between the test error and the number of
trees, while the number of selected variables was set to 1/3 of the total variables quantity, as
recommended [66]. From about 700 trees, the error stabilized around 0.268, 0.272, and 0.252
for W, Sn, and Nb-Ta mineralization, respectively, the fluctuation (ranges from 0 to 1) was less
than 0.01. The addition of more trees neither decreased nor increased the error significantly,
but increased the computation time, and hence 700 trees were set to the RF model.
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Capture–efficiency curves were derived to evaluate the performance of the RF models
of W, Sn, and Nb-Ta mineralization, respectively. The curve was obtained as follows: firstly,
all the likelihoods of squares in Rwanda were ranked from the highest to the lowest, and
10-fractiles of squares were calculated; secondly, the quantities of positive sites (Sp) out of
the total positive sites (ST) linked with the top 10%, 20%, . . . ,100% squares were recorded;
finally, the proportion of positive sites (Sp/ST) within the top 10%, 20%, . . . ,100% squares
was calculated. Figure 6b shows the derived capture–efficiency curves of the RF model,
where the x axis represents the fractiles of squares and the y axis represents the proportion
of positive sites. As we can see, approximately 90% of the positive sites are linked with
the top 50% squares with the highest likelihoods from RF modeling. In general, the RF
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model for Nb-Ta has the best performance. These results also indicate that the RF model
has produced a reasonable probability distribution, with predictor layers totally derived
from open source data on the website.

4.2. Metallogenic Belts and Prospective Areas

Metallogenic belts could be categorized into 5 levels, among which the I-level is
equal to a global-scale region, II-level is equal to one or several tectonic elements, III-level
refers to a region where mineralization was formed or controlled by the same geological
activities, IV-level refers to the sub-belt of III-level, and V-level refers to the ore field [75].
As we know, Rwanda as a whole is under the same metallogenesis conditions. Hence,
seven IV-level metallogenic belts were delineated according to the distribution of total
mineralization potential and regional geology (Figure 7a). Belt IV-1, with a mean total
mineralization potential of 0.4526, is located in eastern Rwanda and possesses a Cyohoha
group, a Pindura group, and a Gikoro group in the west and a metamorphic complex in
the east, and there are also granites in the middle and north; faults are mainly NNE- and
SN-oriented, regional anticline could be identified in the middle-west (Figure 7b, Table 8),
and several positive sites were discovered near the anticline (Figure 7a). Belt IV-2, with a
mean total mineralization potential of 0.4559, located in middle-eastern Rwanda, mainly
possesses a Gikoro group in the south, and there are gneissic granites in the north and
granites in the middle; NNW-oriented faults mainly exist in the Gikoro group. There
are also NE-oriented faults in the gneissic granites (Figure 7b, Table 8), and a number of
positive sites were discovered adjacent to the granites (Figure 7a). Belt IV-3, with a mean
total mineralization potential of 0.4925, located in central Rwanda, possesses a Cyohoha
group, a Pindura group, and a Gikoro group in the north and middle, and there are also
granites in the middle; faults are mainly NNW-oriented, followed by the NE-facing ones,
the regional anticline could be identified in the middle (Figure 7b, Table 8), and a number of
positive sites were discovered along the granites and the regional anticline (Figure 7a). Belt
IV-4, with the best mean total mineralization potential of 0.6013, is located in northwestern
Rwanda; it possesses a Cyohoha group and a Gikoro group in the east and metamorphic
complex in the west, and there are granites in the middle and gneissic granites in the west
of the belt; faults are mainly SN-oriented (Figure 7b, Table 8), and a great amount of positive
sites were discovered in the middle and west (Figure 7a). Belt IV-5, with the lowest mean
total mineralization potential of 0.2899, located in southwestern Rwanda, mainly possesses
the Cyohoha group in the north and metamorphic complex in the south, and there are
large-scale gneissic granite deposits in the middle; faults are mainly NNW-, NNE-oriented,
and exist along the boundaries of gneissic granite (Figure 7b, Table 8). In addition, no
positive sites were found in this belt (Figure 7a). Belt IV-6, with a mean total mineralization
potential of 0.3295, located in southwestern Rwanda, mainly possesses the metamorphic
complex, followed by Cyohoha group, Gikoro group in the east and scattered Pindura
group, and there are granites in the northwest and gneissic granites in the middle; faults
are mainly NW- and SN-oriented (Figure 7b, Table 8), several positive sites were discovered
in the north and south (Figure 7a). Belt IV-7, with a mean total mineralization potential
of 0.3223, located in western Rwanda, possesses a Cyohoha group, a Pindura group, and
Gikoro group in the east and Cenozoic volcanic rock in the west; faults are mainly NNW-,
NNE-oriented (Figure 7b, Table 8), only one W site was found near Belt IV-6 (Figure 7a).

The top 10%, 20%, and 30% of squares were classified as higher, medium, and lower
likelihood regions, respectively (Figure 8). Prospective areas for W, Sn, Nb-Ta were delineated
along the boundaries of higher likelihood regions within metallogenic belts, and they were
graded into A-, B-, and C-levels according to positive sites, spatial continuity, the mean
likelihood of deposits, and areas. As the achievements of this mapping activity, 2 A-level, 2
B-level, and 7 C-level prospective areas for W (Figure 8a), 3 A-level, 3 B-level, and 11 C-level
prospective areas for Sn (Figure 8b), 3 A-level, 3 B-level, and 5 C-level prospective areas for
Nb-Ta (Figure 8c) were finally delineated. These are mainly located in the middle-west (IV-4)
and east (IV-2, IV-1) of Rwanda (Figure 8, Tables 9–11).
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Figure 7. (a) Total mineralization potential and (b) geological characteristics of metallogenic belts.
This figure was changed.

Table 8. Attributes of metallogenic belts.

Serial Number Area (km2)
Mean Total

Mineralization Potential

IV-1 3687.56 0.4526

IV-2 4786.89 0.4559

IV-3 3420.35 0.4925

IV-4 4244.73 0.6013

IV-5 2265.03 0.2899

IV-6 5338.66 0.3295

IV-7 1338.03 0.3223

Table 9. Attributes of W prospective areas.

Serial Number Area
(km2)

Mean Likelihood
of Deposits

W-A2-1 314.64 0.9074

W-A2-2 342.99 0.8835

W-B2-1 402.35 0.8841

W-B2-2 224.33 0.8217

W-C7-1 165.97 0.8086

W-C7-2 135.97 0.8964

W-C7-3 76.18 0.8348

W-C7-4 162.62 0.7704

W-C7-5 108.67 0.8083

W-C7-6 102.57 0.7389

W-C7-7 124.62 0.7884
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Some target areas were delineated by previous studies via the interpretation of aero-
magnetic data in western Rwanda [25]. Comparing metallogenic belts and prospective
areas in this study and target areas in previous study, two out of six target areas are located
in Belt IV-4, while three out of six target areas are located in Belt IV-6, showing a par-
tially consistency. Prospective areas W-A2-2, W-B2-1, W-C7-4, Sn-A3-1, Sn-A3-3, Sn-B3-1,
NbTa-A3-1, NbTa-B3-1, NbTa-B3-2, and NbTa-C5-2, which are mainly located in Belt IV-4,
are partially consistent with the target areas. The comparison also shows that the total
mineralization potential of Belt IV-4 is robust. A difference between previous study and
this study might be caused by two reasons: (1) the previous study was knowledge-driven,
and was solely conducted via high-resolution magnetic anomaly data, while this study
was data-driven, and was conducted via integrated open source data analysis; (2) the
previous study was conducted in western Rwanda, which would only highlight the areas
with relatively high mineralization potential in west part of the country, while this study
was conducted in the whole country, so areas with higher mineralization potential in the
middle-eastern Rwanda, rather than in the southwestern Rwanda, were delineated.
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Table 10. Attributes of Sn prospective areas.

Serial Number Area
(km2)

Mean Likelihood
of Deposits

Sn-A3-1 321.54 0.9105

Sn-A3-2 330.57 0.8942

Sn-A3-3 251.61 0.8684

Sn-B3-1 249.88 0.8888

Sn-B3-2 200.76 0.8225

Sn-B3-3 189.22 0.9125

Sn-C11-1 121.87 0.8841

Sn-C11-2 144.26 0.9138

Sn-C11-3 64.31 0.8541

Sn-C11-4 78.64 0.7577

Sn-C11-5 133.77 0.7942

Sn-C11-6 59.08 0.9005

Sn-C11-7 96.98 0.8245

Sn-C11-8 68.02 0.8190

Sn-C11-9 48.30 0.9059

Sn-C11-10 63.60 0.8716

Sn-C11-11 49.01 0.8302

Table 11. Attributes of Nb-Ta prospective areas.

Serial Number Area
(km2)

Mean Likelihood
of Deposits

NbTa-A3-1 353.93 0.8832

NbTa-A3-2 137.55 0.8984

NbTa-A3-3 271.84 0.8612

NbTa-B3-1 262.62 0.8302

NbTa-B3-2 112.05 0.8645

NbTa-B3-3 167.10 0.7061

NbTa-C5-1 236.08 0.7877

NbTa-C5-2 236.88 0.7682

NbTa-C5-3 370.46 0.8315

NbTa-C5-4 60.29 0.7910

NbTa-C5-5 86.28 0.7525

5. Discussion

To demonstrate the feasibility of drawing a prospectivity map using predictor layers
derived from open source data, this study generated a series of secondary data, including
faults, a density map of faults, a upward map of geophysical anomalies, and mineral
alteration data. Then, RF models with 700 regression trees were applied to conduct the
MPM process, in which known positive and negative sites were set to 1 and 0, respectively.
This means that the final prospectivity map also ranges from 0 to 1, and a greater value
represents better likelihood of deposits. The accuracy of RF models using open source
data were represented by test errors with 25 training and test-training sets (i.e., 52-fold
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cross-validation). Results showed that the errors were around 0.268, 0.272, and 0.252 for W,
Sn, and Nb-Ta MPM, respectively (Figure 6a), and approximately 90% of the positive sites
were covered by the top 50% squares with the highest likelihoods (Figure 6b). Comparing
to the recent MPM using sufficient and detailed data [1,16,24,28], the performances of MPM
in this study using open source data were not ideal, but they proved the validation of open
source data in regional quantitative MPM, helped to get a big picture of mineralization
potential, and additionally identified preliminary prospect in the study area.

The masking of dense vegetation during remotely sensed mineral alteration extraction
may provide researchers with fragmented imageries. However, alteration maps generated
from these imageries, with many blank (masked) areas, are short in reliability and legibility.
In order to reduce the negative effects of blank areas, the additional interpolation–density–
delineation (IDD) process on the extracted alteration map was proposed. The IDD process
fills the masked areas via interpolation, and the reliability of the interpolated map is
assessed by the pixel density map. The range of the density map was then stretched to
0.5~1.0 to represent the transfer from the former blank area to the intact area, respectively,
then, a new alteration map was reconstructed with the product of the interpolated alteration
map and density map. To avoid interference pixels (e.g., sand beach along rivers) which
survived from masking and may cause unreasonable alteration distributions, the use of
manual delineation was recommended to generate the final alteration map. In this study,
goethite, illite, and quartz alterations in Rwanda (Figure 3i) were obtained through the
DPCA-IDD process. Acceptable contrasts were shown, except for the quartz alteration
in the Sn MPM (with a contrast of 0.06). This might be explained by the concurrence of
Nb-Ta-Sn pegmatite and an Sn quartz vein [48], and the contrast between quartz and Sn
mineralization was drawn back by the Sn preserved in pegmatites.

As seen from Figure 7a, Belt IV-4, with a large set of W, Sn, and Nb-Ta deposits and the
best mean mineralization potential (Table 8), mainly possesses A-, and B-level prospective
areas; while B-, and C-level prospective areas take the lead in the IV-2, IV-1, and other belts,
these are consistent with the principle of data driven MPM: more deposits indicate better
metallogenic conditions. Mineral mining in Rwanda is conducted mainly as artisanal and
small-scale mining [76], indicating that the ore bodies may be primarily explored near the
surface, and that reserves are relatively less exploited. Hence, there is a high likelihood in
A-level prospective areas with deposits are still not out of date. Additional mineral exploration
is firstly recommended along and under the known deposits in A-level areas, while the B-,
and C-level prospective areas may act as long-term reserves for future pursuing.

6. Conclusions

In this paper, regional quantitative MPM using integrated information was carried out
to fill the void in mineral prospecting and exploration studies. To conduct this prospectivity
study, open source data were taken full advantage of, including geological maps in the
literature, gravity anomaly, magnetic anomaly, remote sensing, and other geographical
information. Multispectral imageries are still easily available and important data source
for mineral exploration. Landsat 8 OLI imageries were applied to identify faults and
extract mineral alterations in Rwanda through visual interpretation and the DPCA-IDD
process, respectively. The 2 km buffer zones and high densities of geological remote
sensing faults exhibited medium to high contrast with known deposits, while mineral
alterations mainly possessed medium contrast (Table 6). From the results of this paper,
the MPM process turned out to be valid, and the metallogenic belts and prospective areas
helped to understand the potential and pattern of W, Sn, Nb-Ta mineralization in Rwanda,
which is worth understanding. Additionally, the IDD process is a suitable method for
acquiring a spatially continuous alteration map from masked imageries, although the
manual delineation process in IDD may cause subjective results. Reducing interference
pixels through masking should be paid more attention, because reducing interference
pixels could further reduce the unreasonably distribution of alterations and the necessity of
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manual delineation. In addition, the k2-fold cross-validation could provide more reasonable
testing errors than the k-fold cross-validation.
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