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Abstract: Geostatistical techniques are applied to examine the life cycle of a mineral deposit. There
are two main classes of geostatistical techniques: (1) deterministic techniques that include kriging
and cokriging for a single best estimate, and (2) probabilistic techniques that include simulation,
which infer probability distributions and simulate realizations to transfer multivariable and mul-
tilocation uncertainty through to larger-scale resource and reserve uncertainty. Probabilistic tech-
niques are newer and more powerful in that they provide access to quantitative measures of uncer-
tainty and models with correct spatial variability; however, they have not seen widespread applica-
tion in all aspects of the life cycle of mines. Workflows and methodologies for the appropriate use
of deterministic and probabilistic techniques have been discussed. Software, engineering practices
and management expectations limit some applications. Applications have been reviewed, and en-
hancements are required to realize the full potential of geostatistical techniques, which have been
discussed with examples.
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1. Introduction

The five stages in the life cycle of a mineral deposit are summarized by the editors of
this special volume:

1. Prospecting: prior to confirmed rights to explore, looking over large areas for specific
targets to consider and possibly mine.

2. Exploration: taking a potentially long time with established land rights, delineating
resources and reserves that would form the basis of mining activities.

3. Development: over approximately ten years, the methods and sequence of mining
operations are established and permits and physical structures are put in place.

4. Exploitation: over decades, the mining operation will move waste rock as necessary
and extract ore for a variety of processing streams.

5. Reclamation: for as long as it takes, active and passive measures are taken to restore
the landscape and all disturbances to an agreed-upon state.

A wide variety of technology is brought to bear throughout this life cycle to make
the best possible decisions, reduce costs, increase value, operate sustainably and return
the mine site and all disturbed land to conditions as good as or better than before mining.
This is good business and the right thing to do. The pace of these activities will have to
accelerate in the coming years to support society’s efforts in electrification/decarboniza-
tion. There is pressure to maximize the use of existing technology and develop new tech-
nology to improve all stages in the life cycle. Of significant concern is the spatial distribu-
tion of in situ rock properties and the spatial distribution within waste rock and tailing
structures. This is where geostatistics, in particular simulation and probabilistic tech-
niques, come in. Among all of the technologies considered in relation to mining,
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providing predictions of the quality and quantity of the resource that could be extracted
and managing the long-term safety of waste structures are perhaps the most important.

Mineral deposits are inherently heterogeneous at all scales. Remote sensing provides
extensive information, but at a larger scale and imperfectly related to the rock properties
required for detailed mine planning and management. Drilling provides high-quality in-
formation but at a relatively wide spacing. Heterogeneity and incomplete information
lead to inevitable uncertainty. Probabilistic techniques represent this uncertainty and al-
low management of the consequences.

Uncertainty is the state of nature and is unavoidable. A minimum amount of data are
needed to provide a meaningful quantification of uncertainty, but geostatistical tools have
evolved and emerged for this purpose. Risk is related to the consequences of uncertainty.
Not all uncertainty has a negative impact on a project. Upside potential due to uncertainty
provides an opportunity and perhaps significant additional value. Risk is related to (1)
the probability of achieving an outcome that has negative consequences such as failure to
meet planned production, contaminants in excess of contractual limits, unforeseen costs
and so on, and (2) the magnitude of the consequences. We start by appreciating and quan-
tifying uncertainty and then assess whether this uncertainty translates to risk. Mitigating
risk may involve reducing uncertainty, but it may also involve changing decisions so that
the consequences of uncertainty are less severe.

Some would distinguish between epistemic and aleatoric uncertainty. Epistemic un-
certainty relates to uncertainty in a model. In geostatistics, this is captured in multiple
scenarios (plausible conceptual geological models) and uncertainty in parameters. Alea-
toric uncertainty relates to multiple realizations given a particular model. Some may limit
aleatoric uncertainty to intrinsic randomness; however, in geostatistics, statistical fluctu-
ations given a fixed model are partially random and partially explainable due to spatial
correlation. So, contrary to some definitions, we consider aleatoric uncertainty reducible
to some extent with additional data. Epistemic and aleatoric uncertainty are combined
together into a set of plausible geological realizations. Local accuracy and precision of
uncertainty predictions can be checked; however, uncertainty at larger scales is challeng-
ing to validate. Selected studies with very large datasets and anecdotal evidence support
the practices described in this paper.

There are many papers on specific unit operations and new techniques in geostatis-
tics. This paper presents a review of how we should correctly apply simulation and prob-
abilistic techniques. The aim is to teach and apply these techniques. This paper is not
aimed at theoreticians, although there are interesting challenges identified in terms of the-
ory that are yet to be worked out. There is great danger in not following through appro-
priately with simulation and probabilistic techniques. Engineers and decision makers may
feel overly confident in the models they receive. Needed additional drilling may not be
collected (or an unreasonably large amount of additional data collected for no good rea-
son). Projects may be rushed to development or unreasonably held back. Mine plans may
not accommodate uncertain geological conditions or be too flexible, incurring excessive
costs. Grade control decisions may be suboptimal, leading to avoidable dilution or lost
opportunities in terms of the costs of sending material in the wrong destination. Tailing
and waste rock structures intended to last almost indefinitely may be non-compliant or
fail. Uncertainty exists. Failing to quantify and manage that uncertainty is inappropriate
and (without exaggeration) unethical and unprofessional.

Calculating a single best estimate was not considered unprofessional or merely good
practice ten years ago: computational, methodological and software limitations provided
enough reasons to stop at the best estimate. Improvements on all of these fronts have
changed things. There are many concerns relating to deterministic best estimates. One an-
swer will always be regressing toward the mean. This regression effect leads to un-
derrepresentation of low and high values—which is critical in a mining operation. This
also leads to potentially severe bias when considering variables that do not average
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linearly. Many geomechanical variables and most geometallurgical variables, such as re-
covery and energy consumption, average non-linearly.

Variability matters, uncertainty matters and optimizing decisions in the presence of
non-linearity matters. These are the situations where simulation and probabilistic tech-
niques add value. There is a requirement to have engineering designs that are robust with
respect to variability. There is a requirement to mitigate the consequences of downside
risk and maximize the opportunity of upside potential. There is a need to optimize deci-
sions based on expected value and not the average grade.

The history of geostatistics is classical and similar to other scientific disciplines. Eve-
rything was performed by hand until we had access to computers (sectional modeling and
hand drawing geological boundaries). Then, we used computers to mimic what we did
by hand (kriging and machine contouring). Then, we started to get creative and perform
calculations we could not do by hand (simulation and probabilistic analysis). Now, we
are applying machine learning and artificial intelligence to take advantage of data-driven
applications where possible.

The pioneers of geostatistics included Krige, Sichel and Matheron [1-3]. They showed
how machines could be harnessed to create the best estimates. The theory of regionalized
variables presented significant advances in terms of understanding spatial variability, es-
timation variances, dispersion variances and best estimates. Michel David and André
Journel were among Matheron'’s first students and also the two who summarized not only
the theory but the practical application of this emerging field [4,5]. Their work was acces-
sible but perhaps not widely disseminated to resource modelers. The next generation fur-
ther refined the theory, presented compelling examples, and provided public-domain
software [6-9]. A more recent generation tackled special challenges in mining, petroleum,
environmental, geochemical and other applications [10-15]. There were no major concep-
tual disagreements. The essential elements of the challenges and the rationale of the geo-
statistical approach are nearly universally accepted. Some minor stress points may include
(1) the relative importance of data-driven versus model-driven methodologies, (2) the rel-
ative value of theory versus algorithms and software, and (3) the importance of model,
parameter and statistical fluctuation uncertainty. Recognition of the key challenges artic-
ulated above remains almost universally held.

To some extent, in mining at least, geostatistics has been a victim of its own success.
The use of variograms and carefully designed ordinary kriging led to resource and reserve
estimates that are very good and suitable for mine planning. However, they do not reflect
the intrinsic variability, they do not account for non-linear responses, and they do not
capture uncertainty. They do, however, provide estimates of tonnage and grade that are
approximately unbiased and can be tuned to the selectivity of different mining methods.

This is an unusual paper, it is not a new research paper on a focused subject, it is not
a case study, and it is not a conventional review paper. The main aim of this paper is to
advocate for modern techniques and encourage the correct and responsible application of
the right techniques under the right circumstances. The data, theory, software and practi-
cal know-how are available for the correct management of geologic variability and the
subsequent uncertainty.

2. Conventional Geostatistics

The history of geostatistics has been dominated by geostatistical techniques that lead
to a single best prediction. The process starts with defining domains within which to per-
form the estimation. The domains are typically based on geological criteria such as min-
eralization, alteration, lithology and structure. The grade itself could be used to assist in
domaining. The goal is to have the grades as uniform as possible within the domains and
as variable as possible between the domains. The domains should be spatially coherent,
and they should have sulfficient data for reasonably robust statistics.

The data within each domain are composited to a constant length support—subject-
to-edge effects at domain boundaries. Extremely high grades are managed so they do not
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have an unreasonable local influence. They may be capped to an upper threshold or the
search radius associated with them may be restricted. A representative histogram of every
grade variable is assembled by associating the declustering weights to each data. These
weights account for the spatial representivity and are based on cell declustering, volume
of influence or accumulated estimation weights. The declustered distribution is used for
model checking, global resources and change of support and as input for probabilistic
prediction techniques.

At this point, Matheron’s concept of a regionalized variable is invoked to calculate
the best estimate that minimizes mean squared error. This estimate is sometimes called a
linear estimate, but that is misleading in the current era of machine learning. Kriging is a
locally linear estimator that leads to a highly non-linear response surface. The following
sketch illustrates this in Figure 1; note how kriging leads to a complex, non-parametric,
non-linear response surface. In machine learning, the red line would be considered a lin-
ear estimate. This does not imply that machine learning estimates are not valuable or that
kriging is the ultimate local estimator. This author believes that a hybrid data-driven (ML)
and model-driven (to some extent kriging) system would provide the best estimates. The
author also believes that using focused Al models would greatly assist the modern geo-
modeler. ML/AI techniques will not replace geostatistical techniques, given the tailored
focus on extrapolating a very small data sample and the emphasis on geological data in-
tegration, but ML/AI methods are clearly going to revolutionize geostatistics along with
every other discipline.

Linear

Grade

Location

Figure 1. The sketch illustrates that Kriging is a locally linear estimator, leading to a highly non-
linear response surface.

Ordinary Kriging (OK) is the variant that has proven itself in hundreds of deposits
(based on publicly disclosed resources). OK constrains the local estimates to be based only
on the local data with no influence from the prior mean. The optimization of the kriging
weights requires knowledge of the covariance between all pairs of data and all data and
the unsampled location. These covariances come from a variogram model that is inferred
from the data and from the judgement of the practitioner; therefore, it is a function that is
both data-driven and model-driven.

There are alternative methodologies like multiple-indicator kriging and uniform con-
ditioning that aim to get some probabilistic insight from inherently deterministic esti-
mates. They have not seen wide application, yet they deserve mention.

These conventional deterministic techniques, specifically OK, are widely used. With
careful parameter tuning, such as search restrictions, they can lead to resource estimates
that are suitable for resource assessment and mine planning. There are, however, im-
portant limitations. The models do not show the same variability as the underlying true
deposit; the histogram of estimates can easily be constrained to have the right variance,
but the variogram of the estimates will always show that they have greater continuity than
the true grades. The variability matters for decisions related to blending and other short-
term grade-control decisions. The non-linearity of geometallurgical properties also entails
that kriged estimates are potentially biased. Another limitation is that no reasonable as-
sessment of uncertainty is provided.
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3. Simulation and Probabilistic Techniques

Uncertainty in rock properties at unsampled locations is accepted. There is variability
at all scales and relatively widely spaced drilling leads to inevitable uncertainty. Conven-
tional geostatistical techniques have been extended to create numerical models that rep-
resent natural variability and quantify uncertainty.

Regarding multivariate and multilocation uncertainty, multivariate Gaussian (MG)
distribution has unparalleled mathematical tractability and has seen widespread applica-
tion. The MG distribution is fully parameterized by a mean vector and covariance values.
Data are transformed into a Gaussian form, and then the required parameters are inferred
from the data and from assumptions of stationarity. Local uncertainty is easily calculated
and back-transformed into original units. There is no need for simulation to assess uncer-
tainty in variables at the data scale; however, large-scale uncertainty for selective mining
unit (SMU) blocks, stopes, pushbacks, dumps and tailing structures is required. Simula-
tion is invoked to transfer uncertainty to a larger scale.

Simulation from a multilocation, multivariate (and perhaps multidata-type) MG dis-
tribution is not sufficient for practical large-scale uncertainty. Practice has shown that ac-
curate and precise large-scale uncertainty requires capturing uncertainty in modeling pa-
rameters, the data used in modeling, large-scale domain boundaries, categorical variables
and multiple continuous rock properties. A number of realizations would be yielded from
each of the multiple scenarios. Figure 2 illustrates this in a schematic way.

Prior Posterior
Parameters Data Realizations Parameters: Response
F(z), pk, v,... Z,i,... A RT, Z... Scalar x1, x2... Variables
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Figure 2. This figure illustrates the process for practical simulation and post-processing. The top
row illustrates realizations in quantifying and transferring uncertainty. The bottom row summa-
rizes post-processing. See the text below.
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Regarding Figure 2, there are many points being illustrated. Simulated realizations
are illustrated in the top row, while post-processing is illustrated in the bottom row. Each
of the L simulated realizations is one outcome of all required model characteristics: prior
parameters that are needed to simulate the spatial models, the data that are used to locally
condition the models, the hierarchical models of boundaries (A), the domains or rock
types (RT) and the continuous rock properties (Z). The central blue panel represents The
Geologic Model in a simulation context. It could be summarized through the use of pos-
terior parameters such as volumes, proportions, mean values and correlation coefficients.
Response variables of interest, such as tonnage, grade and metal estimates, are computed
from each realization. The bottom row in Figure 2 illustrates the distribution of uncer-
tainty in one particular response variable with an expected value (we get one number if
we want one), and a representation of the sensitivity of the model characteristics to the
posterior parameters is assessed. Managers would want to know the expected value, un-
certainty and sensitivity; that is, the dependency of the uncertainty on different aspects of
the geological model.

The approach illustrated schematically in Figure 2 is needed for large-scale re-
source/reserve uncertainty. In grade control, the required distributions and uncertainty
are local and small-scale. In the design of blending facilities, variability is of primary im-
portance, and the full hierarchical uncertainty may not need to be quantified. It is inter-
esting to note that a simple, theoretically clean model of uncertainty from a Bayesian per-
spective is not practical. The prior model is a hybrid of many different variables and pa-
rameters. Updating by data is achieved in the process of simulation, but not with a clear
equation. A review is now made on the application at different times in the life cycle of
mineral deposits.

4. Application of Simulation and Probabilistic Techniques in Stages of Mining

The increased computational and professional time cost of simulations and probabil-
istic techniques are dwarfed relative to the improvements in data spacing, mitigation of
risk and improved decision making. The application during the stages of the life cycle of
mining are reviewed below. There is overlap. Optimizing drill hole spacing is an ongoing
activity for different purposes. Quantifying the uncertainty of in situ resources is ongoing.
Despite the overlap, there are some characteristic problems faced at different stages in the
life cycle of a mineral deposit.

4.1. Prospecting

This stage is perhaps the least amenable for geostatistical techniques: (1) there may
not be enough data to even know how much data are required; data collection would
proceed in a staged fashion until some basic understanding is achieved; (2) related to the
first point, there may be too few direct measurements to compute maps with any confi-
dence; and (3) further emphasizing the lack of data, the underlying geological controls
may be so uncertain that a statistical model cannot be formulated with any confidence.
Nevertheless, there are situations when geostatistical tools have a place, specifically those
situations with multiple data types.

Figure 3 shows a glimpse of some results that illustrate mapping over a large area.
Geostatistical simulation techniques are applied to generate realizations of 39 primary
variables conditioned to direct measurements and many (26) secondary variables. This is
computed at a high resolution over a very large area. Computing the resources on many
realizations provides uncertainty in resources at any scale. Of particular interest is local
uncertainty: surely good is indicated by a high probability of good quality; surely bad is
indicated by a high probability of low quality; average is indicated by a high probabilityof
being within narrow bounds of the center of the distribution, and; highly uncertain is indi-
cated by a simultaneous reasonable probability of being low and high.

Although there may be no drilling, there may be a significant number of geochemical,
geophysical and other remote sensing data. An important task is to calibrate all of the
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Secondary
Variables
(26}

Primary
Variables

(39}

available measurements for the prediction of pathfinder minerals or other indicators of
potential targets using multivariate exploratory data analysis together with spatial map-
ping and reasoning.

Prospecting and exploration are associated with a strong opportunity-seeking posi-
tion on risk. Short-term mine planning is risk-neutral —just take the best decision at the
moment. Medium- and-long term mine planning is often risk-averse—avoiding the
chance of underperformance and not meeting targets. Processing the multiple realizations
generated in this situation would consider summaries aimed at the high quantiles of the
distributions of uncertainty. A small probability of something significant is more interest-
ing than a certain probability of some modest resource.

[ —
Informed area
| —]
[ —
s | t 1 o 1
400 600 800 1000 1200

T T T T T -

Figure 3. A brief summary of a probabilistic study over a 170 by 300 km area in Northeast Alberta.
Clockwise from the upper left: (1) a correlation matrix between 26 secondary variables from seismic
surveys and mapping exercises and 39 primary variables related to thickness and quality —note that
blue colors represent negative correlation, green is close to zero, and hotter colors represent more
significant positive correlations, (2) a map showing data (over 16,000 were available from public
records and a heat map of an expected primary variable, and (3) bar chart of bitumen in place for
three different sub-areas with reasonable data.

4.2. Exploration

Prospecting may not consider a geostatistical model with a quantified uncertainty
and position on risk. There is a place for geostatistics, but the emphasis is on geological
understanding and searching for a confluence of positive indicators. When that happens,
acquisition of land rights and the appropriate permits to drill are acquired. The cost of this
is significant enough to ensure the targets are chosen appropriately. The types of compa-
nies performing prospecting versus exploration and mining may be different. Exploration
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may start by acquiring a project that has passed the hurdle of success dictated by pro-
specting.

Regarding exploration, as in many life decisions, the goal is acquiring early negative
information or early positive information—exit quickly or pursue aggressively. A mini-
mum amount of information is required for this. A minimum amount of drilling is re-
quired considering the key question: how much data do we need to know how much data
we need? This is subjective but also based on well-considered drill hole spacing studies.
Early in the exploration, there will be few measured resources; mostly indicated and in-
ferred resources will be delineated and disclosed. Geostatistical simulation will be consid-
ered to quantify the drill hole spacing required for classifying rock volumes as measured,
indicated and inferred.

Some discussion on the requirements for classification is warranted. Clearly, the ul-
timate requirements are based on regulatory requirements that are passed down to pro-
fessional organizations like CIM and AUSIMM. The judgement of qualified professionals
together with procedures accepted by qualified peers are essential. Increasingly, profes-
sionals are considering classification based on geometric criteria aimed at (1) relevant pro-
duction volumes, considering monthly, quarterly or annual production volumes, and (2)
a statistical tolerance close to the predictions to those of the production volumes. For ex-
ample, measured resources would require quarterly production volumes to be within 15%
of the predicted with a 90% or greater probability. Indicated resources would require an-
nual production volumes to be within 15% of the predicted with a 90% or greater proba-
bility. These conditions are not enshrined within reporting codes, but they are becoming
a de facto standard. The only way to be confident in these probabilistic criteria (or similar
site-specific criteria) is with the careful application of geostatistical simulation. Determin-
istic kriging calculations would not provide the required decision-support information.

Figure 4 illustrates the results of a drill hole spacing study. The probability being
within 15% of the predicted relates to the quantity of metal within a nominal quarterly
production volume. The shaded range of uncertainty and drill hole spacing may be ap-
propriate for classification. Note that 90% probability may be optimistic for a highly vari-
able deposit type (precious metals) and pessimistic for a more continuous deposit type
(coal, potash and industrial minerals). A range should be considered.

A key decision during exploration modeling is anticipation of the selectivity that
would be attained during mining. Creating an over-smoothed model assuming no selec-
tivity would be unrealistic. A highly selective model that is unattainable in future model-
ing would also be unrealistic. The models estimated during exploration should be gener-
ated for specific target mining methods. The information effect is important, that is, it
acknowledges that the model constructed during exploration does not have access to the
final information that will ultimately be available at the time of mining.

Increasingly, geostatistical models must consider data integration of mm-scale scan-
ning data, different drilling types and large-scale remote sensing data. Simulation tech-
niques are available to accommodate these different data types. More conventional deter-
ministic techniques are limited in their ability to consider multiple data types.

Additionally, of increasing importance is the consideration of geometallurgical mod-
els that help forecast processing performance, such as recovery, energy consumption, re-
agent consumption, throughput rate and others. This is an important multivariate model-
ing problem that almost always includes a component of machine learning. Related to this
is the importance of geomechanical models related to energy consumption, stability, sup-
port requirements and engineering design. Modern geostatistics is the modeling of whole-
rock properties and not simply economic elements.
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Figure 4. This figure illustrates how uncertainty increases (certainty decreases) as the drill hole spac-
ing increases. The probability of being within 15% of the predicted relates to the quantity of metal
within a nominal quarterly production volume. The shaded range of uncertainty and drill hole spac-
ing may be appropriate for classification.

4.3. Development

The topics here transition between exploration and exploitation. Development is
more strictly focused on construction, prestripping and establishing critical infrastructure
before starting production. The details of mining, equipment selection and mining prac-
tices are optimized.

Although relatively few new drill holes will become available during development,
the resource block model will be refined from the feasibility study block model. The ap-
propriate selectivity and blending criteria will be confirmed, and the estimation plan of
conventional block models are fine tuned to represent mine selectivity. In many cases, the
additional data that become available are aimed at geometallurgical and geomechanical
properties for engineering design. Refined multivariate modeling techniques may be con-
sidered for the improved modeling of these properties with many and varied data.

Simulation is also considered for a variety of reasons, including to (1) confirm drill
hole spacing ahead of production, (2) mitigate the risk of underperformance, and (3) refine
strategies and facilities for blending and homogenization. Figure 5 illustrates the results
of a simulation study, establishing how uncertainty changes with scale. As the time period
increases, the volume increases, and the uncertainty reduces. Processing facilities must be
flexible enough to deal with this uncertainty, or additional data would be acquired.

Strategic mine planning under uncertainty is becoming more widely used. Geologi-
cal uncertainty is quantified through the use of geostatistical methods, and then engineer-
ing design proceeds in a manner to mitigate the probability of undesirable outcomes and
maximize the probability of desirable outcomes. An ability to quantify geological uncer-
tainty is essential for this emerging field.
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Figure 5. An illustration of how uncertainty changes with scale. As the time period increases, the
volume also increases. There is more averaging within large volumes, and the uncertainty reduces.

4.4. Exploitation

There are three main tasks for geological modeling during exploitation: (1) updating
the life of mine (LOM) model with new drilling and improved geological understanding,
(2) short-term or grade control models for choosing the correct destination for material
during mining operations, and (3) characterizing waste rock structures, including tailings.
There are many other minor tasks, including supporting nearby brown-field exploration,
increasingly refined geometallurgical and geomechanical modeling and supporting deci-
sions related to the adoption of new technology and mining methods.

Updating the life of the mine model follows the principles described above; however,
short-term or grade control models are constructed differently. Those models are required
weekly, if not daily, and are essential to the economic success of the mining project. The
short-term model works in the context of a medium- and long-term model. Surface mining
has different selectivity decisions and often mines more waste rock than underground
mining. Geostatistical simulation supports optimal stope boundaries and stope sequenc-
ing in short-term planning of underground mining.

Regarding surface mining, Figure 6 illustrates the simulation applied to grade con-
trol. EP refers to calculating the expected profit for each high-resolution parcel of rock for
each possible destination. BM refers to numerically modeling blast movement; that is,
translating the high-resolution rock properties from the pre-blast geometry to the post-
blast muckpile. DL refers to dig limits where practical mining shapes or polygons are de-
termined. In simple cases, ore and waste are determined using a cutoff grade on one metal
in the presence of constant recovery. In this case, the decision based on a cutoff grade
applied to kriging and the maximum expected profit decision (the optimal one) is the
same. Increasingly, however, there are non-linear effects due to variable recovery, multi-
ple elements of value, non-linear influence of contaminants, etc. In the presence of these
complexities, multivariate simulation should be considered, and an engineering/eco-
nomic model should be applied to determine the optimal destination of each parcel of
rock. The “parcels” should be high-resolution—about one-quarter of the data spacing—
and then practical mining constraints should be considered. Mining contacts are unlikely
to be aligned with the coordinate system or the pattern of blast holes; therefore, high-
resolution modeling and posterior consideration of mining constraints are recommended
(See Figure 7).
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There are important references documenting the increased importance of grade con-
trol [16-21]. These document the importance of non-linearity, multivariate modeling, blast
movement, and the use of simulation. Geostatistical simulation adds value to grade con-
trol by determining the optimal destination for mined material. Choosing the optimal des-
tination based on the maximum expected profit is correct. The principle of “take the ex-
pected value as late as possible” is key in dealing with uncertainty. The expected value
calculated from many realizations is not the value calculated on the expected grade. The
main application of simulation in grade control is to transfer uncertainty in the presence
of non-linear value calculations.

Medium-term models are also constructed during exploitation. These support inter-
mediate-term tactical decisions and longer-term strategic decisions, such as reconsidera-
tion of pit stages, developing new areas, and tuning equipment choices.

As mining proceeds, waste rock structures such as dumps and tailings ponds grow
and must be characterized for government reporting requirements, ongoing stability and
safety, and engineering design and management. Data collected on the properties of waste
rock structures are relatively sparse, and simulation provides an assessment of the conse-
quent uncertainty and a means to manage the risk of non-performance.

E-Profit 1

BM

DL

Figure 6. This figure illustrates the simulation applied to grade control. EP refers to calculating the
expected profit for each high-resolution parcel of rock for each possible destination. BM refers to
numerically modeling blast movement—translating the high-resolution rock properties from the
pre-blast geometry to the post-blast muckpile. DL refers to dig limits where practical mining shapes
or polygons are determined.
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Figure 7. This figure illustrates that a resolution of between 20 to 30 percent of the data spacing is
reasonable to resolve contacts that are not aligned with the data or the coordinate system. The red
line represents the true underlying ore/waste contact (ore to the left and waste to the right). A coarse
grid block network would not follow that line very precisely. A resolution of less than 20% of the
data spacing is not justified by the available data.

4.5. Reclamation

The final stage in the lifecycle of a mining operation may be the most important. Re-
storing the disturbed land to a state as good as or better than originally encountered is
central to the belief system of modern mining. This is a point of pride and not a burden or
cost that is grudgingly encountered when revenue is no longer being generated. Progres-
sive regulations will reinforce this and set boundaries that are mutually agreed upon by
the legislators, miners and other stakeholders. Geostatistical simulation is used for a vari-
ety of activities during this last stage in the life cycle of a mineral deposit.

Waste rock structures, including dumps and tailing dam containments, must be mon-
itored for stability and compliance with requirements of safety and the long-term planned
outcome. There are questions to be answered through the use of simulations. A critical
question is the optimal sample collection to use for acceptable uncertainty and reporting
to the government and other stakeholders. At this point in the life cycle, the plan should
be clear (certain or determined) with no room for non-compliance; however, sampling
and ongoing monitoring are required to ensure that any deviation is acceptable. Geosta-
tistical modeling, in particular, simulation, will establish an uncertainty band that will
either lead to the acquisition of additional data or satisfy stakeholders of the efficacy of
the planned containment.

Geostatistical simulation also supports many other geotechnical, erosion, subsidence,
and fate/transport models. A key component is to ensure that outcomes are within regu-
lated limits with high confidence.

5. Discussion

There are many quotes regarding the benefits of a poor understanding of uncertainty
versus unwarranted confidence in a single estimate. Simulation and probabilistic tech-
niques are partially aimed at uncertainty, but they are also aimed at understanding vari-
ability and passing input variables through complex non-linear transfer functions in an
unbiased manner. The main aim of this paper has been to highlight the value and im-
portance of simulation and probabilistic techniques through the life cycle of a mine.
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6. Conclusions

The spatial distribution of rock properties in naturally occurring or engineered rock
structures is uncertain due to heterogeneity and limited sampling. Simulation and proba-
bilistic techniques are used to quantify this uncertainty and the risk of underperformance.
These techniques are used to identify areas of opportunity, optimize the drill hole spacing
during exploration and production, support risk-qualified mine planning, optimally route
material to alternative destinations and manage waste structures during reclamation. The
techniques for these tasks are available, but development is ongoing to manage a wide
variety of data types, perform calculations quicker and in an automated fashion and pro-
mote the most precise and accurate uncertainty characterization.
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