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Abstract: Identifying the local geochemical anomalies from stream sediment samples is challenging
in regional-scale exploration programs. For this purpose, some robust and reliable techniques must
be applied to distinguish the geochemical targets from the background values. In this research, a
procedure of several tools, including singularity mapping (SM), random forests (RF), success-rate
curves, and the t-Student method, were employed to analyze the geochemical anomalies within the
intrusive-plutonic Torud-Chahshirin belt (TCB), northeast Iran. In this regard, the success-rate curves
were initially applied to extract efficient geochemical signatures. Then, singularity analysis was used
on the selected geochemical elements (Au, Cu, Pb, and Zn), which were transformed via centered
log-ratio (clr) transformation. In the next step, due to the complexity of the ore-forming processes
in the TCB, the structural factors (e.g., fault intersection and faults with different orientations)
were determined. Based on the success-rate curves, NE-trending faults and fault density were
distinguished as critical structural criteria. Afterward, the RF model as a robust machine learning
algorithm was executed on the four efficient SM-based geochemical layers and two efficient structural
factors. The anomaly map derived by the RF model (Accuracy = 98.85% and Error = 1.15%) illustrates
a very high relationship with Cu & Au mineral occurrences. Therefore, the RF algorithm assisted
by the singularity method is more trustworthy for highlighting the weak geochemical prospectivity
areas in the TCB.

Keywords: local geochemical anomalies; singularity mapping; random forest; t-Student value;
success-rate curve; Torud-Chahshirin belt

1. Introduction

The fundamental task of regional and local exploration geochemistry is to make
an accurate difference between background and anomaly classes [1-6]. In this regard,
a wide range of robust and efficient methods have been successfully expanded into the
few past decades for the delineation of geochemically anomalous regions. Geoscientists
initially used classical statistical techniques, namely probability plots and univariate and
multivariate analysis, to decompose the background and anomalous components within
simple geological media [7,8]. However, the approaches mentioned above disregard the
spatial distribution of geochemical datasets and are unable to accurately restrict ore-related
geochemical patterns within complicated geological media as well. For this reason, spatial
statistical techniques are presently applied to distinguish geochemical anomalies [9,10].
Fractal/multifractal methods [11-14] are able to regard both frequency distribution and
spatial variability in geochemical data for the identification of ore-related geochemical
targets, and so are more applicable within complex geological environments. Furthermore,
fractal/multifractal techniques can enhance the weak geochemical patterns of buried
sources. Some of the most prominent tools in this specialized field are concentration-area
(C-A) [15], spectrum-area (S-A) [11] and singularity mapping (SM) [9]).
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Geochemical anomalies are usually linked to ore-forming processes which have sophis-
ticated systems [9,16]. On the other hand, thermodynamic constituents such as tectonics,
ore-bearing fluids, and wall rocks are differentiated in various geological environments.
Moreover, most orebody deposits are deeply buried below the earth’s surface [17]. Hence,
for a better understanding and more specific determination of mineralization-related local
geochemical anomalies, robust statistical methods based on machine learning algorithms
(MLAs) can be constructive in mineral exploration [18-21]. In recent years, MLAs have
displayed prominent capabilities as practical tools in addressing multilateral issues related
to pattern recognition and classification [19,22-25]. Artificial neural networks (ANNSs) [26],
deep autoencoder networks [27], support vector machines (SVMs) [28], self-organizing
maps (SOM) [5], and random forests (RF) [20,29] are examples of some influential and
well-known MLAs, which have frequently been employed in geoscience applications.
Specifically, numerous MLAs are practically attractive subjects, which can executed for
revealing geochemical anomalies. For example, the SOM method as an unsupervised MLA
has been applied to portray geochemical signatures associated with copper mineralization
in the Moalleman district [5], and various MLAs such as RF, SVMs, and Ada Boost classi-
fiers have been employed to detect geochemical anomaly classes in Kuh Panji porphyry-Cu
district [30].

In this paper, an integrated methodology including the SM and RF models were em-
ployed to analyze stream sediment geochemical data collected from the Torud-Chahshirin
belt (TCB) to discover Cu £ Au geochemical anomalies. For this, success-rate curves were
initially used to specify efficient geochemical indicators of related to mineralization in the
study area. Following the outcomes of the success-rate curves, singularity values of Au,
Cu, Pb, and Zn elements were used to delineate the weak geochemical anomalies.

Finally, according to the complex and multiform geological settings present in the
study area, the RF model as a robust machine learning algorithm was conducted on
the singularity values of efficient geochemical signatures and the mineralization-related
structural factors (fault density and distance to NE-trending faults) for precise mapping of
mineral prospectivity within the study area.

2. Study Area and Dataset Used

The Torud-Chah Shirin volcano-intrusive belt (TCB), which is located in the south
of the Kavir-e-Chah Jam depression (southwestern of Damghan), covers an area of ap-
proximately 5000 km?. It is a part of the Central Iran Magmatic Zone [31] (Figure 1). The
existence of diverse mineral deposits/occurrences, particularly base metal veins of epither-
mal origin, has increased the economic importance of this magmatic belt for economic
geology researches [32]. The N-E trending TCB acts as an uplifted block between the Torud
and Anjilow regional faults. Moreover, the Tertiary calc-alkaline volcanism and ore-related
mineralization took place along the major Anjilow fault in the north and Torud fault in the
south. Thus, tectonic processes, especially faults and fractures, are the primary controllers
of ore-forming systems in this belt [33] (Figure 2).

The oldest rock units in the TCB include green schist, metamorphosed dolomite,
and limestone [34]. Furthermore, the exposed rocks in this complex consist of Eocene
volcanic-pyroclastic assemblages, which are underlain by Oligocene intrusive bodies with
granodiorite composition. Principal magmatic commodities are formed of andesite and
basalt, which over time have tended to be acidic and trachyte. Eventually, they become
more alkaline and turn into lava flows, breccias, and andesite tuffs that probably extend to
the late Eocene [35]. The volcanic rocks of TCB have been intersected by several effusive
rocks, which are of the upper Eocene-Oligocene age. In addition, lithological composition
includes granite, micro-granite, granodiorite, micro-granodiorite, micro-quartz-monzonite,
micro-monzonite, micro-monzodiorite and micro-quartz-monzodiorite. These rocks have
magmatic series, subalkaline to alkaline, and are of type I [36,37]. In addition, these
intrusive bodies are considered as one of the crucial factors in the mineralization process in
the TCB. There are several significant mineral deposits/occurrences as well as abandoned
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mines in the TCB district, namely Cheshmeh Hafez (Pb + Zn + Cu), Chah Messi (Cu + Au),
Gandy (Au-Ag + Pb-Zn), Abolhassani (Pb-Zn + Ag + Au), Chalo (Cu + Au), Darestan
(Cu £ Au), Baghu (Au = Cu), and Reshm (Pb-Zn + Ag) [38].
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Figure 1. Location of the Torud-Chahshirin volcano-intrusive complex in NE Iran.
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Figure 2. Simplified geological map of TCB [31].

Veins, veinlets, and disseminated mineralization mainly occur in the late Eocene—
Oligocene within TCB [32,39]. As a good case in point, mineralization in the Darestan
deposit happens in NW-trending veins and is hosted by Eocene volcanic and volcaniclastic
rocks. Moreover, a mineral assemblage that includes chalcopyrite, pyrite, minor chalcocite,
tetrahedrite, and covellite indicates a high sulfidation epithermal system in the Darestan
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prospect. More details about other mineral occurrences can be found in TaleFazel et al.
(2019) [32].

The stream sediment geochemical survey for mineral exploration in the TCB was
conducted by the Jianxi Company in 1993. A systematic net of 1625 composite stream
sediment samples, with sampling nets of 1400 m x 1400 m, was designed. Then, subsamples
(up to four) were collected from the first- or second-order streams within each cell (Figure 3).
Afterward, a sample was allotted to the center of each cell as a representative of collected
subsamples. In this case, these composite stream sediment samples can acceptably provide
information relevant not only to the upstream sources of the samples but also to the
immediate proximity of the sample locations.
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Figure 3. Sampling sites, which are systematically collected from the study area.

In the next step, each representative sample was analyzed by inductively coupled
plasma optical emission spectrometry (ICP-OES) for principal and trace geochemical ele-
ments, excluding Au, for which fire assay (FA) as a preconcentration technique was applied.
Next, the resultant solution was analyzed by atomic absorption spectrometry (AAS). Finally,
the concentration contents of six indicator elements (Au, As, Cu, Pb, Sb, and Zn), which are
spatially connected to the vein-type epithermal deposits in the TCB [32], were utilized for
geochemical investigations.

3. Methodology
3.1. Singularity Mapping

From a geological perspective, hydrothermal mineralization is the result of mineral
accumulation in a limitary period of geological time, which usually happens within small
amounts of orebodies [1,9]. The idea behind the singularity may be similar to ore-forming
processes, which are about releasing enormous energy or gathering material within a
spatial-temporal range. Hence, the quantitative measuring of singularity can be a crucial
tool for discovering hidden and local geochemical anomalies [9,40,41].

From a multifractal viewpoint, singularity can be expressed through power-law rela-
tions. In a 2D model, if the amount of metal within an area (A) is #(A), and the average

concentration of the metal is C(A), it can therefore be described as C(A) = @. According
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to relation C(A), 1(A) and A have a direct relationship (e.g., the amount of metal y(A)
increases as the area A increases, and vice versa). However, the values of C(A) totally
depend on ore-forming processes, and with the variation of area, C(A) can go up, go down,
or stay constant. The power-law relationships between these variables are [12,42]:

p(A) = cA? 1)

C(A) =cA?™! )

where a indicates the singularity index, and c is constant. & can be achieved via the values
of average metal concentration, which are measured for several sizes of area by the least-
squares method. There are three different conditions based on the a values in 2D modeling;:
(1) « < 2 denotes abnormal enrichment of the element in a specific location, (2) & > 2
displays an elemental depletion in that situation, and (3) « = 2 illustrates a monofractal
behavior in a certain location [9,43].

To calculate the « value for every location of the study area and display the results as a
geochemical map, a singularity mapping technique based on moving average window can
be applied. Firstly, a group of sliding windows A(r) (usually a square shape) with diverse
sizes is defined (r; X r;). In the next step, the algorithm measures the values of average
concentration C[A(r;)] per window, and finally, the « index for each location is estimated
through the below equation [9]:

log C[A(r)] = C + (& — 2) log(r;) ©)

The value of (¢ — 2) is considered as the slope from Equation (3). It can be concluded
that the singularity mapping approach is a robustified form of the concentration-area fractal
technique [9]. Supplementary descriptions of the phenomenon of the singularity, and also
the singularity mapping method, can be found in Cheng (2007) [9].

3.2. Random Forest

Random forest (RF) is one of the ensemble techniques that employs numerous decision
trees (DTs) for classification and regression problems [44]. For the training of DTs, RF
implements a bootstrapping method [45], which is a resampling technique. It means
applying random samples by replacing them with labeled data—values obtained from a
group of exploratory criteria at places of presence or absence of mineral occurrences. In
other words, in the bootstrapping procedure, about 75% of input data are involved in the
training procedure, and the remaining is utilized for calculating the error of generalized
trees (out-of-bag error) [20,46]. Each DT is trained by a random sample of the original data,
and it also separates the target variable into dichotomous classes. The RF algorithm starts
to purify the child nodes from the root nodes via the splitting processes based on multiple
input variables [44]. This procedure repeatedly goes on until a predetermined stop criterion
is reached. Eventually, the regression model of RF is gained by averaging the outcomes of
several DTs [18,29,47].

The outstanding advantage of RF as a robustified version of DTs among the MLAs is
random resampling and replacement, which cause several training subsets to be applied
to expand DTs, therefore diminishing correlations between trees as well as improving the
prediction accuracy by reducing the generalization error [25,44].

More importantly, the RF algorithm is a user-friendly and well-performing machine
learning algorithm due to few parameters. There are two influential parameters, namely
the ntree and mtry, which have the most considerable effect on the random forest model.
(a) ntree is the number of trees to grow, and (b) mtry is the number of variables to be
assigned to each node [47]. Selecting the huge number of DTs (ntree) usually raises the
model accuracy, but too large values of mtry variable may lead to underfitting. In this
regard, the ‘tuneRF’ function in the ‘randomForest” package was utilized to attain the
optimum values for learning parameters (e.g., ntree and mtry) and also to decrease the
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OOB error. Therefore, the RF model with 215 as the number of trees and with 2 as the
number of splits was operated.

To measure the degree of capability of the RF model in the classification procedure, a
confusion matrix was implemented [10]. The confusion matrix is comprised of four basic
parameters, namely: (1) TP (true positive) represents the prospect sites which are correctly
predicted, (2) TN (true negative) illustrates that the model correctly predicted the non-
prospect sites, (3) FP (false positive) and (4) FN (false negative) illustrate the total number
of prospect and non-prospect sites, respectively, which are incorrectly predicted. The total
accuracy (TA) of the RF model is defined as the ratio of correctly predicted prospect and
non-prospect sites to the total number of predicted sites as follows:

B TP+ TN
" TP+ TN+ FP+FEN

TA 4)

3.3. Success-Rate Curves

Selecting the efficient exploration criteria (e.g., geochemical signatures or controlling
geological factors) is very applicable because the high-favorable areas can be recognized
with low uncertainty. In other words, by eliminating the inefficient criteria in modeling
mineralized zones, trustworthy results can be gained [48,49]. To do this, the success-rate
curves were drawn to reveal the efficiency of evidence maps. Furthermore, these curves can
be used to assess the performance of different models linked to mineral deposits. To plot a
success-rate curve, the x-axis is defined as a section of the study area which is classified
as favorable (P;), and a section of mineral deposits which is estimated correctly (P,) is
displayed on the y-axis [50,51]. In addition, there is a gauge line in the success-rate curve
which characterizes the success or failure of each evidence map [28,51]. In this manner,
if an evidence layer is located above the gauge line, it demonstrates goodness-of-fit with
known mineral deposits in the study area. Conversely, an evidence layer represents a
poor relationship with known mineral deposits when it lies under the gauge line in the
success-rate curve.

4. Results and Discussion
4.1. Preprocessing of Selected Elements

The first step for applying the different statistical methods in order to reveal geo-
chemical anomalies is to define the type of distribution (e.g., normal or lognormal) of the
chemical elements [46,52]. In this regard, the basic statistical properties such as standard
deviation, skewness, and kurtosis of raw data belonging to mineralization-related elements
were calculated, as shown in Table 1. The outcomes (based on the skewness parameter)
exemplify that the values of geochemical elements do not conform to the normal tendency.
On the other hand, as Reimann et al. (2002) [53] and Filzmoser et al. (2009) [54] pointed
out, the geochemical data of stream sediments are expressed as closed-number systems,
which means they have a compositional nature. Hence, to address the closure problem and
to modulate the minimum and maximum values of geochemical data, log-ratio transforma-
tions have been carried out [55]. In this regard, the original data of six elements, including
Au, As, Cu, Pb, Sb, and Zn, have been subjected to the clr-transformation [14,48,55,56].
The clr transformation is appropriate for opening compositional data in statistical analyses
because of symmetric results [55] and the feasibility of interpreting resulting values [54].

Aiming to evaluate the normality of clr-transformed data, the Q-Q plots were plot-
ted (Figure 4) and revealed that there were some outliers in the clr-transformed data. It
can be deduced that the concentrations of mineralization-related elements display frac-
tal/multifractal distributions with multiple geochemical populations due to complicated
geological processes in the TCB [57-59].
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Table 1. Statistical parameters of mineralization-related geochemical elements.
As Au Cu Pb Sb In
N. of samples, valid 1625 1625 1625 1625 1625 1625
Maximum 85.4 604 1353 6637 24 5171
Minimum 43 0.3 10.71 8.86 0.21 36.63
Std. deviation 6.19 19.18 51.6 249.87 1.18 198.76
Skewness 4.6 25.98 15.37 18.83 109 18.25
Kurtosis 36.67 737.44 327.22 412.11 162.79 377.74
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Figure 4. Q-Q plots of clr-transformed elements: (a) As, (b) Au, (c) Cu, (d) Pb, (e) Sb, and (f) Zn.
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4.2. Extracting the Most Efficient of Single-Element Geochemical Footprints

From a geochemical point of view, identifying the geochemical anomalies in the stream
sediment dataset is vitally relevant to the ability of each single element to discover target
areas [1,6,27,60,61].

For this purpose, the success-rate curves were drawn for the determination of efficient
clr-transformed geochemical elements (Figure 5a—f). It can be seen that the geochemical
values of Cu and Au represent a robust positive relationship with the known mineral
occurrences in the TCB, as their success-rate curves lie beyond the gauge line (Figure 5b,c).
The Pb and Zn are classified as moderate efficient geochemical elements based on their
success-rate curves (Figure 5d,f) as their anomaly classes do not display an appropriate
relationship with Cu-Au deposits. Also, Sb (Figure 5e) is the least efficient geochemical
element because its success-rate curve lies thoroughly on the diagonal line. Finally, the
single-element value of As did not display spatial relations with the locations of mineral
deposits in the study area since its success-rate curve is placed entirely under the gauge
line (Figure 5a).
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Figure 5. Success-rate curves for clr-transformed values of six indicator elements: (a) As, (b) Au,
(c) Cu, (d) Pb, (e) Sb, and (f) Zn.
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4.3. Singularity Mapping for Detecting the Local Geochemical Anomalies

The challenging issue of the present research is to identify local and complex geochem-
ical anomalies through stream sediment geochemical data. After recognizing the efficient
(most, moderate, and least) and inefficient geochemical elements linked to mineralization
sought in the TCB, SM was executed on the clr-transformed geochemical values of Au, Cu,
Pb, and Zn in order to distinguish the local anomalies in the study area (Figure 6). However,
there was a problem in the application of SM on the clr-transformed geochemical dataset
that consisted of negative values, leading to erroneous results. To address this, a positive
shift was initially applied to the clr-transformed values of selected elements, aiming at
converting them into a positive domain to be used for singularity analysis.
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Figure 6. IDW maps of « values related to: (a) Au, (b) Cu, (c) Pb, and (d) Zn.

For applying the SM algorithm, firstly, we selected an appropriate cell size (300 m x 300 m)
for gridding the clr-transformed geochemical elements scores into a raster map based on the
structure of sampling (instead of density of samples) as described by Zuo (2012) [62] and
Shuguang et al. (2015) [40]. Next, a group of square sliding windows with different sizes
(300 m x 300m, 600 m x 600 m, ..., 1500 m x 1500 m) were set. These sizes were calculated
by multiples of the first cell size. Afterward, the average concentration of elements with
predetermined cell size was computed per window. Then, the singularity indices were
attained by applying the least-squares method duo to Equation (3). Eventually, to portray
the values of the singularity indices, the IDW was carried out (Figure 6). The SM algorithm
was implemented in the MATLAB R2031a program.

4.4. Delineating of Efficient Structural Controlling Factors

The fault systems are the product of stress differences within geological settings. It
means that a sudden fall in geostress can form faults and fractures, which are the favorite
places for migrating and precipitating hydrothermal fluids [17,63-65]. Moreover, these
pathways and their intersection points control important factors such as temperature,
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pressure, and permeability, which are connected to mineralization processes [17,66,67].
Also, structural controlling factors (e.g., faults and fractures) facilitate the passage of
hydrothermal fluids [16,65].

On the other hand, ore-related mineralization processes and the evolution of Tertiary
volcanism in the TCS belt are directly influenced by the fault systems. Therefore, the
identification of different orientations of faults could be appropriate evidence for specific
mineralization. In this regard, four major trends comprising N-trending, E-trending, NE-
trending, and NW-trending were extracted as tectonic controls (Figure 7).
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Figure 7. Relations between different geospatial trending faults with known mineral occurrences in
the TCB.

In order to specify the relations between structural factors and mineral occurrences, we
generated the relevant maps of distance to the faults by Euclidean distance order in ArcMap
10.3 software. For each cell, the Euclidean distance to the closest source was measured. In
addition, the maximum distance was set to the edge of the output raster (Figure 8a—-d). In
addition, the density map of faults as another tectonic control of ore-forming processes in
the TCB belt was generated (Figure 8e).

Finally, due to the outcomes of success-rate curves, the maps of distance to NE-trending
faults and fault density were recognized as the efficient structural layers (Figure 9b,e). The
outcomes of success-rate curves are in compliance with previous studies in the TCB. For
instance, Hushmandzadeh et al. (1978) [34] stated that the Eocene-Oligocene volcanism
in the TCS district may have formed along an NE-trending fault segment. Furthermore,
some prominent deposits (e.g., Gandy, Baghu, and Abolhassani) in the TCS belt are mainly
formed parallel to the NE alignment [32]. So, these faults (NE-trending) are directly
connected to ore-forming processes in the TCS belt.

The remaining directions (e.g., N-trending, E-trending, and NW-trending) were con-
sidered as inefficient structural factors (Figure 9a,c,d).

4.5. Random Forest Model

Aiming at extracting the geospatial relations between geochemical anomalies and
Cu £ Au mineral occurrences, the RF algorithm was applied. For this purpose, four
efficient SM-based geochemical layers (the alpha values of Au, Cu, Pb, and Zn), plus two
significant structural factors (distance to NE-trending faults and fault density) were utilized
as inputs for creating a predictive model of Cu-Au prospectivity. For this purpose, a total
of 65,583 pixel values were extracted from six evidence maps in order to obtain test and
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training data. In this regard, a training dataset was generated based on the prospect and
non-prospect locations. These locations should be chosen by the following rules [18,49]:

(1) The number of non-prospect sites must be equal to the number of prospect sites to
improve the accuracy of models (here, prospect sites = 31).

(2) Inorder to differentiate the multiattribute dataset, the non-prospect sites should be
selected far from the prospect sites (the selection of the non-prospect locations is
conducted based on the point pattern analysis introduced by Carranza et al., 2008 [1],
which demonstrated that the non-deposit sites must be selected at least 3 km away
from the deposit sites).

(3)  Unlike the prospect sites, which have been regularly clustered, the non-prospect sites
should have an arbitrary nature.
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Figure 8. Distance maps from different trending faults: (a) N-trending, (b) NE-trending, (c) NW-
trending, (d) E-trending, and (e) fault density map.
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Figure 9. Success-rate curves for different trending faults: (a) N-trending, (b) NE-trending, (c) NW-
tending, (d) E-trending, and (e) fault density map.

Accordingly, the training dataset has been produced (e.g., 2561 pixel values), in which
the target variable scores were labeled 1 as prospect and 0 as non-prospect. Then, about
three-fourths of the total values (1920 pixels) were chosen to train the RF model and the
residue (641 pixels), which were applied as out-of-bag samples (OOB) and were not used
for the training procedure. The OOB samples were used to evaluate the accuracy of the
trained model. The RF algorithm was carried out using the RStudio-2023.06.0+421.prol
software.

The OOB error was 1.15%, and as a consequence, the accuracy of the RF model
was 98.85% (Table 2), which demonstrate that the algorithm is appropriately operated.
Furthermore, based on the confusion matrix, the accuracy of the classification of deposit
and non-deposit sites for RF modeling is 98.87% (error = 1.13%) and 96.97% (error = 3.03%),
respectively.

Finally, as depicted in Figure 10, the RF model revealed a terrific relationship between
high-favorable areas and areas consisting of known Cu £ Au occurrences.
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Table 2. The classification accuracy and error of different RF models for OBB data based on confusion

matrix.
RF via Singularity Values
OBB error 1.15%
Model accuracy 98.85%
Error for the classification of deposit sites 1.13%
Error for the classification of non-deposit sites 3.03%
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Figure 10. Predictive maps for delineating the potential mineralization derived by RF model using
singularity analysis.

4.6. Assessment of Prospectivity Model

In this research, the success-rate curve was applied to measure the robustness of the
generated model for delineating derived geochemical anomaly targets in the TCB. In this
regard, to upgrade the precision of the analysis, 5-percentile intervals were adopted to
create the success-rate curve of the RF model.

As can be seen in Figure 11, the success-rate curve of the RF model has appeared
beyond the gauge line, and this means that the predictive model has successfully obtained
a positive relationship with the known Cu £ Au deposits/occurrences.

4.7. Delineation of Exploration Targets by Applying Student’s t Method

To specify the appropriate threshold values for separating geochemical anomalies
related to the RF model, the t-Student spatial statistic was utilized. Student’s t-value, based
on the weights-of-evidence method, measures the spatial association between geochemical
values and known mineral occurrences [9,50,68]. Further explanation about the t-Student
method could be found in Bonham-Carter, 1994 [50]. Basically, the higher the positive values
of ¢, the more robust positive relations between known mineral deposits and geochemical
anomalies. In this regard, to decompose a continuous-value singularity-based RF map
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into dichotomous meaningful classes, the highest Student’s ¢-value (3.95) (Figure 12a) was
selected as an appropriate threshold (0.8) for determining the geochemical anomalies. As
shown in Figure 12b, the geochemical targets located in the predictive map of singularity-
based RF are spatially correlated with a majority of known mineral deposits in the TCB

(Figure 12b).
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Figure 11. Success-rate curve of generated RF predictive model for identifying Cu £ Au deposits.
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Figure 12. (a) Student’s t-values measured for discretized the predictive model. (b) The dichotomous
singularity-based RF model illustrates favorable targets derived by the Student’s t method.
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5. Conclusions

In the present study, the RF model with efficient SM-based geochemical layers and
critical structural criteria was implemented, aiming to delineate high-favorable geochem-
ical anomalies linked to epithermal Cu £ Au mineralization in the TCB. The substantial
outcomes of this research are listed below:

(1) The singularity mapping as a filtering method is significantly successful in outlining
the high-favorable geochemical anomalies in the TCB.

(2) The prediction of high-favorable mineralized areas with highly accurate classification
(Accuracy = 98.85%) indicates the robustness and effectiveness of the RF model in
portraying geochemical anomalies.

(8) The prospectivity model of RF (derived from ¢-Student method) represents the geochem-
ical anomalous areas closely coinciding with Cu £ Au mineral deposits/occurrences.
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