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Abstract: In the past two decades, the mining sector has increasingly embraced simulation and
modelling techniques for decision-making processes. This adoption has facilitated enhanced process
control and optimisation, enabling access to valuable data such as precise granulometry measure-
ments, improved recovery rates, and the ability to forecast outcomes. Soft computing techniques, such
as artificial neural networks and fuzzy algorithms, have emerged as viable alternatives to traditional
statistical approaches, where the complex and non-linear nature of the mineral processing stages
requires careful selection. This research examines the up-to-date use of soft computing techniques
within the mining sector, with a specific emphasis on comminution, flotation, and pyrometallurgical
and hydrometallurgical processes, and the selection of soft computing techniques and strategies
for identifying key variables. From this, a soft computing approach is presented to enhance the
monitoring and prediction accuracy for mineral waste disposal, specifically focusing on tailings and
spent heap leaching spoils database treatment. However, the accessibility and quality of data are
crucial for the long-term application of soft computing technology in the mining industry. Further
research is needed to explore the full potential of soft computing techniques and to address specific
challenges in mining and mineral processing.

Keywords: mineral extraction; soft computing; process control; prediction accuracy; artificial neural
networks; expert systems; fuzzy algorithms; mineral waste disposal; tailings; heap leaching piles

1. Introduction

The mining industry contributes to approximately 10% of global economic activities, of
which industry payments for services and direct support comprise another 10%, making it a
critical part of multiple production chains [1]. Over time, this industry has been a precursor
for technological developments. According to the European Parliament [2], during the
past 12 years, a quarter of the mining industry has doubled its investments in technology,
reaching 93% implementation with successful results. Over 90% of mining companies
believe that complementing their operations with technology translates into added value
and helps to revolutionise their business. The advancement of technology has led to the
emergence of untapped prospects in the field of big data capture systems, which have not
yet been fully explored or utilised in industrial settings. For instance, these systems can
be employed for routine inspections of operational equipment or for the creation of daily
production records [3]. This volume of data is expected to grow exponentially over time,
reaching an amount of one hundred and twenty zettabytes in 2023, corresponding to a
675-fold increase since 2005 [4–6].
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The mining industry and metallurgical processes are familiar with the concept of
capturing large amounts of data. However, the analysis and interpretation of this data
present novel problems for operators and decision-makers who aim to enhance productivity
and sustainability in their operations. The European Union has set four key goals for the
year 2030, as outlined by Usman et al. [7], which include prioritising energy efficiency,
reducing CO2 emissions, and promoting the adoption of clean energy sources. To achieve
these objectives, the EU emphasises the importance of sustainable raw material production
through the utilisation of digital tools, as well as advancements in safety, productivity,
and profit margins [8]. While the World Economic Forum has predicted that from 2017
to 2025, $425 trillion will be invested globally in the application of artificial intelligence
(AI) for the productive sector [9], in Chile, the creation of national policies and initiatives
such as the Roadmap Mining 4.0 [10] policy seeks to implement digital technologies in the
mining industry. There is a correlation between artificial intelligence (AI), Mining 4.0, and
machine learning technologies that can potentially drive transformative advancements in
mining processes, enhance productivity, and enable data-driven decision-making in an
increasingly interconnected and digital world. The objective of this paper is to reveal the
potential in question.

2. Background and Finding the Gaps

Since 2015, the fields of data science and soft computing have significantly contributed
to the development of more precise predictive models [11]. The effectiveness of these
models is contingent upon the specific characteristics of the problem at hand and the
amount of available data. Furthermore, the advancements in computing capabilities have
facilitated the widespread adoption and refinement of these tools in various industries and
processes, encompassing a wide range of specialties, through the integration of artificial
intelligence and statistical techniques. Soft computing is a subfield of artificial intelligence
that encompasses various paradigms and techniques designed to handle incomplete and
imprecise information in crucial processes. Its primary objective is to enable companies to
derive valuable solutions for tasks such as prediction, information discovery, and knowl-
edge acquisition [12,13]. This research aims to examine the application of soft computing
in mineral processing, providing a perspective on the operational impact of relevant stages
present in the processing lines of valuable minerals and considering the possibility of
supporting operational decisions. Based on this review, an application approach to mine
waste disposal operations is introduced.

2.1. Automation in the Mining Industry and Opportunities for AI

The mining industry can benefit significantly from the application of AI to enhance
process control and improve productivity. The development of sensors, transmitters, and
controllers has given way to centralisation of the control and supervision of variables using
evolving technologies in control systems (Figure 1) and the development of control loop
applications [14]. These systems offer prompt information and rapid responses to external
and internal disturbances, guaranteeing a safe and stable operation within the process. The
choice of the functions oriented to the analysis of information and the application of superior
decisions are fundamental functions for the control and monitoring of the process [15]. The
focus of their work lies in the examination of information, and the effectiveness of their
decision-making process is contingent upon the execution and necessity of decisions and
problem-solving tasks that lack algorithmic resolutions.
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Nad et al. [16].

The evolution of artificial intelligence enables complicated and interpretative solutions
in contrast to empirical model approximations, offering complex representation learning,
non-linearity, feature extraction, flexibility, and scalability with continuous and end-to-end
learning. Artificial intelligence can handle diverse inputs, ambiguity, and uncertainty,
making it suitable for different processing languages and computer vision. However, to
identify solutions, we must provide explicit, known, and well-defined conditions [17].
Continuous improvement in the mining industry has made it common to find an inter-
connected control hierarchy such as the one presented in Figure 2, where instrumentation
plays a fundamental role in ensuring the proper functioning of the plant. The second sector
is dedicated to maintaining control over key variables, as evidenced in flotation processes
where variables such as pulp level, foam level, air injection, and pump speed are regulated
using conventional proportional, integral, and derivative (PID) control methods [18].

Reaching the highest levels of the pyramid, where we can find advanced flotation
control (AFC) and optimised flotation control (OFC), will directly depend on a satisfactory
control of the lower levels, where the PID controls are insufficient for the total management
of the processes. The AFC structure must possess the capability to effectively mitigate
disturbances arising from various sources, such as feed flow or other external factors, in
addition to considering dynamic situations such as the accumulation of matter and delay
times for the calculation of performance parameters such as recovery and the grade of
the mineral. OFC will always seek to maximise the economic performance of the process,
associating it with the recovery and grade of the concentrates obtained [19].

Metallurgical facilities frequently use PID control techniques due to their versatility
and ability to be adjusted to the optimal operating parameters, achieving a response
that suits the process [20]. Nevertheless, the intricate nature of multivariate processes
precludes the application of conventional control techniques. In contrast, advanced control
endeavours to establish a mathematical model that accurately characterises the operational
and phenomenological aspects of the process under control. This model is subsequently
validated through simulation. Expert systems, fuzzy logic, and predictive control models,
both linear and non-linear, are viable alternatives in the industrial sector. These approaches
can be effectively blended into a cohesive solution known as the predictive control of the
fuzzy model [21]. Ai et al. [22] propose a novel approach that aims to overcome these
limitations by using deep learning features and offline conservative double Q-learning
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control as an option to minimise the PID limitations in dealing with complex and nonlinear
systems. During the 1990s, statistical features were used to classify froth structures in
flotation cells during mineral processes [23]. This method was further developed by Hadler
et al. [24] and applied by Polaris. Mines enhanced productivity and plant performance in
lead zinc concentration standardised operational practices and adjusted reagent dosages
based on the accumulated error over time. Their approach involved utilising set-point
adaptive optimisation, incorporating a feedforward neural network (FNN) soft sensor
for online feed grade estimation and a long short-term memory network (LSTM) to track
fixed dosage set-points [25]. The implementation of automation in various processes has
significant benefits, including the mitigation of staff exposure to hazardous environments,
prevention of equipment damage, optimisation of operational expenses, and preservation
of product quality [26,27].
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2.2. Application of Soft Computing in Mineral Extraction and Processing

The successful use of AI in the mining industry requires a collaborative effort among
domain experts, data scientists, and technology vendors. To ensure the most appropriate
AI solutions, each mining operation’s individual demands and challenges must be carefully
assessed. Concerns such as data security, staff retraining, and ethical considerations should
also be addressed as part of the deployment approach. Through the analysis of mineral
beneficiation and metal extraction processes, it is possible to identify some examples of
the difficulty in controlling these processes optimally due to the instability of the variables
involved. The composition of the slags impacts the recovery of the element of interest
in pyrometallurgical processes such as the fusion process and is thus a variable that
must be considered to obtain optimal recovery. However, because there are a variety of
chemical reactions driving the process, it is difficult to describe a relationship between the
compositions of the slags and the contents of components of interest that are present [28]. In
the mineral processing field, Estrada et al. [29] investigated problems related to the flotation
process such as the control of mineral granulometric sensitivity from the milling stage
and milling global energy optimisation, as well as tailings transportation and deposition.
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Martin et al. [30] analysed possible scenarios in which deposit destabilisation can occur,
causing serious environmental and safety damage.

The study conducted by Fu et al. [31] examines the influence of several factors, such
as mineralogy and viscosity, on thermodynamic changes and the manipulation of vari-
ables within kinetic models. Additionally, the application of soft computing has had a
significant influence both in the areas of classification and concentration of minerals and in
pyrometallurgy. Most of the applications are in artificial vision, probably due to the impulse
to find methods to measure parameters such as particle sizes or chemical composition
using image-based methods as a cheaper and faster alternative to techniques based on
sample analysis [32]. The heap leaching process is an important part of the hydromet-
allurgical production line because it makes it easier to obtain the desired mineral. This
process involves several control variables, including the properties of the leaching agent
and the characteristics of the ore to be leached, such as its porosity, mineralogy, grade, and
impurities, among others [33].

In this investigation, we have been able to analyse how the use of different soft com-
puting tools has been incorporated in different stages related to mineral extraction and how
they have been applied in situations related to both production and security, establishing
the contribution and support needed to optimise mineral processes. A comprehensive
analysis has been conducted on a total of 46 research publications that investigate the
utilisation of soft computing techniques in various domains, including deposit operations,
comminution, flotation, hydrometallurgical processes, and pyrometallurgical processes.

Table 1 presents a classification of the methods applied for each revised publication
according to the applied area, and in Figure 3, the percentage of each methodology applied
to the areas of interest is established, where for metallurgical processes, the artificial neural
network (ANN) and model predictive control (MPC) are the most widely implemented. The
relevance of identifying the variables with the greatest impact according to the associated
operation has also been evidenced. The results obtained will be analysed in addition
to the variables used to establish a comparison between the different methods and how
their implementation has been approached. As shown in Figure 4, the areas of flotation
and pyrometallurgical processes are those where the most studies have been developed,
especially in the search for operational improvements for process control and prediction.
This situation is directly explained by the possibility of accessing data available from
existing monitoring in industrial processes, as will be seen later, and by the fact that these
stages are the ones that present the greatest diversity of variable monitoring.
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Table 1. Summary of representative studies of soft computing application in mineral extraction and
processing.

Author Operation Soft Computing Application
RF EXS FL ANN CNN MPC

Sun et al. [34]
Mining Stage

•
Danish et al. [35] •

Li et al. [36] •
Stange et al. [37]

Comminution

• •
Tessier et al. [38] •
Olivier et al. [39] •
Estrada et al. [29] •

Hamzeloo et al. [40] •
Umucu et al. [41] •

Cai et al. [42] •
Olivier et al. [43] •
Aldrich et al. [23]

Flotation

•
Moolman et al. [44] •

Ramasamy et al. [45] •
Chen et al. [46] •

Cortes et al. [47] •
Aldrich et al. [48] •

Riquelme et al. [49] •
Brooks et al. [21] •

Ali et al. [50] • • •
Hoseinian et al. [51] •

Shean et al. [52] •
Zhang et al. [53] •

Ai et al. [25] •
Fu, Y. et al. [31] •

Ai et al. [22] •
Zhang et al. [54] •

Komulainen et al. [55]

Hydrometallurgy

•
Moreno et al. [55] •

Pang et al. [56] •
Azizi et al. [57] •

Hoseinian et al. [33] •
Gao et al. [58] •
Xu et al. [59] •
Gui et al. [60]

Pyrometallurgy

•
Deng et al. [61] •
D. Liu et al. [28] •
J. Liu et al. [62] •
Savic et al. [63] •

Ghea Puspita et al. [64] •
Cardoso et al. [65] •

Qian et al. [66] •
Cardoso et al. [67] •

Wang et al. [68] •
Yang et al. [69] •
Zhao et al. [70] •

RF: Random forest, EXS: expert system, FL: fuzzy logic, ANN: artificial neural network, CNN: convolutional
neural network, MPC: model predictive control.
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2.3. Applications of Soft Computing in the Mining Stage

Ongoing research and development efforts are being conducted within the mining
industry to enhance safety measures and decision-making processes, employing techniques
such as fuzzy logic and other methodologies (Table 2). Danish et al. [35] used fuzzy logic
to predict mine fires in underground coal mines, while Li et al. [36] proposed a method
to minimise the risk of gas explosion accidents in coal mines using fuzzy comprehensive
evaluation. Similarly, Sun et al. [34] presented a fuzzy logic-based approach for predicting
the risk of rock burst accidents in coal mines. It is possible to identify CO, O2, N2, and
temperature as common variables in the application of fuzzy logic to the prediction and
control of security mine conditions linked to variables that can be monitored in the field.
With this understanding of which variables are most important for a given application, they
can focus their efforts on collecting relevant data and refining their models accordingly.
These studies provide evidence of the possible advantages that can be gained by employing
soft computing techniques to enhance safety and decision-making procedures in ore deposit
operations. From the studies applied to the mining stage, the most relevant variables that
have been identified include:

(a) Density: For ore deposits, density is an important variable that provides information
about the composition and mineralogy of the deposit.

(b) Water transmitting ability: Refers to the capacity of a rock or mineral to allow the
flow of water through it. It is an important variable in understanding the material’s
hydrogeological characteristics.

(c) Fracture development degree: Corresponds to the extent and intensity of fractures or
cracks within the rock or mineral. It can affect the permeability and fluid flow within
the deposit.

(d) Confined water pressure: Refers to the pressure exerted by water within confined
spaces or pores in the deposit. It can influence the stability and behaviour of the deposit.

(e) Watery property of the floor aquifer: This variable refers to the characteristics of the
water present, such as its chemical composition, pH, and mineral content. It can
impact the interaction between the aquifer and the ore deposit.

(f) Aquifuge thickness and strength: Refers to the thickness of impermeable or low-
permeability layers that prevent the flow of water. Strength refers to the resistance of
these layers to deformation or failure. These variables can affect the hydrogeological
conditions and water movement within the deposit.

(g) Mining thickness and depth: This variable refers to the thickness of the ore body
being extracted. Depth refers to the vertical distance from the surface to the ore
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body. These variables are important in determining the feasibility and logistics of
mining operations.

(h) Inclined productivity: Refers to the efficiency and productivity of mining operations
in inclined or sloping deposits. It considers factors such as the angle of the deposit
and the methods used for extraction.

Table 2. Characteristics of studies applied in the mining stage.

Paper Problematic Method Data Used Specific Variables Results

Sun et al. [34]
Risk assessment of
floor water inrush

in deep mining

Improved fuzzy
comprehensive

evaluation, Delphi
method, and

analytic hierarchy
process

Hydrogeological
data from six

industrial mining
faces

Density,
water-transmitting

ability, fracture
development

degree, confined
water pressure,

watery property of
the floor aquifer,

aquifuge thickness
and strength,

mining thickness
and depth,

inclined length

The approach
provides a tool for the

risk assessment of
floor water inrush in
deep mining, where

the results are
consistent with the

field-observed results.

Danish et al.
[35]

Predicting mine
fires in

underground coal
mines

Fuzzy logic model
with Mamdani

inference system

Data from 10 gas
monitoring

stations collected
from sensors in an
underground coal

mine

Input variables:
CO, O2, N2,
temperature;

Output variable:
Fire intensity

The fuzzy logic system
is reliable for decision
making regarding fire
intensity and assessing

fire intensity with
variables at the same
time (validated using
Graham’s index), and
identified suspected

areas for spontaneous
combustion.

Li et al. [36]

Quantitative risk
assessment of gas

explosions in
underground coal

mines

Combination of
fuzzy analytic

hierarchy process
(FAHP) and

Bayesian network
(BN)

EXS application of
risk factors related
to gas explosions
in underground

coal mines

Flow rate, pressure,
pipe diameter, pipe

roughness
coefficient, pump
efficiency, energy
consumption, cost

Inference to predict
the probability of gas
explosion risks with
the determination of
accident causes. The
identification of the

weight variables helps
determine the optimal
combination for flow
rate, pressures, pipe

diameter for each pipe
segment, pump

efficiency, and pipe
roughness coefficient.

We can say that the soft computing application for the analysed studies is established,
considering the following characteristics: 1. Risk factors: This is a key issue in assessing the
risk of accidents in mines. The specific risk factors may vary depending on the study but
generally include factors such as gas levels, ventilation failure, and water inrush. 2. Specific
methods: Fuzzy logic and AHP: The application of fuzzy logic helps to handle uncertainty
and imprecision in data under this variable selection. The analytical hierarchy process
(AHP) determines the weights of different factors in a decision-making process, including
the risk factors selected to be analysed in this quantitative risk assessment of gas explosions
in underground mines.
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2.4. Applications of Soft Computing in the Comminution Stage

The primary aim of comminution plants is to achieve the optimal particle size for
efficient extraction of the desired mineral while also ensuring cost-effectiveness. However,
to dissociate the low-grade minerals, the material must be finely ground, which implies
high energy consumption in the milling area [54]. The grinding circuits are difficult to
control due to poor plant models, external disturbances, and process variables that are not
easy to measure [39]. In addition, the variables and properties of the extracted mineral, such
as size, composition, and hardness, affect mill performance [38]. The disturbances in the
operational conditions in milling directly affect the subsequent stages, such as leaching and
flotation, that depend on the product obtained in this first stage, affecting the performance
of a mining plant in general.

The strategies for reducing energy consumption in the mining industry have been
extensively considered in recent years due to the increase in energy prices [71,72]. Therefore,
control strategies in mining processes are one of the many ways to optimise this consump-
tion, especially if the strategies consider global optimisation and ensure the stability of
the system. The milling of minerals represents up to 50% of the energy consumption in
a mineral concentrator plant. For this reason, Estrada et al. [29] developed a centralised
hybrid model predictive control scheme (HMPC) in the grinding process that seeks to
minimise specific energy consumption of the equipment and stabilise the feeding to the
plant by ensuring an output particle size of 230 µm (65 mesh). With this hybrid model, the
implementation of conventional strategies is a low-cost opportunity based, for example, on
expert systems that handle variables and discrete events, and applying HMPC strategies
allows the inclusion of discrete events in both the model and the controller. Stange [37]
examines the application of ANN to the control of grinding circuits, specifically autoge-
nous milling. Tessier et al. [38] describe a machine vision strategy for online rock mixture
composition estimation, obtaining an overall accuracy of 92.5% for dry ore combinations.

In a run-of-mine ore milling circuit, Olivier et al. [39] propose using disturbance ob-
servers, specifically a fractional order disturbance observer (FO-DOB) and a Bode ideal
cut-off disturbance observer (BICO-DOB), in conjunction with a standard PI controller
to improve control performance in the presence of strong external disturbances and se-
vere model–plant mismatches. Estrada et al. [29] use an industrial data-tuned grinding
simulator to provide a hybrid model predictive control technique for mineral grinding
circuits. Hamzeloo et al. [40] investigate the use of image analysis and neural networks to
estimate particle size distribution on an industrial conveyor belt in a copper concentrator,
attaining an overall RMSE of 6.11%. Umucu et al. [41] examine the application of ANN in
modelling a calcite grinding system in mineral processing. Cai et al. [42] offer an approach
for underground coal mining rock burst predictions utilising micro-seismic monitoring
and a fuzzy comprehensive evaluation model. Olivier et al. [43] discuss the use of deep
CNN to classify feed ore images into one of four categories based on size distribution, with
an overall accuracy of 96.4%. Table 3 presents a comprehensive summary of the findings
derived from each individual investigation. Based on the nature of the applications con-
ducted in the studies, it is possible to categorise the studies conducted by Stange [37] and
Tessier et al. [38] as utilising machine vision and image analysis techniques for diverse
applications, such as estimating rock mixture composition, monitoring flotation froth, and
analysing fragmentation.

Stange [37], Umucu et al. [41], and Hamzeloo et al. [40] applied ANNs for the control
and modelling of mineral processing systems, as well as for classifying feed ore images
based on size distribution. Olivier et al. [43] study the possibility of obtaining a con-
volutional neural network (CNN) model for characterising the size distribution of feed
ore in run-of-mine ore milling circuits. Cai et al. [42] propose a methodology for rock
burst forecasting in underground coal mining using microseismic monitoring and a fuzzy
comprehensive evaluation model.
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Table 3. Characteristics of studies applied in mineral comminution processes.

Paper Problematic Method Data Used Specific Variables Numeric Results

Stange et al.
[37]

Control of
grinding circuits,

specifically
autogenous

milling

ANN for control
strategies and
exploration of

various control
approaches by EXS

No specific data
mentioned;
theoretical

discussion of ANN
use in grinding
circuit control

No specific
variables

mentioned;
exploration of

various control
approaches using

ANNs

Proposes two control
strategies using ANNs

for the control of
autogenous grinding
circuits. ANNs have

significant potential in
developing a model of

the hydrocyclone
classifier.

Tessier et al.
[38]

Online estimation
of rock

composition for
nickel mineral

treatment

Machine vision
approach for

feature extraction,
dimensionality
reduction, and
class boundary
establishment
using support

vector machines

Digital images of
five different

mineral types and
mixtures of them

Composition of
rock mixtures:

colour and textural
features extracted
from sub-images

Good estimation for
mixture compositions
for dry ore but some
inaccuracies for wet
ore mixtures due to
light reflection. The
proposed approach

can be used for
real-time monitoring

of variations in
run-of-mine ore

composition.

Olivier et al.
[39]

Improving control
performance in a

milling circuit

MPC controller
with a fractional

order disturbance
observer (FO-DOB)

and a Bode ideal
cut-off disturbance

observer
(BICO-DOB)

Simulation data
generated from a
non-linear MIMO

plant model

Controlled
variables: product

particle size,
fraction of the mill
volume filled with

material, slurry
volume in the

sump.
Mill-manipulated

variables: solid
feed-rate, water
feed-rate, steel
balls feed-rate,

water flowrate into
the sump and

slurry flowrate
into the cyclone

The FO-DOB and
BICO-DOB are useful

tools for ROM ore
milling circuit control.
This addition to the
normal PI controller
gives better results

than the PI controller
alone because of the
decrease in the ISE

values. The
BICO-DOB has poorer
disturbance rejection
performance than the

other two DOB
varieties but gives the
best set-point tracking

performance.

Estrada et al.
[29]

Develop an HMPC
strategy for

grinding circuits

Hybrid MPC
controller

identification
procedure for two

controlled
variables

Data from
industrial

data-tuned
grinding simulator

Conveyor feed
rate, water feeding

sump, SAG mill
speed, product

hardness, specific
energy

consumption,
product particle

size; Activa-
tion/deactivation

of secondary
grinding circuits

and product
granulometric

distribution

A hybrid identification
procedure for two

controlled variables is
correctly performed,

with energy
consumption

minimization and the
maintenance of

particle size output.
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Table 3. Cont.

Paper Problematic Method Data Used Specific Variables Numeric Results

Hamzeloo et al.
[40]

Estimate particle
size distribution on

an industrial
conveyor belt in a

copper
concentrator

Image analysis and
ANN

Images collected
from an industrial
conveyor belt in

the crushing circuit
of a copper

concentrator

Particle size
distribution, image

pixel values,
scaling factors, size

features,
eigenvectors and

eigenvalues,
cumulative

passing %, volume
of particles, metal

ball diameter

Model estimations of
particle size

distribution achieve an
overall RMSE of 6.11%.

For area-based size
estimations, the model

obtains an RMSE of
4.45%. It obtains an
RMSE of 18.54% for
weight-based size

estimations. Other size
measures had RMSE
values ranging from
5.45% to 37.11% for

area-based size
estimations and from
18.54% to 37.11% for
weight-based size.

Umucu et al.
[41]

Grinding system
modelling of

calcite in mineral
processing

ANN–MLPNN
and RBFNN

Experimental data
collected from

laboratory
conditions

Input variables:
cumulative

percentages of ball
mill feed, ball mill

conditions, and
grinding time.

Output variables:
ball mill product

cumulative
percentages

The RBFNN model
performs better than
the MLPNN model,

highlighting the
importance of

analysing data and
using capable systems

for fast
decision-making. The
study used different
powder filling levels
for the calcite sample

to evaluate the
statistical data

obtained from the
ANN models.

Cai et al. [42]

Rock burst
forecasting in

underground coal
mining

Fuzzy
comprehensive

evaluation model

Microseismic
monitoring data
from a coal mine
and laboratory

acoustic emission
measurements of

coal samples

Fault total area,
space-time
diffusivity,

equivalent energy
magnitude,

seismicity degree,
time information
entropy, source
concentration

degree, seismic
diffusivity

Importantly, the
proposed

methodology was
successfully applied to

a coal mine using a
combination of indices

for more accurate
forecasting.

Microseismic
monitoring is a

powerful tool for rock
burst forecasting

Olivier et al.
[43]

Characterization of
the feed ore size
distribution in a
milling circuit

Deep CNN
application for
classification

Feed ore images
captured from an

industrial
conveyor belt with

a vertically
mounted camera

223 images
captured and

categorised in four
groups

The CNN achieved an
overall accuracy of
96.4% in classifying

into one of four
categories based on

size distribution, with
an overall F1-score

metric of 0.97.
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Finally, Olivier et al. [39] and Estrada et al. [29] propose new control strategies for
mineral grinding circuits, using techniques such as disturbance observers and model
predictive control.

From the studies applied to mineral comminution processes, the most relevant vari-
ables that have been identified include:

(a) Particle size: A critical variable in comminution processes, as it affects the efficiency of
subsequent mineral extraction stages. Achieving the optimal particle size is essential
for efficient extraction of the desired mineral.

(b) Composition and hardness: The composition and hardness of the mineral being
processed can significantly impact mill performance. Different minerals may require
different grinding conditions to achieve the desired particle size.

(c) Operational conditions: Factors such as the mill speed, feed rate, and grinding media
size can influence the efficiency and effectiveness of comminution processes.

(d) External disturbances: Changes in ore feed characteristics or variations in power
supply can affect the stability and performance of comminution circuits.

(e) Product size setpoint: This variable is the target size for the final product and is used
as a control parameter in grinding circuits.

(f) Rock types: These refer to different types of rocks or minerals present in the ore
mixture. They are used as labels or classes for classification purposes.

2.5. Applications of Soft Computing in the Flotation Stage

The mineral flotation process is a complex dynamic process to control that cannot
be optimised using constant control strategies because each mineral exhibits different
behaviours before this process [73] and the mineral grade from the deposit is in constant
decline, for example, reaching 0.4% in the case of copper [74]. This means that more
controlled processes are required to maximise the separation of the species of interest from
those without economic value that contaminate the final product. Keeping mineral flotation
processes under control is a complex task since their stability depends largely on various
variables such as the processed tonnage, mineralogy, percentage of solids, reagent dosage,
and granulometry, among others (Table 4).

A change in these generates disturbances in the flotation process, which are reflected
in the recovery results [18]. Historically, the optimisation of recovery results was achieved
with experienced and qualified operators, but as Laurila et al. [75] explain, the flotation
process is currently undergoing a paradigm shift towards automated control, ushering in a
new era where:

• The design of flotation circuits is being simplified, which facilitates the regulation and
control of the processes [76].

• The cell size has increased over time, going from 50 m3 to designs close to 600 m3 [77].
• The development of new technologies for online image analysis has made it possible

to provide information on the status of the equipment involved in the process, such as
stirring motors, valves, sensors, and pumps, and the quality of variable measurements
such as air supply, pH, and bubble size [78].

The evolution of the soft computing application in processes linked to flotation pro-
cesses has undergone evolutionary development, encompassing diverse techniques and
technologies for monitoring and control, highlighting the importance of accurate data and
control strategies in achieving optimal performance. When analysing the studies accord-
ing to the applied methodology, Chen et al. [46], Cortés et al. [47], and Brooks et al. [21]
analysed the implementation of advanced control strategies in mineral processing, specifi-
cally in ball mill grinding circuits and rougher flotation circuits, and the implementation
of advanced technologies, including image processing, X-ray fluorescence, and diffused
reflective spectroscopy, to optimise a copper roughing circuit. The publications cover topics
such as MPC, hybrid ANN models, and multivariable predictive control systems, where
the results show improved process stability, increased copper recovery, and significant
performance improvements compared to previous control methods.
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Table 4. Characteristics of studies applied in mineral flotation processes.

Paper Problematic Method Data Used Variables Results

Aldrich et al.
[23]

Classification of
different froth
structures in
flotation cells

Decision tree and
CNN algorithms
for constructing

knowledge-based
systems

Surface froth
images of two

industrial flotation
cells. Training data

set consisting of
400 exemplars

randomly sampled
from the four

classes

Froth image
characteristics (e.g.,
statistical features)

The CNN system correctly
classified unknown froth

forms. The system
improves profitability and

reduces operating
instability. The net

classified froth structures
with 96% accuracy, but

limited training data sets
reduced classification
performance to 68%.

Moolman
et al. [44]

Grinding
efficiency of dry

ball mills

Machine vision
application to the
feed with a ANN

model from a
laboratory-scale

ball mill

Grinding aids and
stage efficiency

Grinding data as
particle size
distribution,

specific surface
area, and grinding

efficiency

SGLDM and NGLDM
analysis of digitised froth

images shows feature
extraction potential.

Neural networks classify
foam shapes well. Dry ball
mills can grind 25% better

with grinding aids.
SGLDM outperformed

NGLDM at 66.7% with a
90% classification rate.

However, NGLDM
classified froth conditions

better than SGLDM
features at 78.9%

compared to 52.4%.

Ramasamy
et al. [45]

Comparison of
predictive

control schemes
with detuned
multi-loop PI
controllers for

controlling ball
mill grinding

circuits

MPC

Experiments
conducted under

five different
operating
conditions.

Process model
parameters such as
the breakage rate

function and
hydrocyclone

model parameters
based on

steady-state data
collected from the

circuit

Variables
controlled: cyclone
overflow fraction
passing 104 µm

and mill
throughput. Fresh
feed rate (0.375 to
0.5 kg/min), sump
water addition rate,
mill solids (67% to

74%), slurry
pumping rate,
hydrocyclone

model parameters,
breakage rate
function, and

sump level

Detuned multi-loop PI
controllers oscillated and

could not eliminate
control loop interactions.
The MPC system reached

setpoints without
overshoot or offset and

decoupled well.
Constrained MPC

suppresses big input
moves and is more

resistant to operational
conditions than PI

controllers. PI controllers
modify variables more

than MPC. The mill
throughput–sump water
loop with PI controls is

slower.
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Table 4. Cont.

Paper Problematic Method Data Used Variables Results

Chen et al.
[46]

Implementing a
model predictive
control in a ball

mill grinding
circuit

MPC

Ball mill grinding
circuit in an iron
ore concentrator

plant process
variable

Particle size, mill
solids

concentration,
sump level,

circulating load,
fresh feed rate, mill

feed water flow
rate, dilution water
flow rate, vibratory

conveyor speed,
mill feed water
control valve’s

opening, dilution
water control

valve’s opening,
pump speed

The study shows that
MPC improves grinding

circuit performance,
ensures operational
stability, and greatly

reduces overload situation
warnings. MPC lowered

overload condition
warnings by 31.9% over

PID controllers. In
addition, MPC lowered

overload condition
warnings by 85.8%. The
MPC technique showed

its efficacy in the invested
time period, reducing
alarms and ensuring

operational continuity.

Cortes et al.
[47]

Stabilise rougher
flotation circuit

operation

MPC application
based in

Honeywell’s Profit
Controller

Rougher flotation
circuit data from
Concentrator A-1

at División
Codelco Norte

Airflow rate set
points, level

control, pH, and
tonnage variation

Profit FLOT enhanced
control and improved
process stability and

copper recovery. Profit
FLOT on daily shifts

increased the A-1
concentrator recovery by
1.5%. Higher-profit FLOT

use, practise
enhancements, strategy
revisions, and operator

training can still capture
marginal benefits.

Performance and recovery
rates may improve further
with further optimisation.

Aldrich et al.
[48]

Control in froth
flotation

processes

Implementation of
automated systems

based on CNN
using machine

vision

Froth images
obtained from
laboratory and

industrial flotation
cells, operational

data such as the air
flow rate, pulp

level, and
concentrate grade

Bubble size and
shape, air flow
rate, pulp level,

concentrate grade

Machine vision and image
analysis techniques can be

used to monitor froth
stability, but fully

automated control is not
possible.

Riquelme
et al. [49]

Identify and
measure bubble
size distribution

in flotation

Image processing
and a parametric

method with a
circular Hough

transform (CHT)
and log-normal
distribution for

MPC

Bubble images
from flotation

columns obtained
through a camera
system conducted

with different
frother

concentrations and
superficial air

velocities

Frother
concentration,
superficial air

velocity, bubble
size distribution

parameters, bubble
Sauter mean

diameter, flotation
recovery

CHT detects clustered
bubbles better than other
approaches. Log-normal

distribution estimates BSD
well. BSD parameter

dynamics are explained
well by the non-linear
Wiener model. After

experiments, static models
were estimated using a
non-linear least squares

technique with R2 = 93.3%
and 98.5%.
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Table 4. Cont.

Paper Problematic Method Data Used Variables Results

Brooks et al.
[21]

Optimization of
a copper

roughing circuit
to improve

recovery in an
oxide rougher

circuit

Application of
sophisticated

technologies such
as image

processing, X-ray
fluorescence,

diffused reflective
spectroscopy, and

cascaded MPC

Manipulated,
disturbance and

controlled
variables in

flotation cells

Feed flows,
densities, air flows,
pulp levels, feed,
concentrate and

tail Cu grades, and
froth velocity

Successful MPC
installation improves float

and Cu recovery.
Innovative measurement
technology improved the
accuracy and reliability of
critical control parameters
such as the Cu grade, froth
velocity, and concentrate

and tail grades.

Ali et al. [50]

Predict the
flotation

behaviour of fine
high-ash coal in
the presence of a

hybrid ash
depressant

Random forest,
ANN, fuzzy logic,

and adaptive
neuro-fuzzy

inference system

Flotation
experiments on

fine high-ash coal
with a training
data set (80% of

total data) and test
dataset (20% of

total data)
containing five
inputs and two

outputs

Inputs: Al-PAM
polymer dosage,

pH, polymer
conditioning time,
dispersant dosage,
and impeller speed.

Outputs:
combustible

recovery and froth
ash content

The models predict the
performance of the coal
flotation process. The

fuzzy logic model had the
best prediction

performance in coal
flotation. Overall

accuracy: FL > ANN >
ANFIS > RF > HyFIS.

Hoseinian
et al. [51]

Develop a model
to predict SAG

mill power

Hybrid ANN
algorithm model

application

SAG mill operation
dataset from Aq

Darreh gold
processing plant
(GA population
size: 100, max

generation: 450)

Feed moisture,
mass flowrate, mill

load cell mass,
SAG mill solid

percentage, inlet
water flow rate,

outlet water flow
rate, work index,
and mill power

Correlation coefficient (R)
of the GANN model:

0.9127 in testing compared
to ANN alone with an R of

0.7947. Obtained
relationship input

parameters for the work
index, inlet and oulet

water to the SAG mill, mill
load cell mass, SAG mill
solid percentage, mass

flowrate and feed
moisture. Mean squared

error (MSE) of the GANN
model: 0.0451 in training,
0.0430 in testing. MSE of

the ANN model: 0.1549 in
training, 0.4054 in testing

Shean et al.
[52]

Predicting
changes in pulp
height in froth

flotation

Development of a
dynamic model
from a flotation
laboratory test

Froth flotation
mass balance and
calibration using

experimental data

Bubble size
distribution, air

flow rate, and pulp
height under

different
conditions

The dynamic model
predicts steady-state froth

flotation pulp height
variations. The

experimental system
responds slower to the
reagent than the model

because the model
assumes the system is well

mixed, while the
experimental results show
plug flow. The model can

be adjusted to reflect
industrial flotation

control’s dynamic nature.
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Table 4. Cont.

Paper Problematic Method Data Used Variables Results

Zhang et al.
[53]

Simulating the
relationship
between the

reagent dosage
and froth surface
appearance in a

lead–zinc
flotation plant

Hammerstein–
Wiener-based

model with the
illumination

modelling-based
marker watershed

method for EXS
application

Reagent data and
froth surface

images collected
from a lead–zinc

flotation plant (149
pairs used for

developing the
Hammerstein–

Wiener model and
60 pairs used for

testing and
validating the

model)

Reagent variables
(frother, activator,

and collector
dosage), froth

surface variables
(bubble size

distribution, froth
surface image, and

highlight spot
marker), model

variables
(Hammerstein–

Wiener
model)

The log-normal
distribution can describe
lead–zinc flotation plant
bubble size distribution
(BSD) in the quiet zone
below the interface. The
Hammerstein–Wiener

model beats the Wiener
model, LS-SVM model,

and neural network model
in fitting accuracy and
performance with an

RMSE of 0.0420 and an
R-squared of 0.9721. The
proposed approach can
guide reagent dosage

changes to manage
mineral processing froth

flotation and segment zinc
froth image bubbles with

95.6% accuracy.

Ai et al. [25] Flotation reagent
control

Reduction in
extracted deep

learning features
using a stacked

autoencoder, fuzzy
association

setpoint
calculation, and

offline
Q-learning-based

reagent control

Feed
characteristics,

froth grade,
flotation reagents,
and froth videos.
RL benchmark

environment data
with

1,000,000 samples
using a soft

actor–critic (SAC)
controller

Froth images to
extract four

features: bubble
size, bubble shape,
froth velocity, and

froth color.

The method outperformed
other existing methods in

terms of the MAE and
qualified ratio of the

concentrate grade. It was
effective and promising

for practical flotation
reagent control.

Fu et al. [31]

Effect of particle
size and process

time on
magnesite

flotation using
machine learning

to predict
flotation

performance

EXS application
and mathematical

modelling

Flotation
experiments

performed on
magnesite with

seven size fractions
and six flotation

times

Feed particle size,
flotation time, pulp

pH, collector
dosage, recovery
rate of MgO and

SiO2

Optimal particle size
range identified for

magnesite flotation of 30
to 48 µm. The EXS method
performs better than other
models in predicting the
MgO and SiO2 recovery,

which increased from
54.18% to 95.12% and
from 50 to 400 mg/L,
respectively. The SC

model is an effective tool
for predicting the effects
of flotation parameters.
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Table 4. Cont.

Paper Problematic Method Data Used Variables Results

Ai et al. [22]

Set-point
adaptive

optimization and
control strategy

for antimony
flotation process

Fuzzy logic
functions, machine

vision, and FAR
mining to extract
information and
generate optimal

set-points

Feed grade,
reagent dosages,
froth image, and

concentrate grade.
A total of

1000 groups of
data in the desired
concentrate grade

range, with
950 groups to

generate FARs and
the rest for
validation

Feed grade,
reagent dosages,

froth image,
concentrate grade,
and image features:
froth height, froth

colour, froth
velocity, and
bubble size

Better performance
compared to manual

manipulation and other
automatic control
methods with an

FNN-based prediction
accuracy for feed grade of
RRMSE: 2.94% and MRE:
8.73%. Improved control

performance in
concentrate grade.

Zhang et al.
[54]

Develop an
adaptive

modelling
method for froth
flotation reagent

control

An adaptive ANN
auto-regressive

model (A-NNARX)
for dynamic froth

flotation control. In
a non-linear model,
the model predicts

the flotation
reagent control

technique

Flotation industry
data. The data are
categorised by feed

grade: low zinc,
normal, high zinc,

and high lead

Concentrate
quality, zinc and
lead feed grade,

froth videos,
flotation reagents,

hand-crafted
image

characteristics,
bubble size
distribution.

Colour, texture,
and foam velocity.
PCA components

(control inputs,
process outputs),

quadratic cost
function,

Euclidean distance
(ED) between the
target foam image

features and
control results,
histogram bins,

test samples, and
training data

The A-NNARX model
improved the qualified

ratio by 0.1666 compared
to manual control,

achieved better
performance in terms of
Euclidean distance, and
increased the qualified

ratio under expert control
from 0.7500 to 0.8194

while decreasing the MAE
error by 0.1384. A

weight-level
regularization method

improved the capacity for
deformation evaluation.

Ai et al. [25] and Aldrich et al. [23] discuss various aspects of froth flotation in the
mining industry, including control strategies, machine vision through image analysis,
and machine learning techniques for classifying froth structures. Moolman et al. [44]
and Zhang et al. [53] include the use of digital image processing techniques to extract
features from froths, the development of models to simulate the relationship between the
reagent dosage and froth surface appearance, and the use of machine vision and predictive
modelling to control the process. The papers provide numeric results and highlight the
potential for improved process control and optimisation in flotation plants. Ali et al. [50],
Fu et al. [31], and Ai et al. [22] discuss the use of artificial intelligence models to predict
the flotation behaviour of fine high-ash coal in the presence of a hybrid ash depressant,
the effect of particle size and flotation time on magnesite flotation, a set-point adaptive
optimisation for the antimony flotation process applying an ANN soft sensor to estimate
the feed grade online, and a FAR-based set-point generator to adjust the set-points of the
image features. Zhang et al. [54] research an adaptive modelling method for industrial
processes specifically in the context of froth flotation reagent control. The method involves
an incremental learning approach to update the process model and preserve performance on
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old patterns while accommodating new process “excitation” patterns. The adaptive process
model is then used in a nonlinear predictive control strategy for flotation reagent control.
Ai et al. [25] provide an approach that involves fuzzy association setpoint calculation and
offline Q-learning-based reagent control in froth flotation processes, which can improve
the efficiency and effectiveness of industrial processes. Finally, Shean et al. [52] present
a dynamic model for predicting changes in pulp height in aerated slurry tanks in froth
flotation specifically. The model is developed and validated through the use of experimental
data, which includes measurements of bubble size distributions and air flow.

The findings can be categorised into two groups when evaluated in relation to the re-
sponse variable: flotation process optimisation and bubble size distribution. Chen et al. [46],
Ramasamy et al. [45], Cortés et al. [47], and Ali et al. [50] discuss the use of artificial intel-
ligence and model predictive control to optimise and improve the efficiency of mineral
processing and flotation processes. These studies demonstrate the potential of these tech-
nologies to improve process control and optimisation, leading to increased profitability.
Riquelme et al. [49] present a new technique for identifying and measuring bubble size
distribution (BSD) in flotation columns using image processing and a parametric method.
The circular Hough transform (CHT) is used to detect bubbles in the images, and a log-
normal distribution is used to estimate the BSD. A non-linear Wiener model is developed
to explain the dynamic behaviour of the BSD parameters. The results show that the CHT
method is superior to other methods in detecting clustered bubbles, and the estimated
number of bubbles is similar to what is obtained with a visual inspection. Another study,
similar to the one developed by Moolman et al. [44], seeks to establish patterns from digital
image processing, specifically using the spatial grey level dependence matrix (SGLDM)
and neighbouring grey level dependence matrix (NGLDM) methods, to extract features
from digitised images of froths in a copper flotation plant. The extracted features can be
used to identify various process phenomena in the plant and develop control strategies for
flotation plants. The paper also discusses the significance of froth appearance in flotation
processes and the potential for better control of a plant through a more accurate and sys-
tematic interpretation of the physical features of the froth phase. A neural network was
used to classify different froth structures based on the extracted features, and the study
demonstrated the potential of neural networks for pattern recognition in complex processes.
If an analysis of the variables included in these investigations is conducted, it is feasible to
establish certain considerations:

(a) Flotation performance variables: These include parameters such as float recovery,
total copper recovery, acid-insoluble copper recovery, and concentrate and tail grades.
These variables are used to evaluate the effectiveness of different control strategies
and technologies in improving flotation performance.

(b) Speed rate: An important parameter in flotation circuits, as it affects the residence
time of particles in the circuit and can impact flotation performance. Operator control
and MPC velocity control show the impact of different control strategies.

(c) Bubble size and gas holdup: These variables are important in understanding the
behaviour of froth flotation systems, as they impact froth stability, mass pull, and
flotation performance. The relationship between the bubble size and air rate can be
used to predict changes in the pulp height.

(d) Reagent dosage: Reagents are used in flotation circuits to promote particle–bubble
attachment and improve flotation performance. A relationship exists between the
reagent dosage and froth surface appearance, and machine vision and predictive
modelling can be used to control reagent dosage.

(e) Advanced measurement technologies: The use of advanced measurement technolo-
gies, such as image processing, X-ray fluorescence, and diffused reflective spec-
troscopy, improves the measurement and control of key variables in mineral process-
ing operations. These technologies enable the more accurate and reliable measurement
of parameters such as the Cu grade, froth velocity, and concentrate and tail grades.
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From the analysis, artificial intelligence models have shown promising results in pre-
dicting flotation behaviour and classifying froth structures. For example, Chen et al. [46]
show that decision tree methods and artificial neural networks can distinguish between
froth features that are difficult to discern with the naked eye, with an overall classification
accuracy of approximately 92.5% for copper flotation froths and 96% for platinum flotation
froths. Similarly, Ramasamy et al. [45] show that Mamdani fuzzy logic (MFL) models
performed the best among all the models tested for predicting the performance of the
coal flotation process, with R-squared values of 0.9483 and 0.9243 for the training and
testing phases, respectively, when predicting the froth ash content. Advanced measure-
ment technologies, such as image processing, X-ray fluorescence, and diffused reflective
spectroscopy, have shown promise in improving the measurement and control of key
variables in mineral processing operations. For example, Brooks et al. [21] discuss the
implementation of advanced technologies, including image processing, X-ray fluorescence,
diffused reflective spectroscopy, and cascaded model predictive control (MPC), to optimise
a copper roughing circuit. The results show improved process stability and increased
copper recovery compared to previous control methods.

Model predictive control (MPC) has shown promise in optimising mineral processing
operations and improving plant performance. Zhang et al. [54] provide an adaptive mod-
elling method for industrial processes with a focus on froth flotation reagent control. The
method employs an incremental learning strategy to update the process model and main-
tain performance in existing patterns while tolerating new process “excitation” patterns.
The adaptive process model is then applied to a nonlinear model of predictive control.
Experiments based on historical data and in a real-world lead–zinc froth flotation plant
show promising results for practical application. The reagents used in the flotation process
aim to change the surface properties of the mineral with a certain degree of release [15],
and the hydrophobic properties cause them to separate from each other; then, they are
contained in the pulp and selectively adhere to bubbles [79]. The relationship between
the foam structure that develops on the pulp surface and the efficacy of the flotation pro-
cess, namely in terms of the mineral grade and recovery, has been established in previous
research [48]. By analysing commonalities between the studies, it is possible to identify
that the use of advanced technologies and control strategies can lead to significant im-
provements in plant performance, including increased total and insoluble Cu recovery.
Advanced measurement technologies such as image processing, X-ray fluorescence, and
diffused reflective spectroscopy can enable more accurate and reliable measurements of
key control parameters, such as the Cu grade, froth velocity, and concentrate and tail
grades. The application of machine learning and artificial intelligence models can be used
to predict flotation behaviour and classify froth structures, leading to improved control and
optimisation of flotation processes.

Model predictive control (MPC) approaches have the potential to enhance the precision
of control in the roughing circuit, enhance the stability of the float bank, and increase the
recovery and grade. Froth image analysis has the potential to significantly improve process
control and optimisation in flotation plants, but further research is needed to assess the
predictability of froth grade from froth image features. These antecedents indicate that the
approach developed in the soft computing application focuses more on the optimisation
and control of the variables of the processes or on the process itself, but not on the control
of the foam of a flotation process, since its structure can reflect the floating behaviour,
indicating both the grade and the recovery [48]. In the MPC, the control signal is minimised
in such a way that its squared error is reduced at each instant of time. What makes this
model attractive are its algorithms since they have the natural ability to consider imposed
technological and process constants as input and output values [80]. An indispensable
part of this model is the use of algorithms from a dynamic model to predict the output
values of a system based on past and current values, as well as future control signals. The
development of this principle is complex to address in industrial systems, requires a broad
knowledge of the physicochemical phenomena involved, and includes the execution of
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information from experiments that is exhaustive and sufficient to identify the parameters
that are key in the process [58]. On the other hand, an MPC can be constructed using
historical data, making this type of model more convenient than kinetic models [81]. For
example, an artificial neural network of two phases was established by Sun et al. [82], in
which one phase is used to derive and create a nominal model of a flotation process based
on categories that do not follow an intrinsic classification and a second phase is designated
to prevail against discordance with the nominal model. To achieve finite time control for a
class of non-linear systems in this second phase, a radial basis function was implemented
to handle the saturation of input variables that could occur and thereby generate constant
error traceability.

Authors such as Kallioinen et al. [83], Harbort et al. [84], and Carr et al. [85] identified
that the sizes of the flotation cells would increase their volume, with the main benefits
being a reduction in capital expenditure and operating costs, lower energy consumption
per cubic metre, a lower amount of instrumentation, and facilitation of the control of each
cell. The use of advanced control at this stage is of great interest due to its high performance
in terms of predictability and data analysis in the representation of complex processes.
With this, an advanced control strategy can be implemented to achieve adequate reagent
control where the model can be updated as the base data acquires new monitoring data
using a model predictive control strategy [86]. This will significantly impair the prediction
performance when a dynamic model is used [87]. The adaptive model technique has the
potential to solve this problem by maintaining the performance of old data and keeping the
dynamic model updated with the new “excitation” patterns based on the new measured
data [88]. Rosenfeld et al. [89] employed a methodology consisting of four steps: training,
data tuning (finetuning), retraining, and incremental learning. This strategy involved the
integration of data training and self-learning approaches.

Therefore, an incremental learning method is an interesting alternative which seeks
to update industrial process models based on neural networks. Unlike traditional incre-
mental learning, where the discrepancy or restriction between an original and updated
model is measured by the “deformation” of all hidden networks, the deformation of the
last hidden layer of the neural network is concentrated. Furthermore, a weight regular-
isation method is designed for the last hidden layer of the neural network to show the
performance capacity through strain evaluations. Ultimately, the foam flotation process,
which exhibits significant inconsistencies, is controlled by the implementation of predictive
control procedures utilising an empirically derived model that is continuously updated in
an incremental manner.

2.6. Applications of Soft Computing in the Hydrometallurgy Stage

In the context of hydrometallurgical processes, various techniques have been em-
ployed to enhance the efficiency and control of the process. Methods such as artificial
neural networks and multiple linear regression, data-driven model predictive control,
dynamic process simulators, and fuzzy parameter self-tuning PID control algorithms have
been implemented in the process, which includes leaching, column leaching, and solvent
extraction (Table 5). Azizi et al. [57] and Komulainen et al. [90] use mechanistic models
to explain how copper moves from the watery phase to the organic phase during the
extraction process. The first study places emphasis on modelling the settler hydrodynamics,
while the second one presents a dynamic process simulator for copper solvent extraction
plants using mixer–settlers. Both studies report good agreement between simulations and
measurements, indicating that the mechanistic models accurately describe the process
trends. Komulainen et al. [90] emphasise the importance of parameter adaptation for
modelling accuracy, especially for efficiency parameters. Gao et al. [58] use ANN to predict
gold recovery and thiourea (TU) consumption during the leaching process. The results
show a high prediction accuracy for the trained model, with a minimum absolute error
of gold recovery varying from 1.46% to 3.45% and a prediction accuracy between 94.46%
and 98.06%. The absolute errors of TU consumption varied from 0.079 to 0.428 kg/t, and
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the accuracy of the predictions was between 95.15% and 99.20%. As previously stated,
the variables selected for model generation are part of the regular monitoring that is car-
ried out in operation, which includes observation of the copper concentration [57,58,90],
temperature [57,58], leaching time [58,90], and pH [58,90].

Table 5. Characteristics of studies applied in mineral hydrometallurgical processes.

Paper Problematic Method Data Used Specific Variables Results

Komulainen
et al. [90]

Developing a
dynamic process

simulator for
copper solvent

extraction plants

Mechanistic
models for MPC

One month of
operating data

from an
industrial copper

solvent
extraction

process

Input variables: PLS
concentration, lean

electrolyte
concentration and rate,
and flow rates. Output
variables: Loaded and

barren organic
concentrations and
rich electrolyte and

raffinate
concentrations

Mechanistic models
accurately describe the
SX process trends. The
mean residual is well
below 2% for organics

and rich electrolyte and
around 6% for raffinates,
which is considered very

good considering the
poor measurement
accuracy of these

streams

Moreno et al.
[55]

Developing a
dynamic model for
mixer–settler units
used in the solvent

extraction (SX)
process of copper

plants

Dynamic
modelling for

MPC

Copper
concentration,

pH, SX operation
variables,

equilibrium
isotherm

calculations, and
mass transfer
expressions

Input variables:
Aqueous inlet flowrate,
pH, Cu+2 aqueous and
organic inlet, organic
inlet flowrate, mixer

volume, settler
volume, and free

acidity in electrolyte.
Output variables:

Volumes of phases in
the mixer, flowrates at
the mixer exit, Cu+2 in
aqueous phase at the
mixer exit, and Cu+2

in organic phase at the
mixer exit

By incorporating time
delay and flexible model

fitting parameters, a
better fitting settler
model was found,

accurately reproducing
changes in SX. The

relative mean squared
errors for outlet copper

concentrations in the
extraction unit were

0.03% (aqueous phase)
and 6.76% (organic

phase), while for the
stripping unit they were
0.07% (aqueous phase)

and 2.89% (organic
phase).

Pang et al.
[56]

Improving control
performance in

leaching rare
earths using a

self-tuning PID
control algorithm

Fuzzy parameter
self-tuning PID

control algorithm
Simulation data

pH and element
contents in solution.

Proportional,
integration, and

differential adjustment
factors

Simulation results show
that the fuzzy parameter
self-tuning PID control
algorithm outperforms
traditional PID control
algorithms in terms of
control performance,
response time, and

accuracy. A relationship
between the pH value
and the amount of the

initial solution is
established
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Table 5. Cont.

Paper Problematic Method Data Used Specific Variables Results

Azizi et al.
[57]

Predicting gold
recovery in the

cyanidation
process

ANN and MLR
Cyanide leaching

circuit of gold
mine

Input includes pH,
solid percentage,

NaCN concentration,
particle size and

leaching time. Output:
Au recovery

ANN provides efficient
and cost-effective, with

highly accurate
predictions of 0.556 for

the training and 0.67
compared to MLR.
Leaching time and

particle size are the most
important factors

affecting gold extraction.

Hoseinian
et al. [33]

Optimization of
the copper oxide
column leaching

process

ANN and
GANN

A database of
120 sets of

copper leaching
column tests; 96
sets were used to
train the network
and 24 sets were
used to test the

model

Particle size, column
height, leaching time,
and acid flow rates

Copper recovery has an
inverse relation with the

column height and
particle size and a direct

relation with the
leaching time and the

acid flow rate. The
GANN model is more
efficient than the ANN
model for Cu recovery

prediction with
reasonable accuracy. The

algorithm can be
incorporated in the
training phase of a

network to improve
prediction.

Gao et al.
[58]

Developing a
data-driven model
predictive control

approach for
dynamic systems

Data-driven
MPC approach
that combines

modified partial
least squares

(PLS) and MPC

Multiple input
and output

variables from
laboratory tests

Input variables: Input
flows and heat to the

tank. Output variables:
Cooling water
temperature,
atmospheric

temperature, steady
state temperature, and

steady state level

The proposed MPC
approach has high

prediction precision and
an ability to cope with

dynamics in the process,
outperforming

traditional MPC and
MPC in a traditional PLS

framework. This was
tested on a continuous

stirred tank heater
system

Xu et al. [59]

Using thiourea as
an alternative to
cyanide for gold

leaching from
refractory ores

Grey relational
analysis and

artificial neural
network models

Results of
leaching

experiments
conducted on a

high-arsenic gold
concentrate

using A.
ferrooxidans and
TU as a leaching

agent

Leaching time, initial
pH, temperature, TU

dosage, stirring speed,
and ferric iron
concentration

GRA and ANN models
can efficiently reflect
practice and provide

effective suggestions for
controlling optimum

parameters in the
leaching process. The
absolute errors of gold

recovery varied by 2.5%
and the accuracy of the
predictions was around
96%. The accuracy of the

other predictions was
around 97%.

There are specific variables according to the reality of the process and operating
conditions, including aqueous and organic phases [57,90], ferric iron concentrations [58],
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and settler hydrodynamics [57]. Based on existing studies, there is an efficient and cost-
effective method [55] with high prediction accuracy and improved control performance
using artificial neural networks (ANN) and genetic algorithm neural networks (GANN),
as presented by Xu et al. [59]. For example, Hoseinian et al. [33] report that the GANN
model is more efficient than the ANN model for predicting copper recovery in column
leaching processes. Gao et al. [58] establish an ANN model to predict gold recovery
and TU consumption with high prediction accuracy, and Pang et al. [56] demonstrate
superior control performance, reaction time, and accuracy compared to the classic PID
control algorithm.

From the studies applied to mineral hydrometallurgical processes, the most relevant
variables that have been identified include:

(a) pH: This variable plays a significant role in controlling the behaviour of chemical
reactions. It is an important variable in the leaching process as it can affect the rate of
element recovery.

(b) Particle size: Refers to the size of the particles of the element of interest in the ore. It is
an important factor that can affect the efficiency of the leaching process.

(c) Temperature: A key variable that affects the efficiency and kinetics of chemical reac-
tions, directly affecting the rate of element recovery

(d) Time: Refers to the duration of processes such as leaching. It is a critical variable as it
determines the amount of time available for the element of interest to dissolve into
the leaching solution.

(e) Element of interest’s grade: The grade or initial quantity of the element to recover is a
relevant base variable considered in predicting models for copper and gold recovery.
This variable can be complemented by the change in element concentration in solution
during the process.

(f) Reactive consumption: Reagents are used to increase the kinetics of chemical reac-
tions. Here, the consumption of thiourea or agents such as ferric ions can impact the
recovery efficiency.

(g) Solid percentage: Corresponds to the proportion of solid material in a solution. It
is a relevant parameter in solid–liquid processes such as stirring leaching that can
influence the efficiency.

(h) Stirring speed: Refers to the speed at which the leaching solution is agitated. It is
a parameter that can influence the contact between the particles of the element of
interest and the leaching solution, affecting the recovery rate.

2.7. Applications of Soft Computing in the Pyrometallurgy Stages

In high-temperature metallurgical processes such as copper losses, slag monitoring,
silicon content prediction, and matte grade optimisation, soft computing methods such
as MPC, ANN, CNN, FL, dynamic modelling and simulation, hybrid intelligent models
(combining fuzzy logic, neural networks, and other techniques), feature selection methods
based on mutual information, genetic algorithms, and other techniques have been applied,
improving the efficiency, productivity, and cost-effectiveness of metallurgical processes
(Table 6). As previously mentioned, the slag compositions have a notable influence on
the recovery of the element of interest, such as gold or copper. These methods are used
to develop and validate models for predicting matte grade in the copper flash smelting
process or hot metal quality in a blast furnace. The base variables identified in this type
of process include temperature, pressure, chemical composition, flow rate, time, and pH.
Some specific variables are used depending on the pyrometallurgical process being studied,
such as the grade, element content, and slag basicity and volume. From the studies, it was
identified that soft computing applications improve accuracy and efficiency in processes
such as the prediction of steel quality or the optimisation of blast furnace ironmaking.
Additionally, the importance of feature selection is highlighted in developing accurate
models and the ways ensemble learning methods can better cope with complex variations
in industrial processes compared to traditional machine learning methods.
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Table 6. Characteristics of studies applied in mineral pyrometallurgical processes.

Paper Problematic Method Data Used Specific Variables Results

Gui et al.
[60]

Predicting matte
grade in copper
flash smelting

Integrating a
multiphase and

multi-component
model with a fuzzy

model

A total of 154
groups of

industrial data
collected from

industrial
production

Matte grade, copper
concentrate content,

pyrite content, S
content, Fe content,
SiO2 content, CaO

content, oxygen
volume, blast volume

Higher prediction
precision, stronger

generalization ability,
reduced mean square

root error, and decreased
training time.

Deng et al.
[61]

Incremental
learning

approach for
accurate system

modelling

Dynamic fuzzy
neural network

(D-FL) using
incremental

learning algorithm
(ILA)

Four datasets:
Chaotic

Mackey–Glass
time series,

Box–Jenkins gas
furnace data,
displacement

prediction in the
dam, and

ionosphere delay
prediction for the

GPS satellite

Input variables: Air
temperature, reservoir
water level, and dam

run time. Output
variable: Displacement

of point L3H291R.
Other variables: Epoch

number, times,
residual error, MAPE,

RMSE, and MAE

Good performance in
modelling accuracy,

learning convergence,
and computation time.

D. Liu et al.
[28]

Estimation of
gold content in

slag

ANN and
nonlinear
regression

Small-scale
experiments using

a specific slag
composition

system to simulate
industrial

processes for gold
extraction

Independent variables:
Compositions of the

soda–borax–silica
glass–salt slag system.
Dependent variable:
Gold content in slag

The ANN method
produces better

estimations of gold
content with higher

precision compared to
the traditional

regression method.

J. Liu et al.
[62]

Predicting matte
grade in the
copper flash

smelting process

MPC application
based in dynamic

mass balances with
equilibrium
relationships

Data collected at a
copper smelter for

30 days

Matte grade, oxygen
partial pressure,

temperature,
desulfurization ratio,

Cu concentration,
species mass balance
(Cu, Fe, S, O2, SiO2,
CaO, Al2O3, MgO),

operational
parameters, slag Cu
losses, mechanical

entrainment droplets
of matte and dissolved

Cu

The model is effective in
providing guidance for
controlling the copper
flash smelting process

with a maximum
relative error of 3.3%

and an average relative
error of 0.54%.

Regression equations for
predicting the ratio of
desulfurization and

copper in slag were also
presented.

Savic et al.
[63]

Predicting
copper losses in
silicate slag from

the sulphide
concentrate

smelting process

MLR analysis,
ANN, and ANFIS

Industrial data
from a sulphide

copper concentrate
smelting process

Input variables: The
percentage of copper,
iron, and silica in the

concentrate,
percentage of coke and
flux in the charge, and
oxygen amount in the

process. Output
variable: Cu content in

silicate slag

The ANFIS approach
was found to be the

most accurate, with a
coefficient of

determination of 0.989
in the training stage and
0.719 in the testing stage.
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Table 6. Cont.

Paper Problematic Method Data Used Specific Variables Results

Ghea
Puspita

et al. [64]

Optimization of
the reduction

process of
saprolite ore
composites

ANN

Results of the
reduction process

of saprolite ore
composites

collected from
extractive

metallurgical
laboratories

Ratio of coal (%),
process temperature
(◦C), time duration
(hours), composite

type

An optimal factor
combination for the
reduction process is
established by ANN

(composite SB15Ca10P2,
1200 ◦C and duration of
3 h). A validation of the

results was possible
through Fe, Al, and Si

mass composition
comparisons.

Cardoso
et al. [65]

Predicting
production and

quality control of
hot metal in a
blast furnace

ANN model based
on a committee

machine

Data obtained
from the operation
of a blast furnace
at an industrial

steelmaker

Input variables: Fuel,
air volume,

temperature. Output
variables: Iron oxide,

coke

Developed an artificial
neural network model

with a general
correlation of 91.1%.

Qian et al.
[66]

Anomaly
detection in a
steelmaking
process with
multichannel

profiles

Functional
derivative MPC

support with
vector data
description

Simulated data
and industrial data
from a steelmaking

process

Multichannel profiles
of the BOF

steelmaking process

The proposed method
outperforms all the

compared models in
terms of the anomaly

detection rate. The
method is time-efficient
for online monitoring for
industrial processes with
a sampling frequency of

no more than 96 Hz.

Cardoso
et al. [67]

Predicting silicon
content in hot

metal production
in blast furnaces

ANN model with
sigmoid activation
function and the

Levenberg–
Marquardt
algorithm

A database of
82,500 data points

from 1100
operational days

A total of 75 input
variables classified

into different groups
(blow air, temperature,

top gas, others) and
one output: silicon

content

A neural network model
with 30 hidden neurons

outperformed other
models in predicting
silicon content in hot

metal production,
indicating that big data
and database treatment
can enhance modelling

accuracy.

Wang et al.
[68]

Predicting the
silicon content in

hot metal in a
blast furnace

MPC based on a
multiobjective
evolutionary

algorithm (MOEA)
and evolutionary
feature selection

(EFS)

Benchmark and
actual industrial

datasets

Twenty input features
including former

silicon content, hot air
pressure, oxygen

enrichment rate, hot
air temperature, set

amount of pulverised
coal injection, blast
kinetic energy, gas

permeability, and dry
dust removal inlet

temperature

The MOENE-EFS
method outperforms
other ensemble soft

computing methods for
silicon content
prediction. The

proposed
ELM_ENSEMBLE

method is significantly
superior to the two

commonly used linear
ensemble methods. The

MOENE-EFS method
achieves better

performance than the
MOEE-ELM, EL.

NSDE1-ANN, and
CNE-ELM methods.
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Table 6. Cont.

Paper Problematic Method Data Used Specific Variables Results

Yang et al.
[69]

Filling missing
data in a blast

furnace gas
system of the
steel industry

Deep
convolutional

network (D-CNN)

Operation data
from an iron and
steel operation

industry

Data related to the
industrial blast

furnace gas system
operation data,

specifically missing
data from the hot blast
stove in the gas system

The proposed method
has higher data filling
accuracy than existing
methods and conforms

to the actual distribution
of samples. The network
can accurately fill in the

high proportion of
random missing data.

Zhao et al.
[70]

Develop an
optimised

control model for
the matte grade

in the copper
smelting process

ANN and GA-BP
neural network

prediction model

A dataset with 910
samples obtained

from industrial
operation

Input variables: S, Fe,
SiO2, and CaO content
in copper concentrate,
oxygen volume, blast

volume, and flux
amount. Output
variable: Term of

matte grade

The ANN model was
more accurate, with a
matte-grade absolute

error simulation of
0.51%, which is 56.41%

lower than the
matte-grade BP neural

network prediction
model.

The method applied depends on the specific problem and the characteristics of the
data available. Dynamic modelling and simulation can be valuable approaches in situations
where a comprehensive understanding of the fundamental physical processes is required,
and there are established mathematical models that can serve as a foundation for simulation.
The use of ANN is typically associated with vast amounts of available data and intricate
correlations between input and output variables that traditional statistical models cannot
simply represent. When dealing with large datasets with many variables, feature selection
methods can help identify the most relevant variables for modelling purposes, reduce
computational complexity, and improve model accuracy. Using a hybrid model may be
an option when there are complex relationships between input and output variables that
cannot be easily captured by a single model.

In the case of ANN application, different studies were analysed, where Gui et al. [60]
generated a model with better estimations and higher precision compared to traditional
regression models, where the root mean square error (RMSE) was reduced by 19.23% and
the training decreased from 22.8 to 12.4 s. Using the integrated model, the RMSE is further
decreased by 23.80%. These experiments were organised using an orthogonal design of
the four-factor regression of the second degree, and the corresponding gold content in
each experiment was measured. Ghea Puspita et al. [64] used an ANN method to optimise
the reduction process of saprolite ore composites, and an optimal factor combination
was found. The results were validated through the chemical compositions (mass%) of
Fe, Al, and Si. Savic et al. [63] used statistical modelling approaches such as multiple
linear regression analysis, artificial neural networks, and an adaptive network-based fuzzy
inference system (ANFIS), where this approach was found to be the most accurate in
predicting copper losses in the silicate slag of the sulphur concentrate smelting process,
with a coefficient of determination of 0.989 in the training stage and 0.719 in the testing
stage. J. Liu et al. [62], Cardoso et al. [67], and D. Liu et al. [28] developed an artificial neural
network model to predict the production and quality control of hot metal in a blast furnace.
The results show that the neural model is a useful tool to support the operation of an iron
blast furnace, where more than 90% of predictive values fall into the range of 0.5% to 2%,
which is consistent with the practical production process. Through this, high levels of
mathematical correlation demonstrate the effectiveness of the model in predicting sulphur
and phosphorus. Regarding the application of dynamic modelling and simulations for
predicting matte grades, Zhao et al. [70] found a BP neural network prediction model that,
using a sample amount of 910 data points (900 for training and 10 for testing), is effective
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in providing guidance for controlling the copper flash smelting process with a maximum
relative error of 3.3% and an average relative error of 0.54%. Yang et al. [69] focus on the
same process, developing and validate a dynamic model where the outcomes demonstrate
that the hybrid intelligent model proposed in these publications is effective in predicting
matte grade with high accuracy and reliability.

Wang et al. [68] proposed a nonlinear ensemble model based on a multi-objective
evolutionary algorithm (MOEA) and evolutionary feature selection (EFS) to predict the
silicon content in hot metal, which is an important indicator for judging the operating status
of a blast furnace and achieved significantly better and more stable prediction performance.

Haar wavelet decomposition, PCA, and Mahalanobis distance with functional support
vector data description (SVDD) are used by Qian et al. [66] to predict the silicon content of
hot metal. The results show that the proposed method outperforms other methods in the
literature for silicon content prediction. Wang et al. [68] and Deng et al. [61] featured the
selection of methods for data-driven modelling of complex pyrometallurgical processes.
These studies show that these methods can effectively select relevant features from large
datasets, improving the accuracy and efficiency of data-driven models.

From the studies applied to mineral pyrometallurgical processes, the most relevant
variables that have been identified include:

(a) Blowing air variables: This includes parameters such as the blowing flow rate, air-
speed, and oxygen enrichment.

(b) Top gas variables: These variables are related to nitrogen and oxygen flow rates.
(c) Temperature variables: These are related to parameters such as flame temperature

and hot metal temperature.
(d) Fuel variables: These include parameters such as coke and pulverised coal consump-

tion rates.
(e) Ore variables: These variables are related to parameters such as pellet, sinter, and iron

ore consumption rates.
(f) Hot metal variables: These variables are related to the content of hot metal in produc-

tion and may include carbon, silicon, manganese, and phosphorus.
(g) Slag variables: These variables are related to the production of slag and include slag

basicity and volume.

3. Performance of Soft Computing Applied in Mineral Extraction and Processing

Figure 5 illustrates a comparison of the soft computing techniques employed in the
stages analysed early and based on the total number of publications. The performance of
each method is evaluated based on four criteria: accuracy, reliability, correlation values,
and computational efficiency. The scores are based on accuracy values, with higher scores
indicating better accuracy; reliability scores are based on mean residuals and standard
deviations in the papers; correlation scores are based on correlation coefficients (R2); and
computational efficiency scores are based on the characteristics and advantages of the
methods in the papers.

Across the five stages analysed, convolutional neural networks (CNN) consistently ex-
hibited robust performance, often achieving strong accuracy and reliability in comminution
and flotation processes and exceeding relevant reliability while maintaining competitive
correlation values and computational efficiency. Artificial neural networks (ANN) also
demonstrate strong performance with high accuracy ratios, and they maintain competitive
correlation values and computational efficiency, especially in pyrometallurgical processes.
For hydrometallurgical processes, ANN emerges as the most favourable option, with
relevant accuracy and reliability. Fuzzy logic (FL) excels in accuracy in mining stages,
showcasing its capability, but it shows a drop in reliability if it is applied in flotation stages.
Model predictive control (MPC) and expert systems (EXSs) display moderate to good
performance across all the processes, reflecting their reliability across different situations
and data variables. Random forests (RFs) show variable performance, with their highest
accuracy at 60% in flotation stages and fluctuating reliability and correlation values, indi-
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cating their versatility but also their inconsistency. The artificial neural network (ANN)
method appears to be a common method that can be applied in all stages, performing
well in the criteria for all stages except for hydrometallurgical processes, where the CNN
method performs slightly better in terms of accuracy and reliability and FL stands out as a
versatile choice.
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4. Proposed Approach for the Application of Soft Computing in Waste Disposal in
Mineral Extraction and Processing

One critical challenge to ensuring medium- and long-term operation is to achieve the
adequate disposal and management of mining tailings (Residues from sulphide mineral
flotation composed of material without the mineral of interest and water that are disposed
in specific deposits known as TSF) and spent heap leaching spoils (Material that remains as a
residue from the heap leaching process once all of the mineral of interest has been recovered).
This has been declared as critical within the sustainability and responsible operation
programs by the European Union to ensure proper management to avoid damaging the
environment [74,91]. The incorporation of better technology for tailing storage facilities
(TSFs) and spent heap leaching spoils dumps (leaching waste deposit, LWD) and the
development of mechanisms for the measurement of parameters and variables are the final
objective in controlling physical and chemical stability monitoring systems and establishing
a robust understanding of the makeup and water balance of the process. In Chile, copper
production as a concentrate will reach 89.9% in the year 2027 due to the depletion of oxidised
copper minerals [74], while the use of continental water consumption exceeds 0.36 m3/ton
of ore, with the consumption expected to rise further [92]. The application of soft computing
to waste disposal may provide quality, reliable, and real-time information on the waste ore
and tailings according to the operational needs. In addition, authorities and communities
may benefit from the accessibility of this information, to improve, make transparent, and
strengthen the ties between the industry and the communities, taking an important step to
comply with national legislation and to improve the sustainability culture.

The proper management and ultimate disposal of these wastes is critical to the continu-
ity of the profit chain and are linked to a successful storage operation, adequate use of land,
security, and, in a relevant way, to the environmental commitment of the mining operation.
In countries with a mining tradition, such as Chile [93], Finland [94], and Canada [95],
regulations and guides provide information to design, install, and manage waste rock
dumps and TSFs focused on the beginning of the deposit creation, leaving the subsequent
monitoring and control of these deposits to their own criteria against structural behaviour,
physicochemical stabilization, and mitigation of possible failures. Industrial practices and
the changes that take place in a dynamic operational environment mean that on many
occasions the original design is strongly modified for safety or even does not reach the
useful life that was originally planned. The stability of a tailings storage facility (TSF) can
be influenced by [96,97]:

• Operating factors (input material, deposition rate, geometrical and geotechnical con-
trols such as humidity and compaction).

• Deposit location (climate and geological factors that include the seismicity, ground
foundation slope, and confinement of the land degree)

• Deposit type selected (type of the TSF, geometric configuration including height,
volume, and slope angle)

Establishing the use of soft computing to advance the “mining digitalization” of pro-
cesses such as the monitoring of mining tailings and spent heap leaching spoils transport
and deposition is a solution that could be non-invasive and consistently obtain a higher
quality control and constant evolutionary knowledge by identifying the most influential
variables in these processes, minimising possible prediction errors. A dependency on the
tailings and spent heap leaching spoils disposal fluency behaviour can be established based
on the dynamic mineralogy of the ore and rheological and permeability characteristics. In
the case of tailings, the presence of specific clays and changes in the solid concentration in
the thickener discharge cause changes in the TSF behaviour, modifying the established area
and volume of the disposal, changing the functionality and possibly creating environmental
impacts. The evaluation of these parameters with soft computing enables correlation and
identification of a behavioural pattern. This implementation can also serve as an update
for operational decisions related to environmental demands in countries with a mining
tradition, such as Chile and Finland. These countries have recognised the significance of
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valuing existing data and conducting thorough analysis in order to inform operational
decision-making processes. In this approach, we establish the relevance of pulp characteri-
zation as a part of a predictive model of fluency behaviour for tailings and leaching waste
ore generated from variables that are currently measured at mining sites.

A prior analysis must be generated to help identify the impact generated by the
conditions used in the operation and that will translate into the tailings and spent heap
leaching spoils behaviour. An alternative used to identify these variables corresponds to
the application of a correlation, and thereby establishes the combination of variables to
be used with soft computing tools such as ANN or CNN. Then, the parameters of the
new empirical model are adjusted in a very precise way, using only the new measurement
data from the new model [98]. However, a low level of learning is achieved using this
method, since “catastrophic forgetting” can occur, which means that while fine tuning is
established in the new model with new data, the historical data performance is drastically
impaired due to the discrepancies between the old and new data sets [99]. Retraining also
uses the weights from the existing empirical model and uses it to create a new empirical
model; unlike data fitting, the parameters of the new empirical model are precisely adjusted
using historical data and current data from the new model from a simultaneously [100].
This scope can solve the “catastrophic forgetting”; however, this method needs important
periods of time in order to update the data continuously [61]. This analysis also raises the
question of whether, if a robust database could be established with data from different
mining operations, it could find common ground between the studied cases that could be
correlated between the different operations considering critical mineralogical factors such
as the presence of clays and changes in rheological behaviour due to the medium used,
such as fresh water or sea water. Naturally, this presents the potential to manage different
perspectives to find the right path in the soft computing application. For example, the
application of an incremental method aims for the “excitation” patterns of a new process to
be accommodated without compromising the performance of the patterns of a process with
historical data. In general, this type of method adapts new patterns by designating new
constraints or constant rules to modify the adjustable parameters of the updated model. It
is more efficient than a retraining method because the empirical model does not need to be
trained on all historical data [101].

The use of incremental learning as a part of an artificial neural network can be a real
option considering the flexibility in the quantity and interaction of the input nodes that
can be applied, but also considering the time and application capacity given the available
data and the operation monitoring frequency used at an industrial level. An opportunity
to use ANN for operational decision-making lies in the existing monitoring capacity of the
variables related to the mining waste operation, access to this information, and how robust
this data is. As part of the analysis, Figure 6 illustrates a proposed database generation
to analyse the most appropriate application of soft computing in the deposition of the
tailings and spent heap leaching spoils. This database will serve as the foundation for
conducting a preliminary stage of weight identification for each variable, followed by
subsequent analysis.

Figure 7 presents an analysis framework that explores potential connections using var-
ious soft computing techniques, including neural networks. This framework incorporates
training, prediction, and confirmation stages.

As is shown, the proposal emphasises the importance of standardising the database
for macroscopic data collection, considering the structure, properties, processes (hydro-
geology and geochemistry), and operation (flows, Cp, disposal) as possible options for
input data modelling. This approach ensures a comprehensive understanding of the pa-
rameters involved. A second aspect explores alternatives for deep learning applications
in advanced control, emphasising the results obtained from the analysis presented in this
publication and including neural networks, SIP model applications, SVR (support vector
regression), stochastic mathematical programming formulation, and principal component
analysis (PCA). These techniques offer different methodologies and approaches to effec-
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tively analysing and controlling the parameters. The third aspect focuses on dependent
modelling generation and highlights critical variables for analysis, evaluation, and predic-
tion. Hydrogeology, operational monitoring and rheology, and geochemistry are identified
as potential options. By taking into account these variables, one can acquire valuable
insights into the interconnectedness among them and make accurate predictions about
future behaviour.
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5. Conclusions

This research provides compelling evidence for the growing adoption of soft comput-
ing as a viable solution in the design, development, and operation of intelligent systems for
various phases of mineral processing and metal extraction operations. Soft computing has
the ability to adapt, learn, and act independently in the mining industry. By considering the
problem at hand, the characteristics of the environment, and the variables involved, it can
develop and compute solutions to complex problems. Given the complex and non-linear
nature of the processes involved, selecting the appropriate type of soft computing method
becomes crucial when considering the various options available, such as artificial neural
networks, expert systems, fuzzy algorithms, and more. These alternatives present interest-
ing opportunities for addressing the complex and multivariable behaviours displayed by
the processes, opening up new avenues for analysis and optimisation.

This publication presents the considerable potential of sophisticated technologies
and tactics in enhancing safety, decision-making processes, and plant performance within
the mining and mineral processing sectors. Fuzzy logic, machine vision, artificial neural
networks, and advanced measurement technologies are among the key tools discussed. The
effectiveness of these approaches is demonstrated in areas such as risk assessment, accident
prediction, process modelling, control performance improvement, prediction accuracy
enhancement, optimal condition determination, and composition estimation. Additionally,
the importance of feature selection, soft computing approach selection, big data utilisation,
and database treatment is emphasised. Further research is suggested in areas such as
froth image analysis, where, thanks to the fact that image acquisition technologies have
been evolving and reducing costs, it is possible to apply soft computing and reliable data
linking to help optimise mineral recovery performance and improve profitability, reduce
operational costs, and enhance real-time monitoring of froth properties. Overall, the in-
tegration of advanced technologies, control strategies, and data-driven approaches holds
great promise for optimising processes, enhancing efficiency, and reducing instability in the
mining industry. On the other hand, as our investigation shows, there is a real possibility
of implementing soft computing in other critical processes for operational continuity in the
mining industry, such as the transport and deposit of tailings and spent heap leaching. We
have successfully identified key variables that are crucial for the successful implementation
of soft computing techniques in various industrial applications. These variables can be ef-
fectively monitored and collected at an industrial level. For comminution stages, important
variables include the feed rate, screen aperture size, and crusher rotor speed. In deposit
studies, variables such as the deposit element grade, tonnage, mining and processing costs,
and metal prices play a significant role. In pyrometallurgical processes, variables such
as the temperature, gas flow rate, and particle size distribution of the feed material are
essential. Additionally, in processes involving froth and leaching, variables such as the
bubble size, froth class, viscosity, pH, temperature, leaching time, and concentrations of
sulfuric acid and copper in the leach solution are critical factors to consider.

The creation of a comprehensive database derived from diverse mining operations
can facilitate the identification of shared characteristics and develop correlations among
essential mineralogical parameters. Incremental learning through artificial neural networks
can aid in operational decision-making. Analysing variables such as hydrogeology, flow,
rheology, and geochemistry can be a good approach to the implementation of this type
of technology for the control of mining waste. Finally, the application of this type of
technology over time does not depend on the application of the tool itself but on the source,
availability, and quality of the data that can be obtained.
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