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Abstract: A recent hydrocarbons discovery in 2021 in the Kawagarh Formation has brought attention
to the significance of sedimentology and specifically diagenesis for understanding and characterizing
the reservoir properties. The diagenetic history and multiscale processes that contributed to diagenesis
were vaguely known. This study aimed to reconstruct various diagenetic phases, paragenetic
sequences, and the interrelationship of these phases in the Kawagarh Formation. The diagenetic
processes were identified and characterized through an integrated methodology utilizing the outcrop,
petrographic, and geochemical analyses. Early calcite cementation was found to occur in the early
stages of marine burial diagenesis involving pore fluid originating from the dissolution of aragonite
in interlayer marl/mudstone beds and reprecipitating as microspar in adjacent limestone beds.
The absence of mechanical compaction in wackstone and mudstone facies and the presence of late
compaction in lithified packstones clearly imply that early calcite cementation occurred prior to
compaction. Dolomitization with stylolites coupled with significant negative oxygen (δ18O) isotope
values implies a fault-related hydrothermal dolomitization model. Uplift introduced the fractures
and low Mg fresh fluids to the system which caused calcitisation in shallow burial settings. The
depleted δ13C and negative δ18O values indicate the mixing of surface-derived waters with hot burial
fluids during the calcitization. This study offers valuable insights into several aspects related to
the formation and the basin itself, including burial depths, fluid influx, and geochemical gradients.
It also sheds light on the evolution of reservoir properties such as porosity and permeability in
dolomitization fronts. Such insights can be used to gain a deeper understanding about the burial
history, basin evaluation, and reservoir characterization for hydrocarbon exploration.

Keywords: Kawagarh Formation; cretacrous; carbonate diagenesis; shallow marine depositional
environment; early calcite cementation; dolomitization; reservoir characterization

1. Introduction

Shallow water carbonates settings are sites where marine life flourishes; thus, they pre-
serve and present excellent depositional and diagenetic records in oceanic environments [1].
Despite the simple mineralogy, carbonate rock poses extremely complex fabric and pore
systems developed under composite diagenetic process [2]. These diagenetic processes are
typically governed by the pore fluids which can significantly alter original depositional
fabric and pore systems of the rock by dissolution, cementation, or mineral replacement.
The chemical composition of pore fluids, the rate of fluid flux, and the temperature and
pressure conditions under which rock-water interactions occur regulate the diagenetic
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processes manipulating texture and porosity of carbonates [2–5]. Such processes mainly
involve dissolution of extant mineral phases and/or precipitation of new mineral phases.
Globally, reservoirs characterization has significantly stressed upon the diagenetic studies
and porosity evolution in carbonate rocks [2,6–8]. Information such as primary rock fab-
ric, porosity types, and timing of porosity development plays a critical role in geological
reservoir models. These models are very important for the prediction of the distribution of
favorable reservoir rock during the hydrocarbon migration [9].

There are three principal carbonate diagenetic environments (meteoric, marine, and
burial) within which porosity development, evolution, and their distribution on the earth’s
surface or in the subsurface can be discussed [4,10–13]. The marine and meteoric environ-
ments commonly associated with near surface and surface environments are also called
eogenetic and telogenetic zones [14]. The marine environments are the main source of car-
bonate deposition where the diagenesis is predominantly influenced by the supersaturated
marine pore fluids. Ideal conditions are present in marine environments for the precip-
itation of calcite cement during the fluid percolation through the pore system [12,14,15].
The precipitation of new mineral phase and/or replacement of existing mineral phase by
enriched fluids can bring unprecedent changes and can produce highly complex carbonate
fabric and pore systems. The meteoric diagenetic environment is generally associated
with the subaerial shallow marine carbonate depositional sequence [12,16]. The meteoric
environments are represented by the zone of dilute waters which are moving at a strong
rate from the vadose zone to the phreatic zone. The vadose zone commonly constitutes
under-saturated states of carbonate mineral species due to the presence of CO2 in meteoric
water [10]. The dissolution of CaCO3 is more active in the vadose zone and it produces
a more depleted zone of CaCO3 which leads to the formation of vugs and cavernous
structures in limestone deposits. Among the subsurface conditions, burial diagenesis is
the most significant that is encountered upon the deep burial of sedimentary deposits
within the earth. It is active beyond near surface environments and marks the mesogenetic
porosity zone [14]. The major diagenetic controlling agent in burial zone environments is
the pressure, temperature, and formation water [12,17,18].

The diagenetic process naturally distributes the various mineral and pore phases
spatially and temporally in such naturally complex patterns making it very difficult to
understand and reconstruct the diagenetic phase. The Late Turonian Kawagarh Formation
exhibits a unique library possessing spectacular marine, sedimentation, diagenetic, climatic,
and tectonic records. Depositional environments and tectonic history have already been
established by [19] and [20] in the Hazara and Kalachitta Range. However, diagenetic
history and meso to micro scale processes drive multiscale diagenetic events, especially
calcitization of lime mud in thick marls, strata bound dolomitization, and dedolomitization
which were vaguely known. The first objective of this study is to find out and discuss the
source and mechanism of early calcite cementation in the Kawagarh Formation, and partic-
ularly in its marls. The second objective is to investigate the stylolite and its relationship
with dolomitization. This work is accomplished by utilizing a highly integrated diagenetic
workflow based on a multiproxy geochemical approach. Each carbonate diagenetic phase
is recognized and characterized through geochemical analyses: optical petrography, atomic
absorption spectroscopy (AAS), and carbon and oxygen isotope. The present study pro-
vides invaluable context for the reconstruction of the history of the shallow ramp carbonates
of the Kawagarh Formation and can serve as a reference for studying and documenting
equivalent carbonate systems.

2. Geological Setting

Attock Hazara Fold and Thrust Belt (AHFTB), which is itself part of the Northwest
Lesser Himalayas, presents a narrow EW trending strip comprised of thick sedimen-
tary package with low grade metamorphic rocks along the hanging wall of the Nathia-
gali Thrust (NGT) in Northern Pakistan [21]. Geologically, it is surrounded by the Pan-
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jal/Kherabad Fault in the north and bordered by the Main Boundary Fault (MBT) in the
south (Figure 1) [19,22–24].
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Figure 1. Geological map of the Hazar and Kala Chitta Basin showing the location of the studied
sections.

Northern Pakistan is comprised of three convergence tectonic elements: the Indian Plate,
the Kohistan-Ladakh Arc (KLA), and the Asian Plate from south to north [23,25–30]. This
collision led to the development of the Himalaya Mountain range along the northern margin
of the Indian Plate. The movement of the Indian Plate northwards caused older rocks to be
thrust over younger strata, resulting in the formation of small fault-bounded blocks including
the Trans Himalaya, Higher Himalaya, Lesser Himalaya, and Sub-Himalaya [31–33]. In
the western Himalayan Basin (HB), the Lesser Himalayas of Pakistan are bounded by the
Hissartang Fault in the north and the Indus River in the west, constituting the southernmost
extension of the Himalayas [34]. The sedimentary succession in the region, from Triassic to
Miocene-Pliocene, is tightly folded and cut by numerous thrust faults [35]. The Jurassic
sedimentation consists of the Datta Formation, Shinawari Formation, and Samana Suk
Formation (Figure 2). The Cretaceous succession includes the Chichali Shale, Lumshiwal
Formation, and Kawagarh Formation. The Chichali Shale contains belemnite and pyrite
and was deposited in anoxic restricted environments when the Indian Plate was separating
from Gondwana [36]. The Kawagarh Formation is mainly comprised of limestone and
marl with subordinate dolomite [20,21,24,37,38] that was deposited over a carbonate ramp
formed due to the subsidence created by the northward drift of the Indian Plate [39].

Paleomagnetic data, zircon dating, and fossils in volcanic sediments suggest Early Cre-
taceous rifting and volcanism because of separation and drifting of the microcontinent and
the opening of a new basin (Neo Tethys) at the northern margin of India [40,41]. Conferring
to the faunal content and ecological attributes, the Kawagarh Formation is deposited in Neo
Tethys under shallow open marine and well oxygenated conditions, suggesting a ramp set-
ting [19,20,38,42]. The deposition initiated with transgressive depositional cycle at the base,
with inner-ramp microfacies overlying the lateritised top of the underlying Lumshiwal
Formation and overlain by mid-ramp and outer ramp microfacies [20,24]. The lateritisation
suggests shallow water conditions and intense weathering induced by regression after the
deposition of the Lumshiwal Formation [24]. This regression also corresponds to the early
Turonian global sea level fall of [43], which partially exposed the Lumshiwal Formation
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sediments. The regression during the late Turonian was followed by a transgression char-
acterized by minor sea level fluctuations until the end of the Cretaceous with a general
deepening upward sequence. The deposition of the Kawagarh Formation ended with the
uplift of carbonate sediments during the Maastrichtian as shown in paleontological data
and the presence of residual deposits of the K-Pc boundary at the top of the Kawagarh
Formation [37,44]. The regional distribution of unconformity-related residual clays over
the top of the Kawagarh Formation in the Attock Hazara Fold and Thrust Belt (AHFTB)
and the complete absence of Upper Cretaceous sediments in the Sub-Himalayas in the
south of the AHFTB suggest a regional event that uplifted these areas at the end of the
Cretaceous [23,27,29,45–50]. The Indian Plate first collided with the KLA at the end of the
Cretaceous or the Cretaceous-Paleocene boundary, terminating the depositional trend of
the Kawagarh Formation due to the regional tectonic settings [23,27,29,45–50]. Generalized
stratigraphic sequences of this study area are provided in Figure 2.
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The Kawagarh Formation is mainly composed of grey to light grey limestone. The
limestone is generally fine grained, thin to thick bedded, and occasionally very thick bedded.
It is dolomitic at places and shows a sandy texture at the basal part. Dolomite is yellowish
brown to rusty brown and pale yellow and at some places exhibits a sandy texture.

3. Materials and Methods

In the current study, we employed an integrated petrographic and geochemical ap-
proach to unravel the complex diagenetic history of the Cretaceous Kawagarh Formation
in the Hazara and Kalachitta regions. Field observations and thin section microscopy
were integrated to delineate the spatial and temporal diagenetic framework. Element
chemistry (major, minor) and stable carbon and oxygen isotopes (δ13C, δ18O) were utilized
to delineate processes which governed these diagenetic changes. A total of 256 samples
from limestone, dolomite, and marl were analyzed to determine major (Ca, Mg) elements
and trace elements (Fe, Sr, Mn, Na) chemistry. A same number of samples were used to
determine bulk rock δ13C and δ18O isotope values.

3.1. Fieldwork and Sampling

We investigated twelve sections of the Cretaceous carbonate platform Kawagarh For-
mation, along an E-W transect from the Kalachitta and Hazara ranges of northern Pakistan
(Figure 1). Four sections (Chinali, Kalas, Khanpur, Sarbaroot) from the Hazara Basin and
seven sections (Akhori, Nawa, Sugdara, Bagh Neelab, Sojhanda Dam, Surg, and Jassian)
from the Kalachitta ranges were studied. Microfacies and depositional environments of the
Kalachitta sections have already been reported by [20].

Bed to bed sampling was carried out for limestone and dolomite while the marl
samples were collected from embedded horizons between limestone or dolomite beds. The
sections were measured considering that each rock unit should have complete exposure
and maximum features with assured lateral extension and minimum deformation, while
top and bottom should be well preserved, and deformation should be removed in case of
faulting or folding. Detailed graphical sedimentary logs of the stratigraphic sections were
constructed along with the recording of all necessary information including color, lithology,
fossil content, and sedimentary structures.

3.2. Thin Section Microscopy

The samples were sliced perpendicular to the bedding plane with a diamond cutter to
prepare the rock chips. These chips were ground to flatten the surface and polished with
100 µm particle sized carborundum abrasive powder. The polished chips were mounted on
glass slides with a mixture of epoxy resin and hardener and ground on the other side to
attain about 30 µm thickness. After that, the rock was polished with corundum powder (up
to 0.8 µm particle size) to remove the residual surface abrasion and to maximize the textural
resolution. Thin sections were stained in a solution of Alizarian Red S and Potassium
ferricyanide solution for the differentiation of calcite from dolomite and to distinguish
the ferron or non-ferron character of calcite [51,52]. Thin sections were examined under
a polarizing microscope to record the microscopic data to establish paragenetic sequence,
based on the superposition, crosscutting relationship, or overlap of diagenetic features.
Field observations were also integrated with the thin sections study.

3.3. Major and Trace Element Stable Isotope Geochemistry

Samples were analyzed on an Atomic Absorption Spectrometer (AAS, AA 6300, Shi-
madzo) at High Tech Laboratory, University of Sargodha, Sargodha to measure the major
(Ca, Mg) and trace elements (Fe, Sr, Mn, Na) chemistry. Samples were prepared following
the method of [53]. Selected rock samples were crushed into fine powder and the powder
was placed in an oven for 12 h at 100 ◦C. One gram sample of dried powder was dissolved
in 50 mL of solution of 1N HCl for two hours. The dissolved solution was filtered using
filter papers. A 0.5% KCl solution was added to the aforesaid solution to avoid further
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reactions. Next, 100X solutions were prepared by adding 100mL of deionized water for the
determination of major elements (Ca and Mg). Dilutions were prepared to the detectable
limits of AAS.

Carbon (δ13C (and oxygen (δ18O) isotope ratios from bulk rocks were analyzed at the
Nanjing Institute of Geology and Paleontology, Nanjing, China. The samples were washed,
cleaned, and powdered to 75 µm grain size. This powder was treated with phosphoric acid
in an automated process. The δ13C and δ18O ratios of bulk rock were reported in standard
delta permil (‰) notation relative to Vienna Pee Dee Belemnite (V-PDB) calibrated with
the international standards NBS-18 (δ13C = −5.01‰ VPDB; δ18O of −23.1‰ VPDB) and
NBS-19 (δ13C of +1.95‰ VPDB; δ18O of −2.20‰ VPDB).

4. Results
4.1. Petrography

Through extensive examination and delicate observation, we have documented the
intricate details of diagenetic processes and their consequential effects on the fabric and
mineralogical composition of the Kawagarh Formation. The petrography section presents
an in-depth mineralogical, text, and fabric analysis, providing valuable insights into the
complex diagenetic history of the Formation. We have undertaken conventional thin
section microscopic analysis to unravel and elucidate five major diagenetic events that
have significantly influenced the Kawagarh Formation. The identified diagenetic events
encompass early calcite cementation (ECC) and neomorphism, compaction, and replacive
dolomitization (RD), as well as the placement of fracture calcite (FC) and calcitization.
The details of the diagenetic processes and their resultant fabrics are discussed in the
following sections.

4.1.1. Early Calcite Cementation (ECC)

ECC is a well-studied and evolving aspect of carbonate diagenesis. Substantial litera-
ture is available on the morphology, growth, distribution, and types of cements [11,54–62].
Substantial features of early calcite cement such as microspar precipitation and neomor-
phism have been observed in the Kawagarh Formation. ECC is characterized by subhedral
to anhedral crystals that can also appear as fibrous crystals. Three types of ECC are
identified in the Kawagarh Formation.

In the Kawagarh Formation, microspar is found in both interparticle and intraparticle
pore spaces. It is present in the peripheral regions of skeletal particles such as planktonics,
calcispheres, ostracods, pelecypods, inoceramids, echinoids, crinoids, trigonia, and textularia,
as well as in the chambers of skeletal particles (Figure 3a,b). It becomes more prominent along
the peripheries of skeletal particles in mudstones and wackstones (Figure 3c). In wackstones
and packstones microfacies where grains are in contact, bladed crystals of Low Magnesium
Calcite (LMC) cement envelope particles as isopachous cement (Figure 3e). The needle-like
appearance of the LMC is due to the relict geometry of aragonite. In intraparticle pores,
it occurs as the chamber fills in the form of interlocking mosaics (Figure 3b). Interlocking
mosaics (sparite) are mainly comprised of anhedral to subhedral coarse crystals with fused
edges. The interlocking crystals show extinction and exhibit light color.

4.1.2. Neomorphism

Neomorphism refers to transformations of mineral crystals caused by dissolution and
reprecipitation in such a way that bulk chemistry remains intact [54,60,63]. Neomorphism
includes the various types of transformations occurring in carbonate sediments like replace-
ment, inversion, and recrystallization. Neomorphism is prominent in Kawagarh where
the skeletal particles are recrystallized into coarse calcite crystals and micritic lime mud
groundmass and already developed microspar affected by neomorphism and generally
show the replacement of finer crystals with coarsely crystalline calcite. In marl or mudstone
facies, the microspar tiny patches occur indicating neomorphism of micrite or lime mud
(Figure 3f), and similarly skeletal particles show less effects of neomorphism. In wack-
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stone and packstone microfacies, micrite and skeletal grains are significantly altered by
neomorphism (Figures 3c,d and 4a,b). The skeletal particles of calcispheres and planktons
are extensively replaced by coarse calcite (Figure 4a,b) in wackstone and packstone facies.
Planktons (Figure 4b), trigonia, textularia (Figure 4f), echinoid (Figure 4c), and calcispheres
(Figure 4a) are largely affected by neomorphism. However, filaments, oysters (Figure 4d),
inoceramids (Figure 4f), and ostracods are less affected.
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Figure 4. (a) Neomorphism in calcispheres packstone facies, Khanpur Section. (b) Neomorphism in
planktone (PL) packstone facies, Bhag Neelab section. (c) Neomorphism in echinoid plate, Khanpur
Section. (d) Unaltered oyster shells marking the absence of neomorphism in packstone, Akhori
section. (e) Trigonia with neomorphosed periphery, Surg Section. (f) Textularia with neomorphosed
chambers and blocky fragment of unaltered inoceramid, Thoba Section.

4.1.3. Compaction

Compaction is observed using common burial depth indicators such as orientation of
burrows, particle interaction and deformation, porosity type, dissolution seams and their
orientation, and overall texture of the rock.

• Mechanical Compaction
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In carbonates, the mechanical compaction follows the distributed porosity and con-
sequently from highly variable layer thickness with depth [64]. Since the recognition of
mechanical compaction in fine-grained limestones is difficult, it is still evident largely in
packstone microfacies (Figure 5a,b) by broken shells of skeletal particles, compressed parti-
cles, and close packing of skeletal particles. Two types of compactions are observed; the
first type includes mechanical rearrangement of skeletal particles, which possibly occurred
shortly after the aragonite dissolution or early calcite cementation; the second type of
deformation brought ductile or brittle deformation in individual particles depending upon
the particle mineralogy and shape. Breakage and deformation of skeletal particles are more
distinct in plankton and pelecypods. Mechanical breakage is almost absent in calcispheres
wherein instead these show close packing and concavo-convex contacts (Figure 4a). The
breakage of skeletal particles in burrows is also extant (Figure 5a).
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(PL) and inoceramid (IN) in packstone, Chinali section. (c) Tightly packed broken plankton in burrow,
Chinali Section. (d) Dolomitization along black stylolite structure, Thoba section.

• Chemical Compaction

Chemical compaction here mainly implies the removal of material via dissolution
along pressure seams or stylolite, and subsequently transport of this material into the
pores of the same system or elsewhere, causing overall compaction. Stylolites are irregular
dissolution seams caused by the pressure solutions present in the intergranular space [65–67]
which usually accommodate insoluble materials such as clay minerals, oxides, and organic
matter transported by the pressure solution [68–70]. Initial chemical compaction starts with
pressure solutioning of grains and grain contacts. Dissolved tests of skeletal particles have
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also been recorded, sometimes with broken shells. (Figure 5a,b). These dissolved shells are
dominantly planktonics showing sutured contacts (microstylolites) at places (Figure 5a,b).

• Stylolites

Outcrop studies revealed that stylolites define the sharp contacts and boundaries of
dolomitized fronts and layers. In stratabound dolostone, stylolites are bedding-parallels,
marking the contact between dolostones and limestones and frequently develop dolomiti-
zation fronts (Figure 6a). Stylolites show a variety of amplitudes with the highest at the
Chinali outcrop associated with dolostones. In wackestone and packstone microfacies,
stylolites exhibit abundant suture and sharp peak (Figure 6b) morphology, while mudstone
facies dominate in wavy morphologies (Figure 6c).
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Figure 6. (a) Light grey limestone and yellowish-brown dolostone separated by stylolite (indicated by
white arrows), Jassian section. (b) Sharpe peak stylolite, Chinali section. (c) Wavy stylolite in plank-
tonic mudstone facies, Surg section. (d) Set of two wavy stylolites, Khanpur section. (e) Preferably
developed rhombic dolomite (DL) crystals along black color stylolite (ST), Chinali section. (f) Rhom-
bic dolomite (DL) with dark cores associated with yellowish and black colored stylolite (ST), calcite
vein (CV) cutting through the stylolite.
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In thin sections, the suture-and-sharp-peak (Figure 6b) and wave-like stylolites (Fig-
ure 6d), along with the associated reaction fronts, are not sharp but have a width of up to a
few tens of microns. The single reaction front is bounded by a series of stylolites (Figures
6a and 7a,c). The seams of stylolites contain insoluble residues of iron oxide and clay
material that can be recognized by the black and yellow colors, respectively (Figure 6e,f). In
SEM, stylolites can easily be identified by the alignment of iron oxide between the rhombic
dolomitic crystals (Figure 8a).
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Section. (e) Dolomitization along peripheries of trigonia indicated by arrow, Sarbaroot section.
(f) Rhombic dolomite developed over the skeletal grain.
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Figure 8. (a) BSE_SEM image showing stylolite identifiable by the alignment of iron oxide (white
color), Chinali section. (b) A zoomed view “a” showing rhombic dolomite (DL). (c) SE_SEM image
showing morphology of rhombic dolomite (DL) crystals, Jassian section. (d) BSE_SEM zoomed view
of “b” showing rhombic polycrystalline dolomite (DL). (e) Individual rhombic dolomite crystals
cross-cutted by calcite veins. (f) Calcite vein cutting through mosaic dolomite whereby engulfed
dolomite crystals in the vein are very clear.
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4.1.4. Dolomitization

In the Kawagarh Formation, dolomites are found in two forms: 1—dolostone in
stratabound dolomites (Figure 7a,b) and 2—dolomitic patches in partially dolomitized
limestones (Figure 7c). The dolostone bodies are developed in the form of dolomite fronts
bounded by bedding surfaces where whole beds are dolomitized. Dolomitic patches formed
as a result of the partial dolomitization of limestone. Outcrop observations revealed that
dolomitic patches regularly coincide with stylolites with sharp boundaries often bounded
by stylolites (Figures 6a and 7c).

In the Hazara Basin, the maximum dolostone contents are observed at the Chinali
section which accounts for 12% of the total samples, while the minimum dolostone contents
(3% of the total samples) are recorded at the Sarbaroot section. In Kalachitta, dolostone
is observed at the Surg and Jassian sections only, whereas the Akhori, Nawa, Sugdara,
Bagh Neelab, and Sojhanda Bata sections show an absence of dolostone. Dolomitic patches
appear in variable amounts at various levels of the Formation, however, dolostone bodies
are confined to the lower part of the formation near the lower contact with the Lumshiwal
Formation. Dolomitic limestone and dolostone are generally characterized by yellowish
brown, rusty brown, and often light grey color with sandy texture.

Microscopic studies revealed that dolomite appears as individual rhombic crystals
(Figures 6e,f and 8b–d) and mosaics of crystals (Figure 7d). Induvial rhombic dolomite
is referred to as replacive dolomite (RD1), while mosaic dolomite is referred as replacive
dolomite (RD2) here. RD1 appears in both dolomitic limestones and dolostones, while RD2
is exclusively present in dolostones. The dolomite crystals are generally characterized by
the brown or yellowish-brown color (Figure 7d) in RD2, while yellowish brown to off-white
with black spotted or rhombic cores in RD1 (Figures 5d and 7e,f). sRD1 are mostly euhedral
(planar-p) dolomites with sharp edges, while RD2 are euhedral to subhedral (planar-s)
dolomites (Figures 6f and 8b–d). The crystal size of RD1 is relatively finer ranging from
20 µm to 250 µm, while RD2 is coarser with crystal size ranging from 50 µm to 500 µm.
RD2 extensively replaced skeletal and non-skeletal particles (Figure 7e,f), calcite, and
mircospar. The individual crystals of RD1 exhibit darker/black cores (Figures 5d and 7e,f).
RD1 preferably populated along the stylolites (Figure 7e,f) where the dolomite crystals
systematically superimpose over stylolites. Both destroy the fabric of the rock, however,
RD1 exhibits intercrystallite porosity, while all the porosity is destroyed in RD2. RD1
and RD2 can easily be differentiated by distinct texture and color sometimes separated
by stylolites.

4.1.5. Calcite Veins and Fractures

Veins filled with bladed and/or coarse equant blocky calcite (FC) crystals occur as
replacement and engulfment of components in the host limestones/dolostones. Euhedral
dolomite crystals RD1 in the host dolostone that are engulfed by coarse-crystalline blocky
calcite are unaltered or display evidence of partial to extensive calcitization (Figure 8e,f).
Some of the coarse calcite crystals display undulous extinction and/or the presence of
numerous sub-crystals. Calcite veins are the only features which crosscut the skeletal
particles (Figure 4d), stylolites (Figure 6b,f), and dolomite crystals (Figure 8e). These veins
show perpendicular to sub-perpendicular orientation to the bedding. Dedolomitization of
dolomite and formation of calcite is obvious along these features (Figure 8f). These veins
are thick where they cut skeletal particles and thin out in the distal areas.

4.2. Trace and Major Element Chemistry

The major elements, calcium and magnesium, show covariance across the sections,
with mean values of 20.6% and 18.8%, respectively, with Ca ranging from 14.8% in Nawa
to 23.9% in Sojhanda, and Mg ranging from 14.0% in Jassian to 23.6% in Bagh Neelab. The
Khanpur, Sojhanda, and Bagh Neelab sections exhibit higher Mg content in the upper parts
of Kawagarh, whereas in Jassian the Mg contents are high from the basal to the middle
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parts, and in Kalas the basal and upper parts have higher Mg content. All other sections
exhibit higher Mg occurrences only in the basal parts of Kawagarh (Figure 9).
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The trace elements, manganese, strontium, iron, and sodium, show much larger
variations across the sections. For manganese, the maximum value of 358 ppm is found in
Bagh Neelab, while the minimum value of 105 ppm is found in Khanpur. Strontium has the
highest values in Bagh Neelab, with a maximum value of 1080 ppm, while the lowest value
is found in Jassian with only 148 ppm. Iron has a minimum value of 187 ppm in Khanpur
and a maximum value of 8163 ppm in Sojhanda, while sodium has a minimum value of
1657 ppm in Sojhanda and a maximum value of 6210 ppm in Thoba. In the Hazara sections,
Fe and Mn correspond to the Mg rise, whereas the Sr depletes. On the other hand, it is
not the same case in the Kalachitta sections, where Fe and Mn deplete, and Sr corresponds
positively with the Mg rise or sometimes shows no particular relationship.

4.3. Carbon (δ13C) and Oxygen (δ18O) Isotopes

The stable isotopes, δ13C and δ18O, also show significant variation between the sections.
The δ13C values range from −6.069‰ PDB in Thoba to 1.142 in Sojhanda, while the δ18O
values range from −7.664‰ PDB in Sojhanda to −1.346‰ PDB in Surg (Figure 10). The
mean value of δ13C in the Jassian section (−5.09‰ PDB) is lower than the overall mean,
while the mean value of δ18O in the Surg section (−7.57‰ PDB) is noticeably lower than
the overall mean.

δ13C shows maximum negative value −5.14‰ PDB in marls, −3.91‰ PDB in lime-
stone, and −2.67‰ PDB in dolostone. It marks positive excursion up to 3.30‰ PDB in
limestone, 2.80‰ PDB in marl, and 2.69‰ PDB in dolostone. The studied samples of the
Hazara Basin are more depleted in δ18O as compared to samples of Kalachitta. δ18O marks
maximum negative excursion −10.73‰ PDB in dolostone, −10.48‰ PDB in marl, and
−8.79‰ PDB in limestone. It shows minimum negative excursion in −2.70‰ PDB in marl,
2.99‰ PDB in limestone, and 3.40‰ PDB in dolostone. Higher δ18O values are encountered
in the Hazara Basin (−3.915‰ PDB to 3.304‰ PDB) than in Kalachitta (−3.467‰ PDB to
2.693‰ PDB).
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5. Discussion
5.1. Early Calcite Cementation

Microspar is a mosaic-like texture of inorganic calcite crystals ranging in grain size
between 4 and 30 µm formed by secondary recrystallization of previously lithified micrite
(<4 µm) after removal of Mg ions [71]. [72] discovered microspar cement in aragonite-
dominated carbonate muds formed by meteoric diagenesis. The wider consensus has
been established that microspar occurs from recrystallization of previously lithified mi-
crite. However, there are examples [73,74] that chalks, although made of micrite, do not
recrystallize to microspar even if subjected to fresh water meteoric diagenetic conditions.
Many ancient carbonate systems do not experience meteoric conditions [75], which also
raises the question about the origin of the microspar in them. [76] reported that microspar
is recrystallized from lime mud as a primary cement in the early stages of marine burial
diagenesis in Pliocene Bahamas carbonates and Silurian Gotland limestones. Despite the
insufficient pressure and temperature condition, Munnecke suggested that strong geo-
chemical gradients can be achieved by microbial decomposition of organic matter [77] in
shallow burial environments which may dissolve and reprecipitate carbonates. According
to [15,76,78], the pore fluid originated from the interlayer marls beds by the dissolution of
aragonite, and then it was transported to the adjacent limestone bed where it was reprecipi-
tated as LMC (microspar). Lately, a series of studies [78–81] led to a limestone–marl layer
alternations model which is based on this diagenesis postulate that selective dissolution
of aragonite in marl/limemud/shale beds and reprecipitation of calcite cement in lime-
stone beds can result in a bed differentiation which can be confusing with the depositional
cyclicity. The formation of microspar in the Kawagarh Formation is in accordance with
the above model, evident by the alteration of marls with limestone, with no freshwater
substantiations in the lower Kawagarh at early diagenetic stages. However, freshwater flux
due to the subaerial exposure during the uplift events on the northern margin of the Indian
plate is obvious owing to the India–Asia collision in the Upper Cretaceous (later stage of
diagenesis). This cannot contribute to shallow burial early calcite cementation as the rock
had already experienced the intermediate to deep burial.
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The transformation of aragonite and high magnesium calcite (HMC) into microspar
represents shallow marine burial diagenetic conditions. Furthermore, the isopachous
cement is evidence of the marine Phreatic conditions.

5.2. Compaction

Mechanical compaction reflects in particle deformation, dewatering, and reduction
in thickness and porosity [64,82–84]. Initially, mechanical compaction started with a few
meters of burial depth characterized by dehydration and reduction in the thickness of
sediment layers which led to close packing and a reduction in porosity. The dewatering
of sediments resulted in plastic deformation which is characterized by the rearrangement
of particles [85] and the deformation and breakage of skeletal particles [83]. Compaction-
related porosity reduction is controlled by textures and dominant mineralogies. Other
diagnostic features of mechanical compaction include deformed burrows, thinned and
wispy laminations, broken and welded shells, broken micrite envelops, and rotation and
particle flattening [85–89]. In Kawagarh, mechanical compaction indicated by the skeletal
particle rearrangement, breakage, deformation, and close contacts suggests burial depths
of up to 100m. Mechanical compaction always shows greater signals in granular facies as
the bigger grains take the first impact of the compaction, whereas the absence of preferred
orientations and the neomorphism of intact grains supports how cementation took place
before compaction [15]. Sutured skeletal particles contact and stylolite is clear evidence
of pressure solutioning (chemical compaction) on depths >300 m and is indicative of the
onset of burial diagenesis.

5.3. Dolomitization

Dolomitization refers to the replacement of limestone (CaCO3) by dolomite (CaMg
(CO3)2), which can occur in a variety of diagenetic settings. It is critical to establish key
geochemical and environmental controls for various dolomitization models [3,90–92]. The
fault-related hydrothermal dolomitization (HTD) model claims to explain the source of
Mg by the convection of seawater along a rift-related open fault system and basal clastic
aquifers [93–96]. Some studies also suggest thermodynamic ultramafic carbonation by the
interaction of water and mafic/ultramafic rocks as the source of magnesium [97–99]. These
views have modernized the thinking about the sources for water and magnesium in HTD.
The same seems appropriate for the Late Cretaceous rifted northern margin of India [100]
where the Kawagarh Formation deposited. A similar kind of digenetic and dolomitization
model has also been reported in Early Cretaceous Benicassim carbonates, Maestrat Basin, E.
Spain [2,101,102]. Both the carbonates deposited in a rift basin share diagenetic similarities
such as early calcite cementation, strata bound dolostones, stylolites, burial, and uplift. [6]
has also reported similar Cambrian HTD dolomite bodies formed at shallow burial depths
through hot brines, which were generated by high heat flows through faults in Cambrian
rifting in dolomite from the Western Canadian Sedimentary Basin. These models justify
the dolomitization in the Kawagargarh Formation supported by stylolization paired with
significant negative δ18O values suggesting that the dolomitization occurred at intermediate
to deep burial settings at higher temperatures negating the meteoric diagenesis. These
HTD dolomite bodies often involve multiple stages of dolomitization [94,103,104] where
a paragenetic sequence can be established by observing the cross-cutting relationship of
different dolomite fabrics. In the Kawagrh Formation, the overlay of dolomitic crystals over
stylolites suggests that stylolites were formed first and fed Mg for dolomitization. RD1
developed firstly and subsequently replaced by RD2 indicates multistage dolomitization [7].
In Figure 11, a schematic illustration shows how the evolving of dolomitization fronts
can initiate RD1 and with time how RD1 can be replaced with RD2 euhedral and RD2
subhedral. Along the length of such fronts as it is recrystallizing the host, the depletion
of Mg occurs ahead of the front levels only, forming individual crystals of RD1 with
intercrystallite porosity.
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On the other hand, pronounced negative values of δ18O negate the pure meteoric water 
influx and instead indicate the mixing of surface-derived waters with hot burial fluids. 
Frequent occurrence of FC with the dolomitisation fronts indicates that calcitising fluids 
flowed preferentially through the enhanced intercrystalline porosity of dolostones (Figure 
8e,f). [6,7] reported similar calcitisation events where transformation from RD1 to calcite 
increased local porosity within dolostone. This suggests the process of calcitisation 
consists of two steps, an initial dissolution that enhances porosity around the periphery 
of dolostone bodies followed by a contemporaneous calcite cement (FC) precipitation. The 

Figure 11. Systematic diagram showing evolution of the dolomitization front with time. (a) Initiation
of the dolomitization front with RD1. (b) With the continued Mg influx and advancement of the front,
this recrystallizes RD1 to euhedral RD2. (c) With further advancement, euhedral RD2 is recrystallized
into subhedral RD2. Note how the fabric of the rock evolved along the length of the front with
deleting and cooling fluid. Modified after [6].

5.4. Calcitisation

The ongoing India–Asia collision gradually uplifted the rock to shallower depths
and produced fractures in lithified rock. Such shallow burial settings introduced low
Mg undersaturated meteoric fluids which resulted in the transformation of dolomite to
calcite through calcitisation. Depleted δ13C values also suggest a likewise association
(Figure 10). On the other hand, pronounced negative values of δ18O negate the pure
meteoric water influx and instead indicate the mixing of surface-derived waters with hot
burial fluids. Frequent occurrence of FC with the dolomitisation fronts indicates that
calcitising fluids flowed preferentially through the enhanced intercrystalline porosity of
dolostones (Figure 8e,f). [6,7] reported similar calcitisation events where transformation
from RD1 to calcite increased local porosity within dolostone. This suggests the process
of calcitisation consists of two steps, an initial dissolution that enhances porosity around
the periphery of dolostone bodies followed by a contemporaneous calcite cement (FC)
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precipitation. The cross-cutting relationship and replacement of dolomite crystals along
calcite fractures clearly indicates that these fractures postdate dolomitization.

5.5. Diagenetic Model

The Kawagarh Formation underwent four phases of diagenesis (Figure 12). In the
first phase, early calcite cementation occurred during shallow marine burial, resulting in
the formation of microspar cement by replacing micritic limemud matrix and bounding
the skeletal grain. This also involves the dissolution of aragonite from limemud of marls
into calcites of limestone. The later stage of the first phase corresponds to the neomorphim
where the carbonate grain, particularly skeletal grains, were transformed into coarse-
grained microspar calcite. The second phase corresponds to intermediate burial diagenesis,
where mechanical and chemical compaction dominated with stylolization in the later stages.
Stylolites formed at burial depths ranging between 300–800 m. Deep burial diagenesis
corresponds to the third phase, which was characterized by dolomitization fronts, and the
formation of RD1 and RD2 dolomite. The fourth and final phase corresponds to uplift,
resulting in large-scale fractures and veins. Low Mg fresh fluids became incorporated into
the system causing calcitisation (dedolomizttion) and the precipitation of fracture calcite.
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Figure 12. Paragenetic history of the Kawagarh Formation showing the sequence of key diagenetic
phases along with the time of formation.

6. Conclusions

The Kawagarh Formation was deposited during High Stand Tract (HST) under open
shallow marine ramp environments, bounded by Low Stand (LST) clastics. The regional
tectonic settings suggest that the depositional trend of the Kawagarh Formation was termi-
nated by the initial collision of India with the KLA at the end of Cretaceous. The following
conclusions can be drawn in context with the complex diagenetic history of the Kawagarh
Formation by interpreting a multiproxy dataset integrating outcrop, petrographic, stable
isotope, and geochemical data.

1. Early calcite cementation happened well before mechanical compaction which also
inhibited later compaction in the Kawagarh Formation.

2. Predominantly, the dissolution of aragonite from lime mud in marls of the Kalachitta
and high Mg calcite/aragonite from mudstones of the Hazara basin provided low Mg
calcite for the precipitation of microspar.

3. The fault-related hydrothermal dolomitization model claims to explain the source
of Mg by the convection of seawater along rift-related open fault systems and basal
clastic aquifers for the Kawagarh formation.
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4. The uplift related to the India–Asia collision introduced a fracture system and fresh
low Mg fluid percolating the fracture system mixed with subsurface fluid caused the
calcitisation in the Kawagarh Formation.

The present study provides significant insights about burial depths, fluid influx, the
geochemical gradients, and the evolution of reservoir properties (porosity, permeability)
of the formation as well as the basin itself, such as the depth and pressure at which it was
buried, the fluid flow, and the geochemical gradients. This appraisal can be used to better
understand the geologic history of the region and to develop better exploration strategies
for hydrocarbon reservoirs.
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