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Abstract: This work aims to understand the distribution and migration mechanisms of U and Mo
between surface sediment and water in acid mine drainage (AMD) regions near a molybdenum
mining region. A series of river sediment and water samples near the Jinduicheng mining area, one
of the largest deposits of molybdenite ore in Asia, were collected and analyzed. Our results indicate
that: (1) The pH value of river water samples increases with distance from upstream to downstream,
while the pH has poor correlation with Mo and U; (2) The content of Mo and U in the sediment are
significantly higher than the background value, which suggests potential pollution; (3) The content
of Mo and U in the water and sediments in the lower reaches of the Wenyu river is significantly
linearly related with the distance from the mining area, suggesting that AMD is a potential source;
(4) BCR analysis shows that Mo in river sediments mainly existed as the residual, while U mainly
existed as the non-residual; (5) The distribution coefficient Kd(Mo) exceeds Kd(U), indicating that Mo
is enriched in sediments while U is more prone to porewater.

Keywords: surface waters; distribution; enrichment of molybdenum; porewater; sediment

1. Introduction

The distribution between sediment and its surface water largely controls the en-
richment characteristics and migration direction in the aquatic environment [1–4]. The
geochemical distribution involves processes including adsorption–desorption, dissolution–
precipitation, and ion exchange. The sediment acts not only as a sink for potentially toxic
elements in the water but also as a source for the release of metals [5]. The potentially toxic
elements migrated into the sediments will be released if there is a significant change in the
physical–chemical properties of the overlying water, e.g., pH [3,6] and redox potential [7].

The Jinduicheng molybdenite ore is the second largest Mo deposit in Asia [8]. Long-
term open-pit mining, accumulation and transportation of ore, and rain erosion can lead to
a migration of main and trace elements from ore to aquatic sediment and soil [9–13]. The
magmatic rocks in the Jinduicheng mining area are well developed, mainly acidic rocks like
those of the granite porphyry series. There are extensive studies reporting the heavy metal
pollution of different types of metal mines [14,15], while the distribution of these metals in
molybdenite mining regions is poorly known. Molybdenite is a typical sulfide ore resource
with a high content of redox-sensitive elements like Se, U, and Mo. Mo is one of the essential
trace elements for humans, animals, and plants. According to WHO (2011), the maximum
value of Mo in drinking waters is 70 µg/L. U is typically a toxic and radioactive element
with strong carcinogenic effects [16]. U in sediments mainly comes from ore-bearing rocks,
like ore-bearing potassium feldspar minerals [14,15]. Natural waters are the main medium
for the migration of U [17,18]. The acid mine discharge not only affects the content of these
elements but also the physicochemical conditions of river water [19].

Many researchers have found that a high content of Mo is often observed in U ore [19,20]
because U and Mo have similar geochemical properties as redox-sensitive elements. There-
fore, Mo isotopes can be used to trace U ore. In addition, it is found that molybdenite or
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associated molybdenum polymetallic deposits in China are rich in U, Zn, Pb, and other
elements [18]. For example, the U content of molybdenite is abnormally high in the Dawang-
shan Tungsten-Mo polymetallic ore, JiangXi province, China, being up to 13.3 × 10−6 (Wb).
Yang et al. (2018) [21] and Sun et al. (2017) [22] have discovered that, in Jinduicheng molyb-
denite, U is enriched with an average content of 19.77 × 10−6 (Wb). Moreover, relative to
the study of the content of Mo and U in the ore, Kayzar et al. (2014) [23] found that there is
a strong correlation between U and Mo in water, R2 = 0.96. Research on the trace element
(Re) in molybdenite has also made great progress, but there are few studies on the high
content of U in molybdenite.

Therefore, we collected the water and sediments following the molybdenite migration
direction at the Jinduicheng molybdenite mining area in Shaanxi Province, China (Figure 1).
The objectives of this study include: (1) to clarify the distribution characteristics of Mo
and U in the water and sediments near the molybdenite mining; and (2) to discuss the
source and migration of these toxic elements in the water and sediments downstream of
the mining area.

2. Materials and Method
2.1. Study Area Background

The study area is located in Jindui Town, Hua County, Weinan City, Shaanxi Province
(109◦57′22′′ E, 34◦19′41′′ N). It has a high occurrence of Mo ore. At present, the output of Mo
ore in Jinduicheng Molybdenite has reached 1 million tons. It is the largest Mo mining area
in China and Asia, with an average grade of 0.099% [24]. The mining area is contained in
andesite and granite porphyry. The rock contains polymetallic sulfide minerals. In addition
to molybdenite, the rock also contains pyrite, chalcopyrite, limonite, hematite, etc. The U
content is relatively high in granite porphyry, especially in mineralized potassium feldspar
porphyry [14,25]. The results of a sample analysis of the ore show that the maximum U
content is about 50.94 mg/kg, and the average content is about 19.77 mg/kg [22].

The mining area is located in the Qinling Mountains in China. It is a mountainous
terrain with an average altitude of about 1200 m [26]. The climate of this area is a temperate,
semi-humid monsoon climate, with concentrated precipitation in summer and strong
weathering of surface rocks. The Wenyu River flows through the mining area from north to
south. Due to the influence of climate, the runoff of the river in flood season and dry season
is quite different, and the runoff of surrounding hillsides is strong in summer. There are
two tailing ponds in the south of the mining area, which are used for wastewater treatment.

The strata exposed in a large area in the study area are mainly the volcanic rocks of the
Middle Proterozoic Xionger, and the lithology is basaltic andesite. Mesoproterozoic slate
can be seen in the northeast and south. The southern stratum is the sedimentary rock of
the Gaoshanhe formation of the Guandaokou group, which is mainly composed of quartz
sandstone and mudstone, covering the volcanic rock of Xionger in the north [15]. The
geological map of the mining area is shown in Figure 1.

The ore types of the Jinduicheng molybdenum ore body mainly include three types:
granite porphyry, basaltic andesite, and a small amount of quartzite, of which the former
two types are dominant [8,9]. Ore minerals include molybdenite, chalcopyrite, pyrite,
pyrrhotite, magnetite, sphalerite, and a small amount of galena. Gangue minerals include
quartz, biotite, muscovite, potassium feldspar, albite, fluorite, calcite, zircon, chlorite, epi-
dote, actinolite, sphene, and apatite. The Jinduicheng granite porphyry body and its outer
contact zone have developed a wall rock alteration, showing the zonation characteristics
of typical porphyry-type deposits. According to the symbiotic association of minerals,
porphyry body contact zone wall rock can be divided outwardly in turn into alteration
zones such as potassium feldsparization, sericitization, silicification, and propylitization.
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Figure 1. Geological map of Jinduicheng mining area (description and modification from Huang et al.
(1987) [27]).

2.2. Sampling and Chemical Analysis

Surface water and sediment samples were collected along the Wenyu River and tailing
pond in the mining area. According to the topographic and hydrological characteristics
of the Wenyu River and the tailing pond, a total of 9 sampling sites along the river were
collected. Table 1 (S1–S5) were distributed from north to south along the Wenyu River.
Surface water and sediment samples were collected. Site S6 was located in the tailing pond
in the southwest of the mining area and collected water samples from the tailing pond.
Sites S7–S9 were located in the tailing pond in the southeast of the mining area. The specific
distribution of sampling sites is shown in Figure 2.

Minerals 2023, 12, x FOR PEER REVIEW 4 of 14 
 

 

Table 1. Sample descriptions and details. 

Site 
Parameters Electric 

Conductivity 
(μS/cm) 

Sampling Description 
pH Eh (mV) 

S1 7.04 8 150 
S1 was located by the Wenyu River. The surface water 
(W1) and river sediment sample (SE1) of Wenyu River 

were collected at S1. 

S2 6.18 52 270 
S2 was located on the river course. The surface water 
(W2), river sediments (SE2) and soil on the banks of 

the river (S02) were collected at S2. 

S3 6.34 35 300 

S3 was located by the river with visible domestic 
waste. Surface water (W3), river sediment (SE3), and 

farmland soil (S03) were collected at S3. The soil 
sample(S03) was 10 m away from the river bank. 

S4 6.21 35 320 
Domestic garbage and smelly silt could be seen at S4 
sampling site. River water (W4) and river sediment 

(SE4) were collected at S4. 

S5 8.6 −77 350 
S5 was located by the river, and the sediments in the 

river contained high levels of humus. River water (W5) 
and river sediment (SE5) were collected at S5. 

S6 6.38 28 170 
S6 was located in the tailing pond in the southwest of 

the molybdenite, with a few herbs. Tailing water 
sample (TW01) was collected at S6. 

S7 6.12 51 1240 

S7 was located on the north side of the tailing pond in 
the southeast of the molybdenite mine. The tailing 

pond water (TW02) was collected. Fish could be seen 
in the water. 

S8 6.2 48 1090 
S8 was located in the tailings pond in the southeast. 
Mainly collected drainage samples of tailing pond 

(TW03). 

S9 6.19 52 940 

S9 was located in the creek downstream of the tailing 
pond in the southeast. Collected water samples (T01) 
of the drainage channel of the mine and soil samples 

(TS01) by the creek. 

 

Figure 2. Study area and sampling sites in Jinduicheng molybdenite. Figure 2. Study area and sampling sites in Jinduicheng molybdenite.



Minerals 2023, 13, 1435 4 of 14

Table 1. Sample descriptions and details.

Site
Parameters Electric Conductivity

(µS/cm)
Sampling Description

pH Eh (mV)

S1 7.04 8 150 S1 was located by the Wenyu River. The surface water (W1) and
river sediment sample (SE1) of Wenyu River were collected at S1.

S2 6.18 52 270
S2 was located on the river course. The surface water (W2), river

sediments (SE2) and soil on the banks of the river (S02) were
collected at S2.

S3 6.34 35 300

S3 was located by the river with visible domestic waste. Surface
water (W3), river sediment (SE3), and farmland soil (S03) were
collected at S3. The soil sample(S03) was 10 m away from the

river bank.

S4 6.21 35 320 Domestic garbage and smelly silt could be seen at S4 sampling site.
River water (W4) and river sediment (SE4) were collected at S4.

S5 8.6 −77 350
S5 was located by the river, and the sediments in the river contained

high levels of humus. River water (W5) and river sediment (SE5)
were collected at S5.

S6 6.38 28 170
S6 was located in the tailing pond in the southwest of the

molybdenite, with a few herbs. Tailing water sample (TW01) was
collected at S6.

S7 6.12 51 1240
S7 was located on the north side of the tailing pond in the southeast

of the molybdenite mine. The tailing pond water (TW02) was
collected. Fish could be seen in the water.

S8 6.2 48 1090 S8 was located in the tailings pond in the southeast. Mainly
collected drainage samples of tailing pond (TW03).

S9 6.19 52 940
S9 was located in the creek downstream of the tailing pond in the

southeast. Collected water samples (T01) of the drainage channel of
the mine and soil samples (TS01) by the creek.

The Eh and pH (YSIpH100A pH meter) values were immediately measured and
recorded after sampling. Clean 500 mL polyethylene bottles were used for water sample
collection (GB/T 5750.2-2006). There were three samples collected at each sampling site:
one with a 2% analytical pure NaOH solution, one with a 2% analytical pure HNO3 solution,
and one field-blank sample with ultrapure water (resistivity 18.2 MΩ·cm, 25 ◦C). All sam-
ples were brought to a portable refrigerator to be kept at low temperature. After collection,
the water samples were directly sent to ALS Chemex (Guangzhou, China) for ICP-MS and
ICP-AES detection. The sediment samples were collected and stored in a polyethylene
zip-lock bag and dried in the shade in a nitrogen environment with an agate mortar to
grind over 200-mesh nylon sieves. All samples were packaged and sent to ALS Chemex
(Guangzhou, China) for detection and analysis using tetraacid digestion and the mass
spectrometry/spectrometer integrated quantitative method. Extraction of potentially toxic
elements was performed using the improved European Community Bureau of Reference
(BCR) continuous extraction method. Other experiments were completed by the Geochem-
istry Laboratory of Chengdu University of Technology. The specific experimental steps are
as shown in Table 2, and all concentrations of samples were determined by ICP-MS.

Table 2. BCR Sequential extraction steps.

Extraction Step Extractant T (◦C) pH Incubation
Time (Hours)

weak-acid soluble 40 mL 0.11 mol·L−1 HAc 25 ◦C 16
reducible 40 mL 0.1 mol·L−1 HONH3Cl 25 ◦C 2 16
oxidizable (a) 10 mL 30% H2O2 85 ◦C heat to dryness

(b) 50 mL 1 mol·L−1 NH4OAc 25 ◦C 16
residual 10 mL HNO3, 10 mL HF, 3 mL HClO4 25 ◦C 1

1 mL V(HNO3):V(H2O) = 1:1 cool down
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2.3. Sample Details

Four tailing water samples, five river surface water samples, and five sediment samples
were collected in the study area. The details about the sampling sites are in Table 2.

In fact, the S1 sampling site was located upstream of the mining area river, and the
drainage of the mining area has a weak impact on the S1. Therefore, the pH and Eh values
of the S1 water sample could be used as background values for the river water, which were
7.04 and 8, respectively. The electrical conductivity at site S6 was lower than at others
(except S1) because the sampling site was in a relatively closed backfill pool.

2.4. Processing and Calculative Methods

Google Earth and CorelDRAW 2018 were used to locate the sample sites. Origin 2019b
software was used to plot the data graphs. IBM SPSS Statistics 22 was used to analyze the
data. The distribution coefficient of pollutants between sediment and water phases can
reflect the actual migration capability of pollutants in a natural water body. The formula is:

Kd = Cs/Cw

where Kd is the distribution coefficient; Cs is the content of potentially toxic elements in the
sediment; and Cw is the concentration of potentially toxic elements in the water.

3. Results and Discussions
3.1. Mo and U Enrichment in Surface Water

The upper reaches of the Wenyu River have a neutral pH and are weakly oxidized,
but after flowing through the mining area, its characteristics have been changed. From sites
(W2~W5), the pH value was between 6.18 and ~8.6 and the Eh value was between 55 and
−77, indicating that the river water changed from weakly acidic to alkaline from upstream
to downstream and from an oxidizing environment to a reducing environment. In addition,
the farther away from the mining area, the higher the pH value and the lower the Eh value,
showing a negative correlation between the pH value and the Eh value and showing that
the pH value was negatively correlated with the Eh value. The Eh values ranged from
28 mV to 58 mV, with an average value of 44.75 mV, and Eh at each sampling site changed
little, indicating an oxidative environment. Therefore, the water environment of the Wenyu
River in the study area presented the characteristics of a neutral–weak, acid–alkaline, and
weak oxidation–reduction environment from upstream to downstream. The pH of the
tailing water ranged from 6.12 to 6.38, with a small change because the tailings may contain
molybdenite [9,28], which is composed of many metal sulfide minerals (such as pyrite,
etc.), and these minerals would increase the pH of the water after dissolving in the water.
Molybdate in an acidic environment easily adsorb and precipitate metal ions in water,
while in an alkaline environment, adsorption is not easy [29,30].

The average concentration of Mo in Chinese rivers ranges up to 20 µg/L, and the
concentration of U is about 1 µg/L [31] (Zao et al., 1990). The contents of Mo and U from
the tailing ponds in the four water sampling sites (TW01, TW02, TW03, and T01) were
2.62 mg/L and 0.03 mg/L, respectively, which were 131 times and 30 times the background
value, respectively. The Mo content of TW01, TW02, TW03, and T01 exceeded the back-
ground value by 4, 32, 62, and 33 times, respectively (Table 3). The U content of the other
three sampling sites (TW01, TW02, T01) was 2 times, 26 times, and 5 times the background
value, respectively, except that TW03 had no value. The average content of U and Mo
in TW01, TW02, TW03, and T01 was also 33 times and 30 times the background value,
respectively (Table 3). The content of Mo and U in the surface water at the tailings ponds
was significantly higher than the background values, indicating the potential pollution of
the water body.
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Table 3. The content of Mo and U in sediments and surface water.

Sediments River Water Tailing Water

Mo U Mo U Mo U

S1 13.2 4.60 <0.001 <0.001 - -

S2 492 13.40 0.027 <0.001 - -

S3 470 9.30 0.047 0.001 - -

S4 429 6.90 0.049 0.001 - -

S5 175.5 4.70 0.070 0.001 - -

S6 - - - - 0.083 0.002

S7 - - - - 0.635 0.026

S8 - - - - 1.245 <0.001

S9 - - - - 0.660 0.005

Total 1579.7 38.9 0.193 0.003 2.62 0.03

Min 13.2 4.6 0 0 0.08 0

Max 492 13.4 0.07 0.001 1.25 0.03

Mean 315.94 7.78 0.039 0.001 0.66 0.01

S.D. 211.476 3.683 0.026 0.001 0.47 0.01

Median 429 6.9 0.047 0.001 0.65 0

RSD (%) 0.669 0.473 68.4 91.3 72 -

Background value 0.8 a 2.2 a 0.02 b 0.001 c - -

background value 13.2 4.6 0 0 - -
a indicates the soil background value of Xi’an [32]; b indicates background value data of Chinese rivers [33];
c indicates global river water background value. The units are mg/kg (soil and sediment samples) and mg/L
(water samples), “-” means no data.

There may be many reasons for the high concentration of Mo. The average pH value of
tailing water was 6.2, with no significant change, indicating a low correlation between Mo
content and pH value (Figure 3a). With the increase in pH value in river water, the content
of Mo appeared at the highest value of W5 (Figure 3a). According to previous studies, Mo
is hardly adsorbed at pH > 8 [34], while the pH value of W5 was 8.6, so Mo in water cannot
be adsorbed in this environment, resulting in an increase in molybdenum content detected
in rivers. In addition to the influence of pH, the upper reaches of the Wenyu River had
a narrow channel, a large river-specific fall, and a fast flow rate, while the lower reaches
had a wide channel, a slow flow rate, and a superior condition for trace metal enrichment
compared with the upper reaches, resulting in an increasing Mo concentration with the
flow direction.

In general, the optimal pH for the adsorption and precipitation of U in water by clay
minerals or metal minerals is 5 [35], and when the environment is oxidizing, U (VI) is rela-
tively unstable and prone to migration. When the environment is a reducing environment,
U (VI) will be reduced from a stable state to U (IV) and hydrolyze to precipitate. Although
the pH value of the W5 sample increased to 8.6, the adsorption of U was also affected by
the Eh value, and the Eh value at W5 reflected a reducing environment. Therefore, U (VI)
was still reduced to U (IV) and precipitated [20,36–39]. Therefore, the U content in the river
water was very low and did not change much (Figure 3b).
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3.2. Distribution of U and Mo in Downstream Sediment

The geochemical background values of Mo and U in soil in Xi’an are 0.8 mg/kg and
2.2 mg/kg, respectively [32]. Due to the proximity of the sampling point to the southeastern
part of Xi’an, it was used as one of the reference factors for background values. S1 is located
upstream of the mine and is not affected by mining wastewater, so the Mo and U contents
in SE1 were used as the background values for the study area.

Through the analysis of sediment samples (SE2–SE5) from the Wenyu River, it was
found that the total amounts of Mo and U in the sediment were 1566.5 mg/kg and
34.3 mg/kg, respectively, which were 119 times and 7.5 times higher than the background
values (Table 3). The average contents of Mo and U were 391.6 mg/kg and 8.6 mg/kg,
respectively, which were 30 times and 1.9 times the background values, respectively (Table 3).
Compared to the contents of Mo and U in river water, the contents of Mo and U in sediments
are significantly higher because colloids and clay minerals that enter the river may adsorb
trace metals and precipitate them into sediments [40–43]. In general, the contents of Mo
and U in the sediments of the Wenyu River exceeded the background values (SE1), and
the content of Mo was significantly higher than the background value, indicating that Mo
pollution in the Wenyu River sediments is severe (Figure 3a,b).

Figure 3a,b also show the distribution characteristics of Mo and U in the tailing ponds.
The content of Mo in TW03 was higher than that in TW02, which was related to the
collection site location of TW03. TW03 is in the drainage and sedimentation tank of the
tailings pond. The fluidity and turbulence of the water flow made the Mo in the tailing sand
enter the water and flow downstream, so that the content of Mo in T01, located downstream
of the tailing pond, was high. The content of U in the tailing pond water was relatively low,
and the content in TW02 was the highest. The content of U element at T01 was less than at
TW02 and TW03, indicating that U element was concentrated in the tailing pond and that
the migration amount decreased with the increase in drainage.
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In general, Mo and U mainly exist in sediments in the study area, and the content of
Mo and U in surface water was very low. As the mining area affected the lower reaches
of the river, the Mo content in the river water increased with the distance, while the U
content changed little. The content of Mo and U in river sediments gradually decreased
with the increase in distance, and the distance and trace metal content showed a strong
positive correlation.

The spatial analysis of sediments revealed that with an increase in distance, the content
of U and Mo gradually decreased (Figure 3c,d); R2 was 0.6605 and 0.9897, respectively. To
predict the downward trend of Mo and U content in river sediments and the spatial impact
range of molybdenite downstream, a linear regression equation was used to fit the data. It
was calculated that the Mo content at about 21.5 km downstream of the Wenyu River was
lower than the background value S1, while the U content was lower than the background
value at 12 km; thus, the theoretical range of the polluted environment in the mining area
was 21.5 km (Mo) and 12 km (U), respectively.

3.3. Migration of U and Mo Downstream

The enrichment and migration of trace metals mainly occurred by two mechanisms:
(1) releasing from the minerals through weathering and rainfall erosion; and (2) diffusing,
migrating, and transforming in the soil and water bodies through a series of physical and
chemical processes, then flowing into the groundwater and sediments. In order to analyze
the horizontal migration and distribution of Mo and U in river water bodies and sediments,
this paper mainly analyzed the second mechanism.

The previous paper on the content of trace metal elements alone is not sufficient to
explain the migration mechanism, and it is also necessary to analyze the morphology of
Mo and U (Table 4).

Table 4. Speciation of Mo and U in sediments and surface water.

Sample Type Speciation
Distribution of Various Potentially Toxic Elements

Mo U Mn

SE1

F1 0.01 0.11 0.53
F2 0.24 0.61 2.70
F3 7.16 0.44 7.84
F4 7.24 3.25 30.74

SE2

F1 0.01 1.59 1.30
F2 3.30 1.49 4.02
F3 175.82 4.60 12.16
F4 253.56 3.34 42.04

SE3

F1 1.63 2.10 8.31
F2 4.34 1.85 2.79
F3 113.51 2.87 8.98
F4 342.77 2.16 36.86

SE4

F1 0.05 1.10 0.75
F2 3.90 1.48 2.49
F3 98.35 2.06 8.38
F4 358.41 1.92 35.35

SE5

F1 0.03 0.24 1.17
F2 4.53 0.79 3.80
F3 34.77 0.56 13.00
F4 157.25 2.30 56.91

The unit of water sample is mg/L; soil and sediment samples are mg/kg.

Many studies have suggested that the content of trace metal forms is closely related
to the total amount of trace metals, and the organic matter content and pH value will also
affect the content of trace metal speciation [44,45]. To examine if the speciation distribution
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of Mo and U was related to the total content, we carried out a correlation analysis (Table 5)
between the total amount and form of Mo and U. The result showed that the content of
trace metals had varying degrees of influence on their speciation distribution. Except for
the weak acid-soluble state, the morphological distribution of molybdenum was positively
correlated with the total content. There was a significant positive correlation between
molybdenum content and residual forms (p = 0.974).

Table 5. Correlation analysis between total content and speciation of Mo and U.

Speictation Contents F1 F2 F3 F4

Mo

F1 0.424 1
F2 0.72 0.357 1
F3 0.862 0.231 0.457 1
F4 0.974 0.47 0.77 0.724 1

U

F1 0.884 1
F2 0.811 0.975 1
F3 0.987 0.836 0.78 1
F4 0.205 −0.212 −0.385 0.2 1

According to Figure 4a, Mo in river sediments is mainly the residual fraction (F4),
accounting for 68% of the total content. The residual fraction is the result of natural
Mo ore rock weathering and soil erosion. It is hardly to migrate and has low pollution
potential. S1 is in the upstream of the mining area, but the Mo of S1 had the same speciation
characteristics as the Mo in the downstream of the mining area. Both were mainly the
residual fraction, indicating that the Mo in the Wenyu River sediments was mainly the
residual fraction. Mo has been stable in the sediment for a long time and is not easily
absorbed by plants. Therefore, Mo in sediments of the Wenyu River migrated via runoff
migration and deposition. In conclusion, Mo in the sediments of the Wenyu River mainly
exists as a residual fraction.
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Previous studies have shown that the speciation of U in natural water is mainly
affected by pH and redox potential [18]. The U in SE1 and SE5 samples is mainly a residual
fraction, accounting for 73.71% and 59.07%, respectively. However, the main morphology
of U had changed downstream of the mining area. The U in three samples (SE2, SE3,
SE4) were mainly non-residual fractions (F1 + F2 + F3), on average accounting for 65%
(Figure 4b). In addition, U was a residual fraction at SE5, and the speciation distribution of
SE5 and SE1 was highly similar (Figure 4b). This explains that the Wenyu River downstream
was affected by the discharge of sewage from the mining area and the slag accumulation,
resulting in the enrichment of U. It also showed that the migration and morphological
transformation of U in water were affected by external factors, such as human activities.

The U speciation distribution also had a strong positive correlation with the total
content in addition to the residual fraction of U. And the content of U had a high correlation
coefficient with the oxidizable speciation (p = 0.987). Therefore, for the high proportion of
the residual fraction of U in SE5 to have had little correlation with the total content, the
explanation is that because U is a geochemically sensitive element and U (IV) is stable
in a reducing environment and difficult to migrate, more of the residual fractions were
embedded in the mineral lattice.

The distribution coefficient of trace metals in the water sediment phase reflects the
migration ability of trace metals between the water phase and the sediment phase and also
reflects the pollution potential of trace metals [46,47]. The distribution coefficients of Mo
and U at five sampling sites in the Wenyu River were calculated. The results showed Kd
(Mo) > Kd (U), indicating that Mo mainly exists in sediments and the migration of U in
water is stronger than Mo (Table 6). Therefore, the pollution potential of U in the study
area was stronger than that of Mo. The Mo and U in the sediment were about 5 orders
of magnitude higher than those in the water, indicating that the sediment had a greater
influence on the distribution and migration of Mo and U.

Table 6. Distribution coefficient of potentially toxic elements in downstream of Jinduicheng Mo
mining area (L/kg).

Sites Kp(Mo) × 103 Kp(U) × 103

S1 - -
S2 18.2 -
S3 10.0 9.3
S4 8.8 6.9
S5 2.5 4.7

To gain a deeper understanding of the downstream migration of U and Mo, a linear
correlation analysis was conducted on the Mo and U concentrations in the river water and
sediments downstream of the mining area. The results show that the correlation coefficient
is R2 = 0.6538 (sediments) and R2 = 0.7529 (river water), indicating that U and Mo in
sediments and water had similar sources, especially natural mineral weathering (Figure 5).
The results were consistent with the findings of Kayzar et al. (2014) [23,48]. On this basis, it
is suggested that the high content of U downstream of the mining area may be the result of
U enrichment in molybdenite.
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4. Conclusions

The results of bulk composition in the sediment and the river water samples suggests
that the changes in physicochemical properties (e.g., pH) of the surface water can signifi-
cantly affect the distribution of U and Mo between the sediment and its surface water. The
Mo content of river sediment at Wenyuhe and the AMD pond can reach up to 0.193 mg/L
and 2.623 mg/L, respectively. Compared to the background values, the Mo and U contents
in the surface water of the tailing pond were significantly higher than in the river water. In
particular, Mo and U are mainly enriched in the downstream sediment of the mining area.
The spatial distribution characteristics indicate that the Mo content in the river sediment
increases with distance, while the U remains stable. The contents of Mo and U in the
sediments gradually decreased and were positively related to the distance of the mining
area. The Mo in river sediments mainly existed as a residual fraction (F4), accounting for
68% in total. The U mainly existed as a non-residual fraction, accounting for an average of
65%. This indicates that the migration potential of U in Wenyu River sediment is stronger
than that of Mo. The distribution coefficient of molybdate in the water exceeding that of
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U suggests that Mo is more likely to be enriched in sediment, while U is more likely to
migrate via water in the surface sediment near the AMD region.
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